74fedc42d211eeb7334e5127981421cfb66f839a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
118
119     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
127     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
128     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
156
157         fix0             = _mm_setzero_pd();
158         fiy0             = _mm_setzero_pd();
159         fiz0             = _mm_setzero_pd();
160         fix1             = _mm_setzero_pd();
161         fiy1             = _mm_setzero_pd();
162         fiz1             = _mm_setzero_pd();
163         fix2             = _mm_setzero_pd();
164         fiy2             = _mm_setzero_pd();
165         fiz2             = _mm_setzero_pd();
166         fix3             = _mm_setzero_pd();
167         fiy3             = _mm_setzero_pd();
168         fiz3             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198             dx30             = _mm_sub_pd(ix3,jx0);
199             dy30             = _mm_sub_pd(iy3,jy0);
200             dz30             = _mm_sub_pd(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
207
208             rinv00           = gmx_mm_invsqrt_pd(rsq00);
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
214             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
215             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221
222             fjx0             = _mm_setzero_pd();
223             fjy0             = _mm_setzero_pd();
224             fjz0             = _mm_setzero_pd();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm_mul_pd(r00,vftabscale);
238             vfitab           = _mm_cvttpd_epi32(rt);
239             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
240             vfitab           = _mm_slli_epi32(vfitab,3);
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
245             GMX_MM_TRANSPOSE2_PD(Y,F);
246             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
247             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
248             GMX_MM_TRANSPOSE2_PD(G,H);
249             Heps             = _mm_mul_pd(vfeps,H);
250             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
251             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
252             vvdw6            = _mm_mul_pd(c6_00,VV);
253             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
254             fvdw6            = _mm_mul_pd(c6_00,FF);
255
256             /* CUBIC SPLINE TABLE REPULSION */
257             vfitab           = _mm_add_epi32(vfitab,ifour);
258             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
260             GMX_MM_TRANSPOSE2_PD(Y,F);
261             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
262             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
263             GMX_MM_TRANSPOSE2_PD(G,H);
264             Heps             = _mm_mul_pd(vfeps,H);
265             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
266             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
267             vvdw12           = _mm_mul_pd(c12_00,VV);
268             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
269             fvdw12           = _mm_mul_pd(c12_00,FF);
270             vvdw             = _mm_add_pd(vvdw12,vvdw6);
271             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm_mul_pd(fscal,dx00);
280             ty               = _mm_mul_pd(fscal,dy00);
281             tz               = _mm_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm_add_pd(fix0,tx);
285             fiy0             = _mm_add_pd(fiy0,ty);
286             fiz0             = _mm_add_pd(fiz0,tz);
287
288             fjx0             = _mm_add_pd(fjx0,tx);
289             fjy0             = _mm_add_pd(fjy0,ty);
290             fjz0             = _mm_add_pd(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r10              = _mm_mul_pd(rsq10,rinv10);
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm_mul_pd(iq1,jq0);
300
301             /* EWALD ELECTROSTATICS */
302
303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304             ewrt             = _mm_mul_pd(r10,ewtabscale);
305             ewitab           = _mm_cvttpd_epi32(ewrt);
306             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
307             ewitab           = _mm_slli_epi32(ewitab,2);
308             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
309             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
310             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
311             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
312             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
313             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
314             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
315             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
316             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
317             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_pd(fscal,dx10);
326             ty               = _mm_mul_pd(fscal,dy10);
327             tz               = _mm_mul_pd(fscal,dz10);
328
329             /* Update vectorial force */
330             fix1             = _mm_add_pd(fix1,tx);
331             fiy1             = _mm_add_pd(fiy1,ty);
332             fiz1             = _mm_add_pd(fiz1,tz);
333
334             fjx0             = _mm_add_pd(fjx0,tx);
335             fjy0             = _mm_add_pd(fjy0,ty);
336             fjz0             = _mm_add_pd(fjz0,tz);
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             r20              = _mm_mul_pd(rsq20,rinv20);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq20             = _mm_mul_pd(iq2,jq0);
