Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d           c6grid_00;
96     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     real             *vdwgridparam;
98     __m128d           one_half = _mm_set1_pd(0.5);
99     __m128d           minus_one = _mm_set1_pd(-1.0);
100     __m128i          ewitab;
101     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
212                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
213
214             /* EWALD ELECTROSTATICS */
215
216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
217             ewrt             = _mm_mul_pd(r00,ewtabscale);
218             ewitab           = _mm_cvttpd_epi32(ewrt);
219             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
220             ewitab           = _mm_slli_epi32(ewitab,2);
221             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
222             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
223             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
224             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
225             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
226             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
227             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
228             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
229             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
230             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
231
232             /* Analytical LJ-PME */
233             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
234             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
235             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
236             exponent         = gmx_simd_exp_d(ewcljrsq);
237             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
238             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
239             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
240             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
241             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
242             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
243             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
244             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm_add_pd(velecsum,velec);
248             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
249
250             fscal            = _mm_add_pd(felec,fvdw);
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_pd(fscal,dx00);
254             ty               = _mm_mul_pd(fscal,dy00);
255             tz               = _mm_mul_pd(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_pd(fix0,tx);
259             fiy0             = _mm_add_pd(fiy0,ty);
260             fiz0             = _mm_add_pd(fiz0,tz);
261
262             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
263
264             /* Inner loop uses 69 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             jnrA             = jjnr[jidx];
271             j_coord_offsetA  = DIM*jnrA;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
275                                               &jx0,&jy0,&jz0);
276
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_pd(ix0,jx0);
279             dy00             = _mm_sub_pd(iy0,jy0);
280             dz00             = _mm_sub_pd(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
284
285             rinv00           = gmx_mm_invsqrt_pd(rsq00);
286
287             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
288
289             /* Load parameters for j particles */
290             jq0              = _mm_load_sd(charge+jnrA+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r00              = _mm_mul_pd(rsq00,rinv00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _mm_mul_pd(iq0,jq0);
301             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
302
303             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
304
305             /* EWALD ELECTROSTATICS */
306
307             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
308             ewrt             = _mm_mul_pd(r00,ewtabscale);
309             ewitab           = _mm_cvttpd_epi32(ewrt);
310             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
311             ewitab           = _mm_slli_epi32(ewitab,2);
312             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
313             ewtabD           = _mm_setzero_pd();
314             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
315             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
316             ewtabFn          = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
318             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
319             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
320             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
321             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
322
323             /* Analytical LJ-PME */
324             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
325             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
326             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
327             exponent         = gmx_simd_exp_d(ewcljrsq);
328             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
329             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
330             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
331             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
332             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
333             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
334             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
335             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
339             velecsum         = _mm_add_pd(velecsum,velec);
340             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
341             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
342
343             fscal            = _mm_add_pd(felec,fvdw);
344
345             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_pd(fscal,dx00);
349             ty               = _mm_mul_pd(fscal,dy00);
350             tz               = _mm_mul_pd(fscal,dz00);
351
352             /* Update vectorial force */
353             fix0             = _mm_add_pd(fix0,tx);
354             fiy0             = _mm_add_pd(fiy0,ty);
355             fiz0             = _mm_add_pd(fiz0,tz);
356
357             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
358
359             /* Inner loop uses 69 flops */
360         }
361
362         /* End of innermost loop */
363
364         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
365                                               f+i_coord_offset,fshift+i_shift_offset);
366
367         ggid                        = gid[iidx];
368         /* Update potential energies */
369         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
370         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
371
372         /* Increment number of inner iterations */
373         inneriter                  += j_index_end - j_index_start;
374
375         /* Outer loop uses 9 flops */
376     }
377
378     /* Increment number of outer iterations */
379     outeriter        += nri;
380
381     /* Update outer/inner flops */
382
383     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*69);
384 }
385 /*
386  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_double
387  * Electrostatics interaction: Ewald
388  * VdW interaction:            LJEwald
389  * Geometry:                   Particle-Particle
390  * Calculate force/pot:        Force
391  */
392 void
393 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse4_1_double
394                     (t_nblist                    * gmx_restrict       nlist,
395                      rvec                        * gmx_restrict          xx,
396                      rvec                        * gmx_restrict          ff,
397                      t_forcerec                  * gmx_restrict          fr,
398                      t_mdatoms                   * gmx_restrict     mdatoms,
399                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
400                      t_nrnb                      * gmx_restrict        nrnb)
401 {
402     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
403      * just 0 for non-waters.
404      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
405      * jnr indices corresponding to data put in the four positions in the SIMD register.
