63d6519b7b9ad6aa5e0bdfb8a48ae6fa26e7ea57
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     int              nvdwtype;
104     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
105     int              *vdwtype;
106     real             *vdwparam;
107     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
108     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
109     __m128i          vfitab;
110     __m128i          ifour       = _mm_set1_epi32(4);
111     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
112     real             *vftab;
113     __m128i          ewitab;
114     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     real             *ewtab;
116     __m128d          dummy_mask,cutoff_mask;
117     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
118     __m128d          one     = _mm_set1_pd(1.0);
119     __m128d          two     = _mm_set1_pd(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_pd(fr->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     vftab            = kernel_data->table_vdw->data;
138     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
148     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
149     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     jq0              = _mm_set1_pd(charge[inr+0]);
153     jq1              = _mm_set1_pd(charge[inr+1]);
154     jq2              = _mm_set1_pd(charge[inr+2]);
155     vdwjidx0A        = 2*vdwtype[inr+0];
156     qq00             = _mm_mul_pd(iq0,jq0);
157     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
158     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
159     qq01             = _mm_mul_pd(iq0,jq1);
160     qq02             = _mm_mul_pd(iq0,jq2);
161     qq10             = _mm_mul_pd(iq1,jq0);
162     qq11             = _mm_mul_pd(iq1,jq1);
163     qq12             = _mm_mul_pd(iq1,jq2);
164     qq20             = _mm_mul_pd(iq2,jq0);
165     qq21             = _mm_mul_pd(iq2,jq1);
166     qq22             = _mm_mul_pd(iq2,jq2);
167
168     /* Avoid stupid compiler warnings */
169     jnrA = jnrB = 0;
170     j_coord_offsetA = 0;
171     j_coord_offsetB = 0;
172
173     outeriter        = 0;
174     inneriter        = 0;
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
193
194         fix0             = _mm_setzero_pd();
195         fiy0             = _mm_setzero_pd();
196         fiz0             = _mm_setzero_pd();
197         fix1             = _mm_setzero_pd();
198         fiy1             = _mm_setzero_pd();
199         fiz1             = _mm_setzero_pd();
200         fix2             = _mm_setzero_pd();
201         fiy2             = _mm_setzero_pd();
202         fiz2             = _mm_setzero_pd();
203
204         /* Reset potential sums */
205         velecsum         = _mm_setzero_pd();
206         vvdwsum          = _mm_setzero_pd();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217
218             /* load j atom coordinates */
219             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
220                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
221
222             /* Calculate displacement vector */
223             dx00             = _mm_sub_pd(ix0,jx0);
224             dy00             = _mm_sub_pd(iy0,jy0);
225             dz00             = _mm_sub_pd(iz0,jz0);
226             dx01             = _mm_sub_pd(ix0,jx1);
227             dy01             = _mm_sub_pd(iy0,jy1);
228             dz01             = _mm_sub_pd(iz0,jz1);
229             dx02             = _mm_sub_pd(ix0,jx2);
230             dy02             = _mm_sub_pd(iy0,jy2);
231             dz02             = _mm_sub_pd(iz0,jz2);
232             dx10             = _mm_sub_pd(ix1,jx0);
233             dy10             = _mm_sub_pd(iy1,jy0);
234             dz10             = _mm_sub_pd(iz1,jz0);
235             dx11             = _mm_sub_pd(ix1,jx1);
236             dy11             = _mm_sub_pd(iy1,jy1);
237             dz11             = _mm_sub_pd(iz1,jz1);
238             dx12             = _mm_sub_pd(ix1,jx2);
239             dy12             = _mm_sub_pd(iy1,jy2);
240             dz12             = _mm_sub_pd(iz1,jz2);
241             dx20             = _mm_sub_pd(ix2,jx0);
242             dy20             = _mm_sub_pd(iy2,jy0);
243             dz20             = _mm_sub_pd(iz2,jz0);
244             dx21             = _mm_sub_pd(ix2,jx1);
245             dy21             = _mm_sub_pd(iy2,jy1);
246             dz21             = _mm_sub_pd(iz2,jz1);
247             dx22             = _mm_sub_pd(ix2,jx2);
248             dy22             = _mm_sub_pd(iy2,jy2);
249             dz22             = _mm_sub_pd(iz2,jz2);
250
251             /* Calculate squared distance and things based on it */
252             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
253             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
254             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
255             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
256             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
257             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
258             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
259             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
260             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
261
262             rinv00           = gmx_mm_invsqrt_pd(rsq00);
263             rinv01           = gmx_mm_invsqrt_pd(rsq01);
264             rinv02           = gmx_mm_invsqrt_pd(rsq02);
265             rinv10           = gmx_mm_invsqrt_pd(rsq10);
266             rinv11           = gmx_mm_invsqrt_pd(rsq11);
267             rinv12           = gmx_mm_invsqrt_pd(rsq12);
268             rinv20           = gmx_mm_invsqrt_pd(rsq20);
269             rinv21           = gmx_mm_invsqrt_pd(rsq21);
270             rinv22           = gmx_mm_invsqrt_pd(rsq22);
271
272             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
273             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
274             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
275             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
276             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
277             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
278             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