346
347             /* EWALD ELECTROSTATICS */
348
349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
350             ewrt             = _mm_mul_pd(r20,ewtabscale);
351             ewitab           = _mm_cvttpd_epi32(ewrt);
352             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
353             ewitab           = _mm_slli_epi32(ewitab,2);
354             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
355             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
356             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
357             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
358             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
359             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
360             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
361             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
362             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
363             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_pd(fscal,dx20);
372             ty               = _mm_mul_pd(fscal,dy20);
373             tz               = _mm_mul_pd(fscal,dz20);
374
375             /* Update vectorial force */
376             fix2             = _mm_add_pd(fix2,tx);
377             fiy2             = _mm_add_pd(fiy2,ty);
378             fiz2             = _mm_add_pd(fiz2,tz);
379
380             fjx0             = _mm_add_pd(fjx0,tx);
381             fjy0             = _mm_add_pd(fjy0,ty);
382             fjz0             = _mm_add_pd(fjz0,tz);
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r30              = _mm_mul_pd(rsq30,rinv30);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq30             = _mm_mul_pd(iq3,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _mm_mul_pd(r30,ewtabscale);
397             ewitab           = _mm_cvttpd_epi32(ewrt);
398             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
402             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
403             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
404             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
405             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
406             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
407             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
408             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
409             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velecsum         = _mm_add_pd(velecsum,velec);
413
414             fscal            = felec;
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm_mul_pd(fscal,dx30);
418             ty               = _mm_mul_pd(fscal,dy30);
419             tz               = _mm_mul_pd(fscal,dz30);
420
421             /* Update vectorial force */
422             fix3             = _mm_add_pd(fix3,tx);
423             fiy3             = _mm_add_pd(fiy3,ty);
424             fiz3             = _mm_add_pd(fiz3,tz);
425
426             fjx0             = _mm_add_pd(fjx0,tx);
427             fjy0             = _mm_add_pd(fjy0,ty);
428             fjz0             = _mm_add_pd(fjz0,tz);
429
430             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 182 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             jnrA             = jjnr[jidx];
439             j_coord_offsetA  = DIM*jnrA;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
443                                               &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm_sub_pd(ix0,jx0);
447             dy00             = _mm_sub_pd(iy0,jy0);
448             dz00             = _mm_sub_pd(iz0,jz0);
449             dx10             = _mm_sub_pd(ix1,jx0);
450             dy10             = _mm_sub_pd(iy1,jy0);
451             dz10             = _mm_sub_pd(iz1,jz0);
452             dx20             = _mm_sub_pd(ix2,jx0);
453             dy20             = _mm_sub_pd(iy2,jy0);
454             dz20             = _mm_sub_pd(iz2,jz0);
455             dx30             = _mm_sub_pd(ix3,jx0);
456             dy30             = _mm_sub_pd(iy3,jy0);
457             dz30             = _mm_sub_pd(iz3,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
461             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
462             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
463             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
464
465             rinv00           = gmx_mm_invsqrt_pd(rsq00);
466             rinv10           = gmx_mm_invsqrt_pd(rsq10);
467             rinv20           = gmx_mm_invsqrt_pd(rsq20);
468             rinv30           = gmx_mm_invsqrt_pd(rsq30);
469
470             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
471             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
472             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
473
474             /* Load parameters for j particles */
475             jq0              = _mm_load_sd(charge+jnrA+0);
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477
478             fjx0             = _mm_setzero_pd();
479             fjy0             = _mm_setzero_pd();
480             fjz0             = _mm_setzero_pd();
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
490
491             /* Calculate table index by multiplying r with table scale and truncate to integer */
492             rt               = _mm_mul_pd(r00,vftabscale);
493             vfitab           = _mm_cvttpd_epi32(rt);
494             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
495             vfitab           = _mm_slli_epi32(vfitab,3);
496
