Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
134
135     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
145     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_pd();
174         fiy0             = _mm_setzero_pd();
175         fiz0             = _mm_setzero_pd();
176         fix1             = _mm_setzero_pd();
177         fiy1             = _mm_setzero_pd();
178         fiz1             = _mm_setzero_pd();
179         fix2             = _mm_setzero_pd();
180         fiy2             = _mm_setzero_pd();
181         fiz2             = _mm_setzero_pd();
182         fix3             = _mm_setzero_pd();
183         fiy3             = _mm_setzero_pd();
184         fiz3             = _mm_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_pd();
188         vvdwsum          = _mm_setzero_pd();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_pd(ix0,jx0);
206             dy00             = _mm_sub_pd(iy0,jy0);
207             dz00             = _mm_sub_pd(iz0,jz0);
208             dx10             = _mm_sub_pd(ix1,jx0);
209             dy10             = _mm_sub_pd(iy1,jy0);
210             dz10             = _mm_sub_pd(iz1,jz0);
211             dx20             = _mm_sub_pd(ix2,jx0);
212             dy20             = _mm_sub_pd(iy2,jy0);
213             dz20             = _mm_sub_pd(iz2,jz0);
214             dx30             = _mm_sub_pd(ix3,jx0);
215             dy30             = _mm_sub_pd(iy3,jy0);
216             dz30             = _mm_sub_pd(iz3,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
222             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
223
224             rinv00           = gmx_mm_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227             rinv30           = gmx_mm_invsqrt_pd(rsq30);
228
229             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
231             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237
238             fjx0             = _mm_setzero_pd();
239             fjy0             = _mm_setzero_pd();
240             fjz0             = _mm_setzero_pd();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             r00              = _mm_mul_pd(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm_mul_pd(r00,vftabscale);
254             vfitab           = _mm_cvttpd_epi32(rt);
255             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
256             vfitab           = _mm_slli_epi32(vfitab,3);
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
261             GMX_MM_TRANSPOSE2_PD(Y,F);
262             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
263             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
264             GMX_MM_TRANSPOSE2_PD(G,H);
265             Heps             = _mm_mul_pd(vfeps,H);
266             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
267             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
268             vvdw6            = _mm_mul_pd(c6_00,VV);
269             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
270             fvdw6            = _mm_mul_pd(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
276             GMX_MM_TRANSPOSE2_PD(Y,F);
277             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
278             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
279             GMX_MM_TRANSPOSE2_PD(G,H);
280             Heps             = _mm_mul_pd(vfeps,H);
281             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
282             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
283             vvdw12           = _mm_mul_pd(c12_00,VV);
284             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
285             fvdw12           = _mm_mul_pd(c12_00,FF);
286             vvdw             = _mm_add_pd(vvdw12,vvdw6);
287             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_pd(fscal,dx00);
296             ty               = _mm_mul_pd(fscal,dy00);
297             tz               = _mm_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm_add_pd(fix0,tx);
301             fiy0             = _mm_add_pd(fiy0,ty);
302             fiz0             = _mm_add_pd(fiz0,tz);
303
304             fjx0             = _mm_add_pd(fjx0,tx);
305             fjy0             = _mm_add_pd(fjy0,ty);
306             fjz0             = _mm_add_pd(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             r10              = _mm_mul_pd(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm_mul_pd(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318
319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
320             ewrt             = _mm_mul_pd(r10,ewtabscale);
321             ewitab           = _mm_cvttpd_epi32(ewrt);
322             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
326             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
327             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
328             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
329             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
330             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
331             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
332             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
333             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_pd(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm_mul_pd(fscal,dx10);
342             ty               = _mm_mul_pd(fscal,dy10);
343             tz               = _mm_mul_pd(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm_add_pd(fix1,tx);
347             fiy1             = _mm_add_pd(fiy1,ty);
348             fiz1             = _mm_add_pd(fiz1,tz);
349
350             fjx0             = _mm_add_pd(fjx0,tx);
351             fjy0             = _mm_add_pd(fjy0,ty);
352             fjz0             = _mm_add_pd(fjz0,tz);