279             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
280             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
281
282             fjx0             = _mm_setzero_pd();
283             fjy0             = _mm_setzero_pd();
284             fjz0             = _mm_setzero_pd();
285             fjx1             = _mm_setzero_pd();
286             fjy1             = _mm_setzero_pd();
287             fjz1             = _mm_setzero_pd();
288             fjx2             = _mm_setzero_pd();
289             fjy2             = _mm_setzero_pd();
290             fjz2             = _mm_setzero_pd();
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r00              = _mm_mul_pd(rsq00,rinv00);
297
298             /* Calculate table index by multiplying r with table scale and truncate to integer */
299             rt               = _mm_mul_pd(r00,vftabscale);
300             vfitab           = _mm_cvttpd_epi32(rt);
301             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
302             vfitab           = _mm_slli_epi32(vfitab,3);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _mm_mul_pd(r00,ewtabscale);
308             ewitab           = _mm_cvttpd_epi32(ewrt);
309             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
310             ewitab           = _mm_slli_epi32(ewitab,2);
311             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
312             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
313             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
314             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
315             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
316             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
317             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
318             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
319             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
320             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
321
322             /* CUBIC SPLINE TABLE DISPERSION */
323             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
324             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
325             GMX_MM_TRANSPOSE2_PD(Y,F);
326             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
327             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
328             GMX_MM_TRANSPOSE2_PD(G,H);
329             Heps             = _mm_mul_pd(vfeps,H);
330             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
331             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
332             vvdw6            = _mm_mul_pd(c6_00,VV);
333             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
334             fvdw6            = _mm_mul_pd(c6_00,FF);
335
336             /* CUBIC SPLINE TABLE REPULSION */
337             vfitab           = _mm_add_epi32(vfitab,ifour);
338             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
339             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
340             GMX_MM_TRANSPOSE2_PD(Y,F);
341             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
342             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
343             GMX_MM_TRANSPOSE2_PD(G,H);
344             Heps             = _mm_mul_pd(vfeps,H);
345             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
346             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
347             vvdw12           = _mm_mul_pd(c12_00,VV);
348             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
349             fvdw12           = _mm_mul_pd(c12_00,FF);
350             vvdw             = _mm_add_pd(vvdw12,vvdw6);
351             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm_add_pd(velecsum,velec);
355             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
356
357             fscal            = _mm_add_pd(felec,fvdw);
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm_mul_pd(fscal,dx00);
361             ty               = _mm_mul_pd(fscal,dy00);
362             tz               = _mm_mul_pd(fscal,dz00);
363
364             /* Update vectorial force */
365             fix0             = _mm_add_pd(fix0,tx);
366             fiy0             = _mm_add_pd(fiy0,ty);
367             fiz0             = _mm_add_pd(fiz0,tz);
368
369             fjx0             = _mm_add_pd(fjx0,tx);
370             fjy0             = _mm_add_pd(fjy0,ty);
371             fjz0             = _mm_add_pd(fjz0,tz);
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             r01              = _mm_mul_pd(rsq01,rinv01);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382             ewrt             = _mm_mul_pd(r01,ewtabscale);
383             ewitab           = _mm_cvttpd_epi32(ewrt);
384             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
385             ewitab           = _mm_slli_epi32(ewitab,2);
386             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
387             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
388             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
389             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
390             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
391             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
392             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
393             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
394             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
395             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velecsum         = _mm_add_pd(velecsum,velec);
399
400             fscal            = felec;
401
402             /* Calculate temporary vectorial force */
403             tx               = _mm_mul_pd(fscal,dx01);
404             ty               = _mm_mul_pd(fscal,dy01);
405             tz               = _mm_mul_pd(fscal,dz01);
406
407             /* Update vectorial force */
408             fix0             = _mm_add_pd(fix0,tx);
409             fiy0             = _mm_add_pd(fiy0,ty);
410             fiz0             = _mm_add_pd(fiz0,tz);
411
412             fjx1             = _mm_add_pd(fjx1,tx);
413             fjy1             = _mm_add_pd(fjy1,ty);
414             fjz1             = _mm_add_pd(fjz1,tz);