497             /* CUBIC SPLINE TABLE DISPERSION */
498             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
499             F                = _mm_setzero_pd();
500             GMX_MM_TRANSPOSE2_PD(Y,F);
501             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
502             H                = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(G,H);
504             Heps             = _mm_mul_pd(vfeps,H);
505             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
506             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
507             vvdw6            = _mm_mul_pd(c6_00,VV);
508             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
509             fvdw6            = _mm_mul_pd(c6_00,FF);
510
511             /* CUBIC SPLINE TABLE REPULSION */
512             vfitab           = _mm_add_epi32(vfitab,ifour);
513             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
514             F                = _mm_setzero_pd();
515             GMX_MM_TRANSPOSE2_PD(Y,F);
516             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
517             H                = _mm_setzero_pd();
518             GMX_MM_TRANSPOSE2_PD(G,H);
519             Heps             = _mm_mul_pd(vfeps,H);
520             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
521             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
522             vvdw12           = _mm_mul_pd(c12_00,VV);
523             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
524             fvdw12           = _mm_mul_pd(c12_00,FF);
525             vvdw             = _mm_add_pd(vvdw12,vvdw6);
526             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
530             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
531
532             fscal            = fvdw;
533
534             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
535
536             /* Calculate temporary vectorial force */
537             tx               = _mm_mul_pd(fscal,dx00);
538             ty               = _mm_mul_pd(fscal,dy00);
539             tz               = _mm_mul_pd(fscal,dz00);
540
541             /* Update vectorial force */
542             fix0             = _mm_add_pd(fix0,tx);
543             fiy0             = _mm_add_pd(fiy0,ty);
544             fiz0             = _mm_add_pd(fiz0,tz);
545
546             fjx0             = _mm_add_pd(fjx0,tx);
547             fjy0             = _mm_add_pd(fjy0,ty);
548             fjz0             = _mm_add_pd(fjz0,tz);
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r10              = _mm_mul_pd(rsq10,rinv10);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq10             = _mm_mul_pd(iq1,jq0);
558
559             /* EWALD ELECTROSTATICS */
560
561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
562             ewrt             = _mm_mul_pd(r10,ewtabscale);
563             ewitab           = _mm_cvttpd_epi32(ewrt);
564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
565             ewitab           = _mm_slli_epi32(ewitab,2);
566             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
567             ewtabD           = _mm_setzero_pd();
568             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
569             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
570             ewtabFn          = _mm_setzero_pd();
571             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
572             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
573             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
574             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
575             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
579             velecsum         = _mm_add_pd(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm_mul_pd(fscal,dx10);
587             ty               = _mm_mul_pd(fscal,dy10);
588             tz               = _mm_mul_pd(fscal,dz10);
589
590             /* Update vectorial force */
591             fix1             = _mm_add_pd(fix1,tx);
592             fiy1             = _mm_add_pd(fiy1,ty);
593             fiz1             = _mm_add_pd(fiz1,tz);
594
595             fjx0             = _mm_add_pd(fjx0,tx);
596             fjy0             = _mm_add_pd(fjy0,ty);
597             fjz0             = _mm_add_pd(fjz0,tz);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r20              = _mm_mul_pd(rsq20,rinv20);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm_mul_pd(iq2,jq0);
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611             ewrt             = _mm_mul_pd(r20,ewtabscale);
612             ewitab           = _mm_cvttpd_epi32(ewrt);
613             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
614             ewitab           = _mm_slli_epi32(ewitab,2);
615             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
616             ewtabD           = _mm_setzero_pd();
617             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
618             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
619             ewtabFn          = _mm_setzero_pd();
620             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
621             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
622             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
623             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
624             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
628             velecsum         = _mm_add_pd(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm_mul_pd(fscal,dx20);
636             ty               = _mm_mul_pd(fscal,dy20);
637             tz               = _mm_mul_pd(fscal,dz20);