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             r20              = _mm_mul_pd(rsq20,rinv20);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq20             = _mm_mul_pd(iq2,jq0);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366             ewrt             = _mm_mul_pd(r20,ewtabscale);
367             ewitab           = _mm_cvttpd_epi32(ewrt);
368             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
369             ewitab           = _mm_slli_epi32(ewitab,2);
370             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
371             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
372             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
373             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
374             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
375             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
376             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
377             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
378             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
379             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm_mul_pd(fscal,dx20);
388             ty               = _mm_mul_pd(fscal,dy20);
389             tz               = _mm_mul_pd(fscal,dz20);
390
391             /* Update vectorial force */
392             fix2             = _mm_add_pd(fix2,tx);
393             fiy2             = _mm_add_pd(fiy2,ty);
394             fiz2             = _mm_add_pd(fiz2,tz);
395
396             fjx0             = _mm_add_pd(fjx0,tx);
397             fjy0             = _mm_add_pd(fjy0,ty);
398             fjz0             = _mm_add_pd(fjz0,tz);
399
400             /**************************
401              * CALCULATE INTERACTIONS *
402              **************************/
403
404             r30              = _mm_mul_pd(rsq30,rinv30);
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq30             = _mm_mul_pd(iq3,jq0);
408
409             /* EWALD ELECTROSTATICS */
410
411             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
412             ewrt             = _mm_mul_pd(r30,ewtabscale);
413             ewitab           = _mm_cvttpd_epi32(ewrt);
414             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
415             ewitab           = _mm_slli_epi32(ewitab,2);
416             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
417             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
418             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
419             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
420             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
421             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
422             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
423             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
424             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
425             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velecsum         = _mm_add_pd(velecsum,velec);
429
430             fscal            = felec;
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm_mul_pd(fscal,dx30);
434             ty               = _mm_mul_pd(fscal,dy30);
435             tz               = _mm_mul_pd(fscal,dz30);
436
437             /* Update vectorial force */
438             fix3             = _mm_add_pd(fix3,tx);
439             fiy3             = _mm_add_pd(fiy3,ty);
440             fiz3             = _mm_add_pd(fiz3,tz);
441
442             fjx0             = _mm_add_pd(fjx0,tx);
443             fjy0             = _mm_add_pd(fjy0,ty);
444             fjz0             = _mm_add_pd(fjz0,tz);
445
446             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
447
448             /* Inner loop uses 182 flops */
449         }
450
451         if(jidx<j_index_end)
452         {
453
454             jnrA             = jjnr[jidx];
455             j_coord_offsetA  = DIM*jnrA;
456
457             /* load j atom coordinates */
458             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _mm_sub_pd(ix0,jx0);
463             dy00             = _mm_sub_pd(iy0,jy0);
464             dz00             = _mm_sub_pd(iz0,jz0);
465             dx10             = _mm_sub_pd(ix1,jx0);
466             dy10             = _mm_sub_pd(iy1,jy0);
467             dz10             = _mm_sub_pd(iz1,jz0);
468             dx20             = _mm_sub_pd(ix2,jx0);
469             dy20             = _mm_sub_pd(iy2,jy0);
470             dz20             = _mm_sub_pd(iz2,jz0);
471             dx30             = _mm_sub_pd(ix3,jx0);
472             dy30             = _mm_sub_pd(iy3,jy0);
473             dz30             = _mm_sub_pd(iz3,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
477             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
478             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
479             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
480
481             rinv00           = gmx_mm_invsqrt_pd(rsq00);
482             rinv10           = gmx_mm_invsqrt_pd(rsq10);
483             rinv20           = gmx_mm_invsqrt_pd(rsq20);
484             rinv30           = gmx_mm_invsqrt_pd(rsq30);
485
486             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
487             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
488             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
489
490             /* Load parameters for j particles */
491             jq0              = _mm_load_sd(charge+jnrA+0);
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493
494             fjx0             = _mm_setzero_pd();
495             fjy0             = _mm_setzero_pd();
496             fjz0             = _mm_setzero_pd();
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             r00              = _mm_mul_pd(rsq00,rinv00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