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             r02              = _mm_mul_pd(rsq02,rinv02);
421
422             /* EWALD ELECTROSTATICS */
423
424             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
425             ewrt             = _mm_mul_pd(r02,ewtabscale);
426             ewitab           = _mm_cvttpd_epi32(ewrt);
427             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
428             ewitab           = _mm_slli_epi32(ewitab,2);
429             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
430             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
431             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
432             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
433             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
434             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
435             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
436             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
437             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
438             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velecsum         = _mm_add_pd(velecsum,velec);
442
443             fscal            = felec;
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm_mul_pd(fscal,dx02);
447             ty               = _mm_mul_pd(fscal,dy02);
448             tz               = _mm_mul_pd(fscal,dz02);
449
450             /* Update vectorial force */
451             fix0             = _mm_add_pd(fix0,tx);
452             fiy0             = _mm_add_pd(fiy0,ty);
453             fiz0             = _mm_add_pd(fiz0,tz);
454
455             fjx2             = _mm_add_pd(fjx2,tx);
456             fjy2             = _mm_add_pd(fjy2,ty);
457             fjz2             = _mm_add_pd(fjz2,tz);
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             r10              = _mm_mul_pd(rsq10,rinv10);
464
465             /* EWALD ELECTROSTATICS */
466
467             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
468             ewrt             = _mm_mul_pd(r10,ewtabscale);
469             ewitab           = _mm_cvttpd_epi32(ewrt);
470             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
471             ewitab           = _mm_slli_epi32(ewitab,2);
472             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
473             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
474             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
475             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
476             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
477             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
478             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
479             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
480             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
481             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
482
483             /* Update potential sum for this i atom from the interaction with this j atom. */
484             velecsum         = _mm_add_pd(velecsum,velec);
485
486             fscal            = felec;
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm_mul_pd(fscal,dx10);
490             ty               = _mm_mul_pd(fscal,dy10);
491             tz               = _mm_mul_pd(fscal,dz10);
492
493             /* Update vectorial force */
494             fix1             = _mm_add_pd(fix1,tx);
495             fiy1             = _mm_add_pd(fiy1,ty);
496             fiz1             = _mm_add_pd(fiz1,tz);
497
498             fjx0             = _mm_add_pd(fjx0,tx);
499             fjy0             = _mm_add_pd(fjy0,ty);
500             fjz0             = _mm_add_pd(fjz0,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r11              = _mm_mul_pd(rsq11,rinv11);
507
508             /* EWALD ELECTROSTATICS */
509
510             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
511             ewrt             = _mm_mul_pd(r11,ewtabscale);
512             ewitab           = _mm_cvttpd_epi32(ewrt);
513             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
514             ewitab           = _mm_slli_epi32(ewitab,2);
515             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
516             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
517             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
518             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
519             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
520             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
521             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
522             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
523             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
524             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
525
526             /* Update potential sum for this i atom from the interaction with this j atom. */
527             velecsum         = _mm_add_pd(velecsum,velec);
528
529             fscal            = felec;
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx11);
533             ty               = _mm_mul_pd(fscal,dy11);
534             tz               = _mm_mul_pd(fscal,dz11);
535
536             /* Update vectorial force */
537             fix1             = _mm_add_pd(fix1,tx);
538             fiy1             = _mm_add_pd(fiy1,ty);
539             fiz1             = _mm_add_pd(fiz1,tz);
540
541             fjx1             = _mm_add_pd(fjx1,tx);
542             fjy1             = _mm_add_pd(fjy1,ty);
543             fjz1             = _mm_add_pd(fjz1,tz);
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r12              = _mm_mul_pd(rsq12,rinv12);
550
551             /* EWALD ELECTROSTATICS */
552
553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
554             ewrt             = _mm_mul_pd(r12,ewtabscale);
555             ewitab           = _mm_cvttpd_epi32(ewrt);
556             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
557             ewitab           = _mm_slli_epi32(ewitab,2);
558             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
559             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
560             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