406      */
407     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
408     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
409     int              jnrA,jnrB;
410     int              j_coord_offsetA,j_coord_offsetB;
411     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
412     real             rcutoff_scalar;
413     real             *shiftvec,*fshift,*x,*f;
414     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
415     int              vdwioffset0;
416     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
417     int              vdwjidx0A,vdwjidx0B;
418     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
419     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
420     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
421     real             *charge;
422     int              nvdwtype;
423     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
424     int              *vdwtype;
425     real             *vdwparam;
426     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
427     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
428     __m128d           c6grid_00;
429     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
430     real             *vdwgridparam;
431     __m128d           one_half = _mm_set1_pd(0.5);
432     __m128d           minus_one = _mm_set1_pd(-1.0);
433     __m128i          ewitab;
434     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
435     real             *ewtab;
436     __m128d          dummy_mask,cutoff_mask;
437     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
438     __m128d          one     = _mm_set1_pd(1.0);
439     __m128d          two     = _mm_set1_pd(2.0);
440     x                = xx[0];
441     f                = ff[0];
442
443     nri              = nlist->nri;
444     iinr             = nlist->iinr;
445     jindex           = nlist->jindex;
446     jjnr             = nlist->jjnr;
447     shiftidx         = nlist->shift;
448     gid              = nlist->gid;
449     shiftvec         = fr->shift_vec[0];
450     fshift           = fr->fshift[0];
451     facel            = _mm_set1_pd(fr->epsfac);
452     charge           = mdatoms->chargeA;
453     nvdwtype         = fr->ntype;
454     vdwparam         = fr->nbfp;
455     vdwtype          = mdatoms->typeA;
456     vdwgridparam     = fr->ljpme_c6grid;
457     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
458     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
459     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
460
461     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
462     ewtab            = fr->ic->tabq_coul_F;
463     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
464     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
465
466     /* Avoid stupid compiler warnings */
467     jnrA = jnrB = 0;
468     j_coord_offsetA = 0;
469     j_coord_offsetB = 0;
470
471     outeriter        = 0;
472     inneriter        = 0;
473
474     /* Start outer loop over neighborlists */
475     for(iidx=0; iidx<nri; iidx++)
476     {
477         /* Load shift vector for this list */
478         i_shift_offset   = DIM*shiftidx[iidx];
479
480         /* Load limits for loop over neighbors */
481         j_index_start    = jindex[iidx];
482         j_index_end      = jindex[iidx+1];
483
484         /* Get outer coordinate index */
485         inr              = iinr[iidx];
486         i_coord_offset   = DIM*inr;
487
488         /* Load i particle coords and add shift vector */
489         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
490
491         fix0             = _mm_setzero_pd();
492         fiy0             = _mm_setzero_pd();
493         fiz0             = _mm_setzero_pd();
494
495         /* Load parameters for i particles */
496         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
497         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
498
499         /* Start inner kernel loop */
500         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
501         {
502
503             /* Get j neighbor index, and coordinate index */
504             jnrA             = jjnr[jidx];
505             jnrB             = jjnr[jidx+1];
506             j_coord_offsetA  = DIM*jnrA;
507             j_coord_offsetB  = DIM*jnrB;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm_sub_pd(ix0,jx0);
515             dy00             = _mm_sub_pd(iy0,jy0);
516             dz00             = _mm_sub_pd(iz0,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
520
521             rinv00           = gmx_mm_invsqrt_pd(rsq00);
522
523             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r00              = _mm_mul_pd(rsq00,rinv00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq00             = _mm_mul_pd(iq0,jq0);
538             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
539                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
540             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
541                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = _mm_mul_pd(r00,ewtabscale);
547             ewitab           = _mm_cvttpd_epi32(ewrt);
548             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
549             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
550                                          &ewtabF,&ewtabFn);
551             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
552             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
553
554             /* Analytical LJ-PME */
555             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
556             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
557             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
558             exponent         = gmx_simd_exp_d(ewcljrsq);
559             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
560             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
561             /* f6A = 6 * C6grid * (1 - poly) */
562             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
563             /* f6B = C6grid * exponent * beta^6 */
564             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
565             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
566             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
567
568             fscal            = _mm_add_pd(felec,fvdw);
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm_mul_pd(fscal,dx00);
572             ty               = _mm_mul_pd(fscal,dy00);
573             tz               = _mm_mul_pd(fscal,dz00);
574
575             /* Update vectorial force */
576             fix0             = _mm_add_pd(fix0,tx);
577             fiy0             = _mm_add_pd(fiy0,ty);
578             fiz0             = _mm_add_pd(fiz0,tz);
579
580             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
581
582             /* Inner loop uses 59 flops */
583         }
584
585         if(jidx<j_index_end)
586         {
587
588             jnrA             = jjnr[jidx];
589             j_coord_offsetA  = DIM*jnrA;
590
591             /* load j atom coordinates */
592             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
593                                               &jx0,&jy0,&jz0);
594
595             /* Calculate displacement vector */
596             dx00             = _mm_sub_pd(ix0,jx0);
597             dy00             = _mm_sub_pd(iy0,jy0);
598             dz00             = _mm_sub_pd(iz0,jz0);
599
600             /* Calculate squared distance and things based on it */
601             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
602
603             rinv00           = gmx_mm_invsqrt_pd(rsq00);
604
605             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
606
607             /* Load parameters for j particles */
608             jq0              = _mm_load_sd(charge+jnrA+0);
609             vdwjidx0A        = 2*vdwtype[jnrA+0];
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             r00              = _mm_mul_pd(rsq00,rinv00);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq00             = _mm_mul_pd(iq0,jq0);
619             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
620
621             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_pd(r00,ewtabscale);
627             ewitab           = _mm_cvttpd_epi32(ewrt);
628             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
629             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
630             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
631             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
632
633             /* Analytical LJ-PME */
634             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
635             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
636             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
637             exponent         = gmx_simd_exp_d(ewcljrsq);
638             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
639             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
640             /* f6A = 6 * C6grid * (1 - poly) */
641             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
642             /* f6B = C6grid * exponent * beta^6 */
643             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
644             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
645             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
646
647             fscal            = _mm_add_pd(felec,fvdw);
648
649             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm_mul_pd(fscal,dx00);
653             ty               = _mm_mul_pd(fscal,dy00);
654             tz               = _mm_mul_pd(fscal,dz00);
655
656             /* Update vectorial force */
657             fix0             = _mm_add_pd(fix0,tx);
658             fiy0             = _mm_add_pd(fiy0,ty);
659             fiz0             = _mm_add_pd(fiz0,tz);
660
661             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
662
663             /* Inner loop uses 59 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         /* Increment number of inner iterations */
672         inneriter                  += j_index_end - j_index_start;
673
674         /* Outer loop uses 7 flops */
675     }
676
677     /* Increment number of outer iterations */
678     outeriter        += nri;
679
680     /* Update outer/inner flops */
681
682     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*59);
683 }