506
507             /* Calculate table index by multiplying r with table scale and truncate to integer */
508             rt               = _mm_mul_pd(r00,vftabscale);
509             vfitab           = _mm_cvttpd_epi32(rt);
510             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
511             vfitab           = _mm_slli_epi32(vfitab,3);
512
513             /* CUBIC SPLINE TABLE DISPERSION */
514             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
515             F                = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(Y,F);
517             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
518             H                = _mm_setzero_pd();
519             GMX_MM_TRANSPOSE2_PD(G,H);
520             Heps             = _mm_mul_pd(vfeps,H);
521             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
522             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
523             vvdw6            = _mm_mul_pd(c6_00,VV);
524             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
525             fvdw6            = _mm_mul_pd(c6_00,FF);
526
527             /* CUBIC SPLINE TABLE REPULSION */
528             vfitab           = _mm_add_epi32(vfitab,ifour);
529             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
530             F                = _mm_setzero_pd();
531             GMX_MM_TRANSPOSE2_PD(Y,F);
532             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
533             H                = _mm_setzero_pd();
534             GMX_MM_TRANSPOSE2_PD(G,H);
535             Heps             = _mm_mul_pd(vfeps,H);
536             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
537             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
538             vvdw12           = _mm_mul_pd(c12_00,VV);
539             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
540             fvdw12           = _mm_mul_pd(c12_00,FF);
541             vvdw             = _mm_add_pd(vvdw12,vvdw6);
542             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
546             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
547
548             fscal            = fvdw;
549
550             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_pd(fscal,dx00);
554             ty               = _mm_mul_pd(fscal,dy00);
555             tz               = _mm_mul_pd(fscal,dz00);
556
557             /* Update vectorial force */
558             fix0             = _mm_add_pd(fix0,tx);
559             fiy0             = _mm_add_pd(fiy0,ty);
560             fiz0             = _mm_add_pd(fiz0,tz);
561
562             fjx0             = _mm_add_pd(fjx0,tx);
563             fjy0             = _mm_add_pd(fjy0,ty);
564             fjz0             = _mm_add_pd(fjz0,tz);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r10              = _mm_mul_pd(rsq10,rinv10);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq10             = _mm_mul_pd(iq1,jq0);
574
575             /* EWALD ELECTROSTATICS */
576
577             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
578             ewrt             = _mm_mul_pd(r10,ewtabscale);
579             ewitab           = _mm_cvttpd_epi32(ewrt);
580             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
581             ewitab           = _mm_slli_epi32(ewitab,2);
582             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
583             ewtabD           = _mm_setzero_pd();
584             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
585             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
586             ewtabFn          = _mm_setzero_pd();
587             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
588             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
589             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
590             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
591             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
595             velecsum         = _mm_add_pd(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx10);
603             ty               = _mm_mul_pd(fscal,dy10);
604             tz               = _mm_mul_pd(fscal,dz10);
605
606             /* Update vectorial force */
607             fix1             = _mm_add_pd(fix1,tx);
608             fiy1             = _mm_add_pd(fiy1,ty);
609             fiz1             = _mm_add_pd(fiz1,tz);
610
611             fjx0             = _mm_add_pd(fjx0,tx);
612             fjy0             = _mm_add_pd(fjy0,ty);
613             fjz0             = _mm_add_pd(fjz0,tz);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             r20              = _mm_mul_pd(rsq20,rinv20);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq20             = _mm_mul_pd(iq2,jq0);
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = _mm_mul_pd(r20,ewtabscale);
628             ewitab           = _mm_cvttpd_epi32(ewrt);
629             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
630             ewitab           = _mm_slli_epi32(ewitab,2);
631             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
632             ewtabD           = _mm_setzero_pd();
633             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
634             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
635             ewtabFn          = _mm_setzero_pd();
636             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
637             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
638             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
639             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
640             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
641
642             /* Update potential sum for this i atom from the interaction with this j atom. */
643             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