638
639             /* Update vectorial force */
640             fix2             = _mm_add_pd(fix2,tx);
641             fiy2             = _mm_add_pd(fiy2,ty);
642             fiz2             = _mm_add_pd(fiz2,tz);
643
644             fjx0             = _mm_add_pd(fjx0,tx);
645             fjy0             = _mm_add_pd(fjy0,ty);
646             fjz0             = _mm_add_pd(fjz0,tz);
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             r30              = _mm_mul_pd(rsq30,rinv30);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq30             = _mm_mul_pd(iq3,jq0);
656
657             /* EWALD ELECTROSTATICS */
658
659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
660             ewrt             = _mm_mul_pd(r30,ewtabscale);
661             ewitab           = _mm_cvttpd_epi32(ewrt);
662             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
663             ewitab           = _mm_slli_epi32(ewitab,2);
664             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
665             ewtabD           = _mm_setzero_pd();
666             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
667             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
668             ewtabFn          = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
670             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
671             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
672             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
673             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
674
675             /* Update potential sum for this i atom from the interaction with this j atom. */
676             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
677             velecsum         = _mm_add_pd(velecsum,velec);
678
679             fscal            = felec;
680
681             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm_mul_pd(fscal,dx30);
685             ty               = _mm_mul_pd(fscal,dy30);
686             tz               = _mm_mul_pd(fscal,dz30);
687
688             /* Update vectorial force */
689             fix3             = _mm_add_pd(fix3,tx);
690             fiy3             = _mm_add_pd(fiy3,ty);
691             fiz3             = _mm_add_pd(fiz3,tz);
692
693             fjx0             = _mm_add_pd(fjx0,tx);
694             fjy0             = _mm_add_pd(fjy0,ty);
695             fjz0             = _mm_add_pd(fjz0,tz);
696
697             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
698
699             /* Inner loop uses 182 flops */
700         }
701
702         /* End of innermost loop */
703
704         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
705                                               f+i_coord_offset,fshift+i_shift_offset);
706
707         ggid                        = gid[iidx];
708         /* Update potential energies */
709         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
710         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
711
712         /* Increment number of inner iterations */
713         inneriter                  += j_index_end - j_index_start;
714
715         /* Outer loop uses 26 flops */
716     }
717
718     /* Increment number of outer iterations */
719     outeriter        += nri;
720
721     /* Update outer/inner flops */
722
723     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*182);
724 }
725 /*
726  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse4_1_double
727  * Electrostatics interaction: Ewald
728  * VdW interaction:            CubicSplineTable
729  * Geometry:                   Water4-Particle
730  * Calculate force/pot:        Force
731  */
732 void
733 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse4_1_double
734                     (t_nblist * gmx_restrict                nlist,
735                      rvec * gmx_restrict                    xx,
736                      rvec * gmx_restrict                    ff,
737                      t_forcerec * gmx_restrict              fr,
738                      t_mdatoms * gmx_restrict               mdatoms,
739                      nb_kernel_data_t * gmx_restrict        kernel_data,
740                      t_nrnb * gmx_restrict                  nrnb)
741 {
742     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
743      * just 0 for non-waters.
744      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
745      * jnr indices corresponding to data put in the four positions in the SIMD register.
746      */
747     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
748     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
749     int              jnrA,jnrB;
750     int              j_coord_offsetA,j_coord_offsetB;
751     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
752     real             rcutoff_scalar;
753     real             *shiftvec,*fshift,*x,*f;
754     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
755     int              vdwioffset0;
756     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
757     int              vdwioffset1;
758     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
759     int              vdwioffset2;
760     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
761     int              vdwioffset3;
762     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
763     int              vdwjidx0A,vdwjidx0B;
764     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
765     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
766     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
767     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
768     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