644             velecsum         = _mm_add_pd(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_pd(fscal,dx20);
652             ty               = _mm_mul_pd(fscal,dy20);
653             tz               = _mm_mul_pd(fscal,dz20);
654
655             /* Update vectorial force */
656             fix2             = _mm_add_pd(fix2,tx);
657             fiy2             = _mm_add_pd(fiy2,ty);
658             fiz2             = _mm_add_pd(fiz2,tz);
659
660             fjx0             = _mm_add_pd(fjx0,tx);
661             fjy0             = _mm_add_pd(fjy0,ty);
662             fjz0             = _mm_add_pd(fjz0,tz);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             r30              = _mm_mul_pd(rsq30,rinv30);
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq30             = _mm_mul_pd(iq3,jq0);
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = _mm_mul_pd(r30,ewtabscale);
677             ewitab           = _mm_cvttpd_epi32(ewrt);
678             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
679             ewitab           = _mm_slli_epi32(ewitab,2);
680             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
681             ewtabD           = _mm_setzero_pd();
682             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
683             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
684             ewtabFn          = _mm_setzero_pd();
685             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
686             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
687             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
688             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
689             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
690
691             /* Update potential sum for this i atom from the interaction with this j atom. */
692             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
693             velecsum         = _mm_add_pd(velecsum,velec);
694
695             fscal            = felec;
696
697             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
698
699             /* Calculate temporary vectorial force */
700             tx               = _mm_mul_pd(fscal,dx30);
701             ty               = _mm_mul_pd(fscal,dy30);
702             tz               = _mm_mul_pd(fscal,dz30);
703
704             /* Update vectorial force */
705             fix3             = _mm_add_pd(fix3,tx);
706             fiy3             = _mm_add_pd(fiy3,ty);
707             fiz3             = _mm_add_pd(fiz3,tz);
708
709             fjx0             = _mm_add_pd(fjx0,tx);
710             fjy0             = _mm_add_pd(fjy0,ty);
711             fjz0             = _mm_add_pd(fjz0,tz);
712
713             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
714
715             /* Inner loop uses 182 flops */
716         }
717
718         /* End of innermost loop */
719
720         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
721                                               f+i_coord_offset,fshift+i_shift_offset);
722
723         ggid                        = gid[iidx];
724         /* Update potential energies */
725         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
726         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
727
728         /* Increment number of inner iterations */
729         inneriter                  += j_index_end - j_index_start;
730
731         /* Outer loop uses 26 flops */
732     }
733
734     /* Increment number of outer iterations */
735     outeriter        += nri;
736
737     /* Update outer/inner flops */
738
739     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*182);
740 }
741 /*
742  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse4_1_double
743  * Electrostatics interaction: Ewald
744  * VdW interaction:            CubicSplineTable
745  * Geometry:                   Water4-Particle
746  * Calculate force/pot:        Force
747  */
748 void
749 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse4_1_double
750                     (t_nblist                    * gmx_restrict       nlist,
751                      rvec                        * gmx_restrict          xx,
752                      rvec                        * gmx_restrict          ff,
753                      t_forcerec                  * gmx_restrict          fr,
754                      t_mdatoms                   * gmx_restrict     mdatoms,
755                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
756                      t_nrnb                      * gmx_restrict        nrnb)
757 {
758     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
759      * just 0 for non-waters.
760      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
761      * jnr indices corresponding to data put in the four positions in the SIMD register.
762      */
763     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
764     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
765     int              jnrA,jnrB;
766     int              j_coord_offsetA,j_coord_offsetB;
767     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
768     real             rcutoff_scalar;
769     real             *shiftvec,*fshift,*x,*f;
770     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
771     int              vdwioffset0;
772     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
773     int              vdwioffset1;
774     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
775     int              vdwioffset2;
776     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
777     int              vdwioffset3;
778     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
779     int              vdwjidx0A,vdwjidx0B;
780     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
781     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
782     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