769     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
770     real             *charge;
771     int              nvdwtype;
772     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
773     int              *vdwtype;
774     real             *vdwparam;
775     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
776     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
777     __m128i          vfitab;
778     __m128i          ifour       = _mm_set1_epi32(4);
779     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
780     real             *vftab;
781     __m128i          ewitab;
782     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
783     real             *ewtab;
784     __m128d          dummy_mask,cutoff_mask;
785     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
786     __m128d          one     = _mm_set1_pd(1.0);
787     __m128d          two     = _mm_set1_pd(2.0);
788     x                = xx[0];
789     f                = ff[0];
790
791     nri              = nlist->nri;
792     iinr             = nlist->iinr;
793     jindex           = nlist->jindex;
794     jjnr             = nlist->jjnr;
795     shiftidx         = nlist->shift;
796     gid              = nlist->gid;
797     shiftvec         = fr->shift_vec[0];
798     fshift           = fr->fshift[0];
799     facel            = _mm_set1_pd(fr->epsfac);
800     charge           = mdatoms->chargeA;
801     nvdwtype         = fr->ntype;
802     vdwparam         = fr->nbfp;
803     vdwtype          = mdatoms->typeA;
804
805     vftab            = kernel_data->table_vdw->data;
806     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
807
808     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
809     ewtab            = fr->ic->tabq_coul_F;
810     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
811     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
812
813     /* Setup water-specific parameters */
814     inr              = nlist->iinr[0];
815     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
816     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
817     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
818     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
819
820     /* Avoid stupid compiler warnings */
821     jnrA = jnrB = 0;
822     j_coord_offsetA = 0;
823     j_coord_offsetB = 0;
824
825     outeriter        = 0;
826     inneriter        = 0;
827
828     /* Start outer loop over neighborlists */
829     for(iidx=0; iidx<nri; iidx++)
830     {
831         /* Load shift vector for this list */
832         i_shift_offset   = DIM*shiftidx[iidx];
833
834         /* Load limits for loop over neighbors */
835         j_index_start    = jindex[iidx];
836         j_index_end      = jindex[iidx+1];
837
838         /* Get outer coordinate index */
839         inr              = iinr[iidx];
840         i_coord_offset   = DIM*inr;
841
842         /* Load i particle coords and add shift vector */
843         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
844                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
845
846         fix0             = _mm_setzero_pd();
847         fiy0             = _mm_setzero_pd();
848         fiz0             = _mm_setzero_pd();
849         fix1             = _mm_setzero_pd();
850         fiy1             = _mm_setzero_pd();
851         fiz1             = _mm_setzero_pd();
852         fix2             = _mm_setzero_pd();
853         fiy2             = _mm_setzero_pd();
854         fiz2             = _mm_setzero_pd();
855         fix3             = _mm_setzero_pd();
856         fiy3             = _mm_setzero_pd();
857         fiz3             = _mm_setzero_pd();
858
859         /* Start inner kernel loop */
860         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
861         {
862
863             /* Get j neighbor index, and coordinate index */
864             jnrA             = jjnr[jidx];
865             jnrB             = jjnr[jidx+1];
866             j_coord_offsetA  = DIM*jnrA;
867             j_coord_offsetB  = DIM*jnrB;
868
869             /* load j atom coordinates */
870             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
871                                               &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm_sub_pd(ix0,jx0);
875             dy00             = _mm_sub_pd(iy0,jy0);
876             dz00             = _mm_sub_pd(iz0,jz0);
877             dx10             = _mm_sub_pd(ix1,jx0);
878             dy10             = _mm_sub_pd(iy1,jy0);
879             dz10             = _mm_sub_pd(iz1,jz0);
880             dx20             = _mm_sub_pd(ix2,jx0);
881             dy20             = _mm_sub_pd(iy2,jy0);
882             dz20             = _mm_sub_pd(iz2,jz0);
883             dx30             = _mm_sub_pd(ix3,jx0);
884             dy30             = _mm_sub_pd(iy3,jy0);
885             dz30             = _mm_sub_pd(iz3,jz0);
886
887             /* Calculate squared distance and things based on it */
888             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
889             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
890             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
891             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
892
893             rinv00           = gmx_mm_invsqrt_pd(rsq00);
894             rinv10           = gmx_mm_invsqrt_pd(rsq10);
895             rinv20           = gmx_mm_invsqrt_pd(rsq20);
896             rinv30           = gmx_mm_invsqrt_pd(rsq30);
897
898             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
899             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
900             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
904             vdwjidx0A        = 2*vdwtype[jnrA+0];
905             vdwjidx0B        = 2*vdwtype[jnrB+0];
906
907             fjx0             = _mm_setzero_pd();
908             fjy0             = _mm_setzero_pd();
909             fjz0             = _mm_setzero_pd();
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             r00              = _mm_mul_pd(rsq00,rinv00);
916
917             /* Compute parameters for interactions between i and j atoms */
918             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
919                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
920
921             /* Calculate table index by multiplying r with table scale and truncate to integer */
922             rt               = _mm_mul_pd(r00,vftabscale);
923             vfitab           = _mm_cvttpd_epi32(rt);
924             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
925             vfitab           = _mm_slli_epi32(vfitab,3);
926
927             /* CUBIC SPLINE TABLE DISPERSION */
928             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
929             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
930             GMX_MM_TRANSPOSE2_PD(Y,F);
931             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
932             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
933             GMX_MM_TRANSPOSE2_PD(G,H);
934             Heps             = _mm_mul_pd(vfeps,H);
935             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
936             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
937             fvdw6            = _mm_mul_pd(c6_00,FF);
938
939             /* CUBIC SPLINE TABLE REPULSION */
940             vfitab           = _mm_add_epi32(vfitab,ifour);
941             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
942             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
943             GMX_MM_TRANSPOSE2_PD(Y,F);
944             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
945             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
946             GMX_MM_TRANSPOSE2_PD(G,H);
947             Heps             = _mm_mul_pd(vfeps,H);
948             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
949             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
950             fvdw12           = _mm_mul_pd(c12_00,FF);
951             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
952
953             fscal            = fvdw;
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_pd(fscal,dx00);
957             ty               = _mm_mul_pd(fscal,dy00);
958             tz               = _mm_mul_pd(fscal,dz00);
959
960             /* Update vectorial force */
961             fix0             = _mm_add_pd(fix0,tx);
962             fiy0             = _mm_add_pd(fiy0,ty);
963             fiz0             = _mm_add_pd(fiz0,tz);
964
965             fjx0             = _mm_add_pd(fjx0,tx);
966             fjy0             = _mm_add_pd(fjy0,ty);
967             fjz0             = _mm_add_pd(fjz0,tz);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r10              = _mm_mul_pd(rsq10,rinv10);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq10             = _mm_mul_pd(iq1,jq0);
977
978             /* EWALD ELECTROSTATICS */
979
980             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
981             ewrt             = _mm_mul_pd(r10,ewtabscale);
982             ewitab           = _mm_cvttpd_epi32(ewrt);
983             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
984             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
985                                          &ewtabF,&ewtabFn);
986             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
987             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
988
989             fscal            = felec;
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm_mul_pd(fscal,dx10);
993             ty               = _mm_mul_pd(fscal,dy10);
994             tz               = _mm_mul_pd(fscal,dz10);
995
996             /* Update vectorial force */
997             fix1             = _mm_add_pd(fix1,tx);
998             fiy1             = _mm_add_pd(fiy1,ty);
999             fiz1             = _mm_add_pd(fiz1,tz);
1000
1001             fjx0             = _mm_add_pd(fjx0,tx);
1002             fjy0             = _mm_add_pd(fjy0,ty);
1003             fjz0             = _mm_add_pd(fjz0,tz);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r20              = _mm_mul_pd(rsq20,rinv20);
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             qq20             = _mm_mul_pd(iq2,jq0);
1013
1014             /* EWALD ELECTROSTATICS */
1015
1016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1017             ewrt             = _mm_mul_pd(r20,ewtabscale);
1018             ewitab           = _mm_cvttpd_epi32(ewrt);
1019             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1020             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1021                                          &ewtabF,&ewtabFn);
1022             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1023             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1024
1025             fscal            = felec;
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm_mul_pd(fscal,dx20);
1029             ty               = _mm_mul_pd(fscal,dy20);
1030             tz               = _mm_mul_pd(fscal,dz20);
1031
1032             /* Update vectorial force */
1033             fix2             = _mm_add_pd(fix2,tx);
1034             fiy2             = _mm_add_pd(fiy2,ty);
1035             fiz2             = _mm_add_pd(fiz2,tz);
1036