783     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
784     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
785     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
786     real             *charge;
787     int              nvdwtype;
788     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
789     int              *vdwtype;
790     real             *vdwparam;
791     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
792     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
793     __m128i          vfitab;
794     __m128i          ifour       = _mm_set1_epi32(4);
795     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
796     real             *vftab;
797     __m128i          ewitab;
798     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
799     real             *ewtab;
800     __m128d          dummy_mask,cutoff_mask;
801     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
802     __m128d          one     = _mm_set1_pd(1.0);
803     __m128d          two     = _mm_set1_pd(2.0);
804     x                = xx[0];
805     f                = ff[0];
806
807     nri              = nlist->nri;
808     iinr             = nlist->iinr;
809     jindex           = nlist->jindex;
810     jjnr             = nlist->jjnr;
811     shiftidx         = nlist->shift;
812     gid              = nlist->gid;
813     shiftvec         = fr->shift_vec[0];
814     fshift           = fr->fshift[0];
815     facel            = _mm_set1_pd(fr->epsfac);
816     charge           = mdatoms->chargeA;
817     nvdwtype         = fr->ntype;
818     vdwparam         = fr->nbfp;
819     vdwtype          = mdatoms->typeA;
820
821     vftab            = kernel_data->table_vdw->data;
822     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
823
824     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
825     ewtab            = fr->ic->tabq_coul_F;
826     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
827     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
828
829     /* Setup water-specific parameters */
830     inr              = nlist->iinr[0];
831     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
832     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
833     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
834     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
835
836     /* Avoid stupid compiler warnings */
837     jnrA = jnrB = 0;
838     j_coord_offsetA = 0;
839     j_coord_offsetB = 0;
840
841     outeriter        = 0;
842     inneriter        = 0;
843
844     /* Start outer loop over neighborlists */
845     for(iidx=0; iidx<nri; iidx++)
846     {
847         /* Load shift vector for this list */
848         i_shift_offset   = DIM*shiftidx[iidx];
849
850         /* Load limits for loop over neighbors */
851         j_index_start    = jindex[iidx];
852         j_index_end      = jindex[iidx+1];
853
854         /* Get outer coordinate index */
855         inr              = iinr[iidx];
856         i_coord_offset   = DIM*inr;
857
858         /* Load i particle coords and add shift vector */
859         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
860                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
861
862         fix0             = _mm_setzero_pd();
863         fiy0             = _mm_setzero_pd();
864         fiz0             = _mm_setzero_pd();
865         fix1             = _mm_setzero_pd();
866         fiy1             = _mm_setzero_pd();
867         fiz1             = _mm_setzero_pd();
868         fix2             = _mm_setzero_pd();
869         fiy2             = _mm_setzero_pd();
870         fiz2             = _mm_setzero_pd();
871         fix3             = _mm_setzero_pd();
872         fiy3             = _mm_setzero_pd();
873         fiz3             = _mm_setzero_pd();
874
875         /* Start inner kernel loop */
876         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
877         {
878
879             /* Get j neighbor index, and coordinate index */
880             jnrA             = jjnr[jidx];
881             jnrB             = jjnr[jidx+1];
882             j_coord_offsetA  = DIM*jnrA;
883             j_coord_offsetB  = DIM*jnrB;
884
885             /* load j atom coordinates */
886             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
887                                               &jx0,&jy0,&jz0);
888
889             /* Calculate displacement vector */
890             dx00             = _mm_sub_pd(ix0,jx0);
891             dy00             = _mm_sub_pd(iy0,jy0);
892             dz00             = _mm_sub_pd(iz0,jz0);
893             dx10             = _mm_sub_pd(ix1,jx0);
894             dy10             = _mm_sub_pd(iy1,jy0);
895             dz10             = _mm_sub_pd(iz1,jz0);
896             dx20             = _mm_sub_pd(ix2,jx0);
897             dy20             = _mm_sub_pd(iy2,jy0);
898             dz20             = _mm_sub_pd(iz2,jz0);
899             dx30             = _mm_sub_pd(ix3,jx0);
900             dy30             = _mm_sub_pd(iy3,jy0);
901             dz30             = _mm_sub_pd(iz3,jz0);
902
903             /* Calculate squared distance and things based on it */
904             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
905             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
906             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
907             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
908
909             rinv00           = gmx_mm_invsqrt_pd(rsq00);
910             rinv10           = gmx_mm_invsqrt_pd(rsq10);
911             rinv20           = gmx_mm_invsqrt_pd(rsq20);
912             rinv30           = gmx_mm_invsqrt_pd(rsq30);
913
914             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
915             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
916             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
917
918             /* Load parameters for j particles */
919             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
920             vdwjidx0A        = 2*vdwtype[jnrA+0];
921             vdwjidx0B        = 2*vdwtype[jnrB+0];
922
923             fjx0             = _mm_setzero_pd();
924             fjy0             = _mm_setzero_pd();
925             fjz0             = _mm_setzero_pd();
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r00              = _mm_mul_pd(rsq00,rinv00);
932
933             /* Compute parameters for interactions between i and j atoms */
934             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
935                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
936
937             /* Calculate table index by multiplying r with table scale and truncate to integer */
938             rt               = _mm_mul_pd(r00,vftabscale);
939             vfitab           = _mm_cvttpd_epi32(rt);
940             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
941             vfitab           = _mm_slli_epi32(vfitab,3);
942
943             /* CUBIC SPLINE TABLE DISPERSION */
944             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
945             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
946             GMX_MM_TRANSPOSE2_PD(Y,F);
947             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
948             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
949             GMX_MM_TRANSPOSE2_PD(G,H);
950             Heps             = _mm_mul_pd(vfeps,H);
951             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
952             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
953             fvdw6            = _mm_mul_pd(c6_00,FF);
954
955             /* CUBIC SPLINE TABLE REPULSION */
956             vfitab           = _mm_add_epi32(vfitab,ifour);
957             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
958             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
959             GMX_MM_TRANSPOSE2_PD(Y,F);
960             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
961             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
962             GMX_MM_TRANSPOSE2_PD(G,H);
963             Heps             = _mm_mul_pd(vfeps,H);
964             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
965             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
966             fvdw12           = _mm_mul_pd(c12_00,FF);
967             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
968
969             fscal            = fvdw;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_pd(fscal,dx00);
973             ty               = _mm_mul_pd(fscal,dy00);
974             tz               = _mm_mul_pd(fscal,dz00);
975
976             /* Update vectorial force */
977             fix0             = _mm_add_pd(fix0,tx);
978             fiy0             = _mm_add_pd(fiy0,ty);
979             fiz0             = _mm_add_pd(fiz0,tz);
980
981             fjx0             = _mm_add_pd(fjx0,tx);
982             fjy0             = _mm_add_pd(fjy0,ty);
983             fjz0             = _mm_add_pd(fjz0,tz);
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r10              = _mm_mul_pd(rsq10,rinv10);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq10             = _mm_mul_pd(iq1,jq0);
993
994             /* EWALD ELECTROSTATICS */
995
996             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
997             ewrt             = _mm_mul_pd(r10,ewtabscale);
998             ewitab           = _mm_cvttpd_epi32(ewrt);
999             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1000             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1001                                          &ewtabF,&ewtabFn);
1002             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1003             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1004
1005             fscal            = felec;
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_pd(fscal,dx10);
1009             ty               = _mm_mul_pd(fscal,dy10);
1010             tz               = _mm_mul_pd(fscal,dz10);
1011
1012             /* Update vectorial force */
1013             fix1             = _mm_add_pd(fix1,tx);
1014             fiy1             = _mm_add_pd(fiy1,ty);
1015             fiz1             = _mm_add_pd(fiz1,tz);
1016
1017             fjx0             = _mm_add_pd(fjx0,tx);
1018             fjy0             = _mm_add_pd(fjy0,ty);
1019             fjz0             = _mm_add_pd(fjz0,tz);
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r20              = _mm_mul_pd(rsq20,rinv20);
1026
1027             /* Compute parameters for interactions between i and j atoms */
1028             qq20             = _mm_mul_pd(iq2,jq0);
1029
1030             /* EWALD ELECTROSTATICS */
1031
1032             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1033             ewrt             = _mm_mul_pd(r20,ewtabscale);
1034             ewitab           = _mm_cvttpd_epi32(ewrt);
1035             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1036             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1037                                          &ewtabF,&ewtabFn);
1038             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1039             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1040
1041             fscal            = felec;
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = _mm_mul_pd(fscal,dx20);
1045             ty               = _mm_mul_pd(fscal,dy20);
1046             tz               = _mm_mul_pd(fscal,dz20);
1047
1048             /* Update vectorial force */
1049             fix2             = _mm_add_pd(fix2,tx);
1050             fiy2             = _mm_add_pd(fiy2,ty);
1051             fiz2             = _mm_add_pd(fiz2,tz);
1052
1053             fjx0             = _mm_add_pd(fjx0,tx);
1054             fjy0             = _mm_add_pd(fjy0,ty);