1037             fjx0             = _mm_add_pd(fjx0,tx);
1038             fjy0             = _mm_add_pd(fjy0,ty);
1039             fjz0             = _mm_add_pd(fjz0,tz);
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             r30              = _mm_mul_pd(rsq30,rinv30);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq30             = _mm_mul_pd(iq3,jq0);
1049
1050             /* EWALD ELECTROSTATICS */
1051
1052             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1053             ewrt             = _mm_mul_pd(r30,ewtabscale);
1054             ewitab           = _mm_cvttpd_epi32(ewrt);
1055             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1056             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1057                                          &ewtabF,&ewtabFn);
1058             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1059             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1060
1061             fscal            = felec;
1062
1063             /* Calculate temporary vectorial force */
1064             tx               = _mm_mul_pd(fscal,dx30);
1065             ty               = _mm_mul_pd(fscal,dy30);
1066             tz               = _mm_mul_pd(fscal,dz30);
1067
1068             /* Update vectorial force */
1069             fix3             = _mm_add_pd(fix3,tx);
1070             fiy3             = _mm_add_pd(fiy3,ty);
1071             fiz3             = _mm_add_pd(fiz3,tz);
1072
1073             fjx0             = _mm_add_pd(fjx0,tx);
1074             fjy0             = _mm_add_pd(fjy0,ty);
1075             fjz0             = _mm_add_pd(fjz0,tz);
1076
1077             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1078
1079             /* Inner loop uses 159 flops */
1080         }
1081
1082         if(jidx<j_index_end)
1083         {
1084
1085             jnrA             = jjnr[jidx];
1086             j_coord_offsetA  = DIM*jnrA;
1087
1088             /* load j atom coordinates */
1089             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1090                                               &jx0,&jy0,&jz0);
1091
1092             /* Calculate displacement vector */
1093             dx00             = _mm_sub_pd(ix0,jx0);
1094             dy00             = _mm_sub_pd(iy0,jy0);
1095             dz00             = _mm_sub_pd(iz0,jz0);
1096             dx10             = _mm_sub_pd(ix1,jx0);
1097             dy10             = _mm_sub_pd(iy1,jy0);
1098             dz10             = _mm_sub_pd(iz1,jz0);
1099             dx20             = _mm_sub_pd(ix2,jx0);
1100             dy20             = _mm_sub_pd(iy2,jy0);
1101             dz20             = _mm_sub_pd(iz2,jz0);
1102             dx30             = _mm_sub_pd(ix3,jx0);
1103             dy30             = _mm_sub_pd(iy3,jy0);
1104             dz30             = _mm_sub_pd(iz3,jz0);
1105
1106             /* Calculate squared distance and things based on it */
1107             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1108             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1109             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1110             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1111
1112             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1113             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1114             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1115             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1116
1117             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1118             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1119             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1120
1121             /* Load parameters for j particles */
1122             jq0              = _mm_load_sd(charge+jnrA+0);
1123             vdwjidx0A        = 2*vdwtype[jnrA+0];
1124
1125             fjx0             = _mm_setzero_pd();
1126             fjy0             = _mm_setzero_pd();
1127             fjz0             = _mm_setzero_pd();
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             r00              = _mm_mul_pd(rsq00,rinv00);
1134
1135             /* Compute parameters for interactions between i and j atoms */
1136             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1137
1138             /* Calculate table index by multiplying r with table scale and truncate to integer */
1139             rt               = _mm_mul_pd(r00,vftabscale);
1140             vfitab           = _mm_cvttpd_epi32(rt);
1141             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1142             vfitab           = _mm_slli_epi32(vfitab,3);
1143
1144             /* CUBIC SPLINE TABLE DISPERSION */
1145             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1146             F                = _mm_setzero_pd();
1147             GMX_MM_TRANSPOSE2_PD(Y,F);
1148             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1149             H                = _mm_setzero_pd();
1150             GMX_MM_TRANSPOSE2_PD(G,H);
1151             Heps             = _mm_mul_pd(vfeps,H);
1152             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1153             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1154             fvdw6            = _mm_mul_pd(c6_00,FF);
1155
1156             /* CUBIC SPLINE TABLE REPULSION */
1157             vfitab           = _mm_add_epi32(vfitab,ifour);
1158             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1159             F                = _mm_setzero_pd();
1160             GMX_MM_TRANSPOSE2_PD(Y,F);
1161             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1162             H                = _mm_setzero_pd();