1055             fjz0             = _mm_add_pd(fjz0,tz);
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             r30              = _mm_mul_pd(rsq30,rinv30);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq30             = _mm_mul_pd(iq3,jq0);
1065
1066             /* EWALD ELECTROSTATICS */
1067
1068             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1069             ewrt             = _mm_mul_pd(r30,ewtabscale);
1070             ewitab           = _mm_cvttpd_epi32(ewrt);
1071             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1072             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1073                                          &ewtabF,&ewtabFn);
1074             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1075             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1076
1077             fscal            = felec;
1078
1079             /* Calculate temporary vectorial force */
1080             tx               = _mm_mul_pd(fscal,dx30);
1081             ty               = _mm_mul_pd(fscal,dy30);
1082             tz               = _mm_mul_pd(fscal,dz30);
1083
1084             /* Update vectorial force */
1085             fix3             = _mm_add_pd(fix3,tx);
1086             fiy3             = _mm_add_pd(fiy3,ty);
1087             fiz3             = _mm_add_pd(fiz3,tz);
1088
1089             fjx0             = _mm_add_pd(fjx0,tx);
1090             fjy0             = _mm_add_pd(fjy0,ty);
1091             fjz0             = _mm_add_pd(fjz0,tz);
1092
1093             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1094
1095             /* Inner loop uses 159 flops */
1096         }
1097
1098         if(jidx<j_index_end)
1099         {
1100
1101             jnrA             = jjnr[jidx];
1102             j_coord_offsetA  = DIM*jnrA;
1103
1104             /* load j atom coordinates */
1105             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1106                                               &jx0,&jy0,&jz0);
1107
1108             /* Calculate displacement vector */
1109             dx00             = _mm_sub_pd(ix0,jx0);
1110             dy00             = _mm_sub_pd(iy0,jy0);
1111             dz00             = _mm_sub_pd(iz0,jz0);
1112             dx10             = _mm_sub_pd(ix1,jx0);
1113             dy10             = _mm_sub_pd(iy1,jy0);
1114             dz10             = _mm_sub_pd(iz1,jz0);
1115             dx20             = _mm_sub_pd(ix2,jx0);
1116             dy20             = _mm_sub_pd(iy2,jy0);
1117             dz20             = _mm_sub_pd(iz2,jz0);
1118             dx30             = _mm_sub_pd(ix3,jx0);
1119             dy30             = _mm_sub_pd(iy3,jy0);
1120             dz30             = _mm_sub_pd(iz3,jz0);
1121
1122             /* Calculate squared distance and things based on it */
1123             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1124             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1125             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1126             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1127
1128             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1129             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1130             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1131             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1132
1133             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1134             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1135             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1136
1137             /* Load parameters for j particles */
1138             jq0              = _mm_load_sd(charge+jnrA+0);
1139             vdwjidx0A        = 2*vdwtype[jnrA+0];
1140
1141             fjx0             = _mm_setzero_pd();
1142             fjy0             = _mm_setzero_pd();
1143             fjz0             = _mm_setzero_pd();
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             r00              = _mm_mul_pd(rsq00,rinv00);
1150
1151             /* Compute parameters for interactions between i and j atoms */
1152             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1153
1154             /* Calculate table index by multiplying r with table scale and truncate to integer */
1155             rt               = _mm_mul_pd(r00,vftabscale);
1156             vfitab           = _mm_cvttpd_epi32(rt);
1157             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1158             vfitab           = _mm_slli_epi32(vfitab,3);
1159
1160             /* CUBIC SPLINE TABLE DISPERSION */
1161             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1162             F                = _mm_setzero_pd();
1163             GMX_MM_TRANSPOSE2_PD(Y,F);
1164             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1165             H                = _mm_setzero_pd();
1166             GMX_MM_TRANSPOSE2_PD(G,H);
1167             Heps             = _mm_mul_pd(vfeps,H);
1168             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1169             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1170             fvdw6            = _mm_mul_pd(c6_00,FF);
1171
1172             /* CUBIC SPLINE TABLE REPULSION */
1173             vfitab           = _mm_add_epi32(vfitab,ifour);
1174             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1175             F                = _mm_setzero_pd();
1176             GMX_MM_TRANSPOSE2_PD(Y,F);
1177             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1178             H                = _mm_setzero_pd();
1179             GMX_MM_TRANSPOSE2_PD(G,H);
1180             Heps             = _mm_mul_pd(vfeps,H);
1181             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1182             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1183             fvdw12           = _mm_mul_pd(c12_00,FF);