1163             GMX_MM_TRANSPOSE2_PD(G,H);
1164             Heps             = _mm_mul_pd(vfeps,H);
1165             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1166             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1167             fvdw12           = _mm_mul_pd(c12_00,FF);
1168             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1169
1170             fscal            = fvdw;
1171
1172             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = _mm_mul_pd(fscal,dx00);
1176             ty               = _mm_mul_pd(fscal,dy00);
1177             tz               = _mm_mul_pd(fscal,dz00);
1178
1179             /* Update vectorial force */
1180             fix0             = _mm_add_pd(fix0,tx);
1181             fiy0             = _mm_add_pd(fiy0,ty);
1182             fiz0             = _mm_add_pd(fiz0,tz);
1183
1184             fjx0             = _mm_add_pd(fjx0,tx);
1185             fjy0             = _mm_add_pd(fjy0,ty);
1186             fjz0             = _mm_add_pd(fjz0,tz);
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             r10              = _mm_mul_pd(rsq10,rinv10);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq10             = _mm_mul_pd(iq1,jq0);
1196
1197             /* EWALD ELECTROSTATICS */
1198
1199             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1200             ewrt             = _mm_mul_pd(r10,ewtabscale);
1201             ewitab           = _mm_cvttpd_epi32(ewrt);
1202             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1203             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1204             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1205             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1210
1211             /* Calculate temporary vectorial force */
1212             tx               = _mm_mul_pd(fscal,dx10);
1213             ty               = _mm_mul_pd(fscal,dy10);
1214             tz               = _mm_mul_pd(fscal,dz10);
1215
1216             /* Update vectorial force */
1217             fix1             = _mm_add_pd(fix1,tx);
1218             fiy1             = _mm_add_pd(fiy1,ty);
1219             fiz1             = _mm_add_pd(fiz1,tz);
1220
1221             fjx0             = _mm_add_pd(fjx0,tx);
1222             fjy0             = _mm_add_pd(fjy0,ty);
1223             fjz0             = _mm_add_pd(fjz0,tz);
1224
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             r20              = _mm_mul_pd(rsq20,rinv20);
1230
1231             /* Compute parameters for interactions between i and j atoms */
1232             qq20             = _mm_mul_pd(iq2,jq0);
1233
1234             /* EWALD ELECTROSTATICS */
1235
1236             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1237             ewrt             = _mm_mul_pd(r20,ewtabscale);
1238             ewitab           = _mm_cvttpd_epi32(ewrt);
1239             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1240             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1241             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1242             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm_mul_pd(fscal,dx20);
1250             ty               = _mm_mul_pd(fscal,dy20);
1251             tz               = _mm_mul_pd(fscal,dz20);
1252
1253             /* Update vectorial force */
1254             fix2             = _mm_add_pd(fix2,tx);
1255             fiy2             = _mm_add_pd(fiy2,ty);
1256             fiz2             = _mm_add_pd(fiz2,tz);
1257
1258             fjx0             = _mm_add_pd(fjx0,tx);
1259             fjy0             = _mm_add_pd(fjy0,ty);
1260             fjz0             = _mm_add_pd(fjz0,tz);
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             r30              = _mm_mul_pd(rsq30,rinv30);
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq30             = _mm_mul_pd(iq3,jq0);
1270
1271             /* EWALD ELECTROSTATICS */
1272
1273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1274             ewrt             = _mm_mul_pd(r30,ewtabscale);
1275             ewitab           = _mm_cvttpd_epi32(ewrt);
1276             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1277             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1278             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1279             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm_mul_pd(fscal,dx30);
1287             ty               = _mm_mul_pd(fscal,dy30);
1288             tz               = _mm_mul_pd(fscal,dz30);
1289
1290             /* Update vectorial force */
1291             fix3             = _mm_add_pd(fix3,tx);
1292             fiy3             = _mm_add_pd(fiy3,ty);
1293             fiz3             = _mm_add_pd(fiz3,tz);
1294
1295             fjx0             = _mm_add_pd(fjx0,tx);
1296             fjy0             = _mm_add_pd(fjy0,ty);
1297             fjz0             = _mm_add_pd(fjz0,tz);
1298
1299             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1300
1301             /* Inner loop uses 159 flops */
1302         }
1303
1304         /* End of innermost loop */
1305
1306         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1307                                               f+i_coord_offset,fshift+i_shift_offset);
1308
1309         /* Increment number of inner iterations */
1310         inneriter                  += j_index_end - j_index_start;
1311
1312         /* Outer loop uses 24 flops */
1313     }
1314
1315     /* Increment number of outer iterations */
1316     outeriter        += nri;
1317
1318     /* Update outer/inner flops */
1319
1320     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1321 }