1184             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1185
1186             fscal            = fvdw;
1187
1188             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1189
1190             /* Calculate temporary vectorial force */
1191             tx               = _mm_mul_pd(fscal,dx00);
1192             ty               = _mm_mul_pd(fscal,dy00);
1193             tz               = _mm_mul_pd(fscal,dz00);
1194
1195             /* Update vectorial force */
1196             fix0             = _mm_add_pd(fix0,tx);
1197             fiy0             = _mm_add_pd(fiy0,ty);
1198             fiz0             = _mm_add_pd(fiz0,tz);
1199
1200             fjx0             = _mm_add_pd(fjx0,tx);
1201             fjy0             = _mm_add_pd(fjy0,ty);
1202             fjz0             = _mm_add_pd(fjz0,tz);
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             r10              = _mm_mul_pd(rsq10,rinv10);
1209
1210             /* Compute parameters for interactions between i and j atoms */
1211             qq10             = _mm_mul_pd(iq1,jq0);
1212
1213             /* EWALD ELECTROSTATICS */
1214
1215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1216             ewrt             = _mm_mul_pd(r10,ewtabscale);
1217             ewitab           = _mm_cvttpd_epi32(ewrt);
1218             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1219             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1220             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1221             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm_mul_pd(fscal,dx10);
1229             ty               = _mm_mul_pd(fscal,dy10);
1230             tz               = _mm_mul_pd(fscal,dz10);
1231
1232             /* Update vectorial force */
1233             fix1             = _mm_add_pd(fix1,tx);
1234             fiy1             = _mm_add_pd(fiy1,ty);
1235             fiz1             = _mm_add_pd(fiz1,tz);
1236
1237             fjx0             = _mm_add_pd(fjx0,tx);
1238             fjy0             = _mm_add_pd(fjy0,ty);
1239             fjz0             = _mm_add_pd(fjz0,tz);
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             r20              = _mm_mul_pd(rsq20,rinv20);
1246
1247             /* Compute parameters for interactions between i and j atoms */
1248             qq20             = _mm_mul_pd(iq2,jq0);
1249
1250             /* EWALD ELECTROSTATICS */
1251
1252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1253             ewrt             = _mm_mul_pd(r20,ewtabscale);
1254             ewitab           = _mm_cvttpd_epi32(ewrt);
1255             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1256             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1257             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1258             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1259
1260             fscal            = felec;
1261
1262             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1263
1264             /* Calculate temporary vectorial force */
1265             tx               = _mm_mul_pd(fscal,dx20);
1266             ty               = _mm_mul_pd(fscal,dy20);
1267             tz               = _mm_mul_pd(fscal,dz20);
1268
1269             /* Update vectorial force */
1270             fix2             = _mm_add_pd(fix2,tx);
1271             fiy2             = _mm_add_pd(fiy2,ty);
1272             fiz2             = _mm_add_pd(fiz2,tz);
1273
1274             fjx0             = _mm_add_pd(fjx0,tx);
1275             fjy0             = _mm_add_pd(fjy0,ty);
1276             fjz0             = _mm_add_pd(fjz0,tz);
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             r30              = _mm_mul_pd(rsq30,rinv30);
1283
1284             /* Compute parameters for interactions between i and j atoms */
1285             qq30             = _mm_mul_pd(iq3,jq0);
1286
1287             /* EWALD ELECTROSTATICS */
1288
1289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1290             ewrt             = _mm_mul_pd(r30,ewtabscale);
1291             ewitab           = _mm_cvttpd_epi32(ewrt);
1292             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1293             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1294             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1295             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1296
1297             fscal            = felec;
1298
1299             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1300
1301             /* Calculate temporary vectorial force */
1302             tx               = _mm_mul_pd(fscal,dx30);
1303             ty               = _mm_mul_pd(fscal,dy30);
1304             tz               = _mm_mul_pd(fscal,dz30);
1305
1306             /* Update vectorial force */
1307             fix3             = _mm_add_pd(fix3,tx);
1308             fiy3             = _mm_add_pd(fiy3,ty);
1309             fiz3             = _mm_add_pd(fiz3,tz);
1310
1311             fjx0             = _mm_add_pd(fjx0,tx);
1312             fjy0             = _mm_add_pd(fjy0,ty);
1313             fjz0             = _mm_add_pd(fjz0,tz);
1314
1315             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1316
1317             /* Inner loop uses 159 flops */
1318         }
1319
1320         /* End of innermost loop */
1321
1322         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1323                                               f+i_coord_offset,fshift+i_shift_offset);
1324
1325         /* Increment number of inner iterations */
1326         inneriter                  += j_index_end - j_index_start;
1327
1328         /* Outer loop uses 24 flops */
1329     }
1330
1331     /* Increment number of outer iterations */
1332     outeriter        += nri;
1333
1334     /* Update outer/inner flops */
1335
1336     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1337 }