561             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
562             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
563             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
564             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
565             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
566             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
567             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_pd(fscal,dx12);
576             ty               = _mm_mul_pd(fscal,dy12);
577             tz               = _mm_mul_pd(fscal,dz12);
578
579             /* Update vectorial force */
580             fix1             = _mm_add_pd(fix1,tx);
581             fiy1             = _mm_add_pd(fiy1,ty);
582             fiz1             = _mm_add_pd(fiz1,tz);
583
584             fjx2             = _mm_add_pd(fjx2,tx);
585             fjy2             = _mm_add_pd(fjy2,ty);
586             fjz2             = _mm_add_pd(fjz2,tz);
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             r20              = _mm_mul_pd(rsq20,rinv20);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_pd(r20,ewtabscale);
598             ewitab           = _mm_cvttpd_epi32(ewrt);
599             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
604             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
605             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
606             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
607             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
608             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
609             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
610             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velecsum         = _mm_add_pd(velecsum,velec);
614
615             fscal            = felec;
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_pd(fscal,dx20);
619             ty               = _mm_mul_pd(fscal,dy20);
620             tz               = _mm_mul_pd(fscal,dz20);
621
622             /* Update vectorial force */
623             fix2             = _mm_add_pd(fix2,tx);
624             fiy2             = _mm_add_pd(fiy2,ty);
625             fiz2             = _mm_add_pd(fiz2,tz);
626
627             fjx0             = _mm_add_pd(fjx0,tx);
628             fjy0             = _mm_add_pd(fjy0,ty);
629             fjz0             = _mm_add_pd(fjz0,tz);
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             r21              = _mm_mul_pd(rsq21,rinv21);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = _mm_mul_pd(r21,ewtabscale);
641             ewitab           = _mm_cvttpd_epi32(ewrt);
642             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
643             ewitab           = _mm_slli_epi32(ewitab,2);
644             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
645             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
646             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
647             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
648             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
649             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
650             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
651             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
652             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
653             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velecsum         = _mm_add_pd(velecsum,velec);
657
658             fscal            = felec;
659
660             /* Calculate temporary vectorial force */
661             tx               = _mm_mul_pd(fscal,dx21);
662             ty               = _mm_mul_pd(fscal,dy21);
663             tz               = _mm_mul_pd(fscal,dz21);
664
665             /* Update vectorial force */
666             fix2             = _mm_add_pd(fix2,tx);
667             fiy2             = _mm_add_pd(fiy2,ty);
668             fiz2             = _mm_add_pd(fiz2,tz);
669
670             fjx1             = _mm_add_pd(fjx1,tx);
671             fjy1             = _mm_add_pd(fjy1,ty);
672             fjz1             = _mm_add_pd(fjz1,tz);
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             r22              = _mm_mul_pd(rsq22,rinv22);
679
680             /* EWALD ELECTROSTATICS */
681
682             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
683             ewrt             = _mm_mul_pd(r22,ewtabscale);
684             ewitab           = _mm_cvttpd_epi32(ewrt);
685             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
686             ewitab           = _mm_slli_epi32(ewitab,2);
687             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
688             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
689             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
690             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
691             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
692             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
693             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
694             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
695             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
696             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
697
698             /* Update potential sum for this i atom from the interaction with this j atom. */
699             velecsum         = _mm_add_pd(velecsum,velec);
700
701             fscal            = felec;
702
703             /* Calculate temporary vectorial force */
704             tx               = _mm_mul_pd(fscal,dx22);
705             ty               = _mm_mul_pd(fscal,dy22);
706             tz               = _mm_mul_pd(fscal,dz22);
707
708             /* Update vectorial force */
709             fix2             = _mm_add_pd(fix2,tx);
710             fiy2             = _mm_add_pd(fiy2,ty);
711             fiz2             = _mm_add_pd(fiz2,tz);
712
713             fjx2             = _mm_add_pd(fjx2,tx);
714             fjy2             = _mm_add_pd(fjy2,ty);
715             fjz2             = _mm_add_pd(fjz2,tz);
716
717             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
718
719             /* Inner loop uses 403 flops */
720         }
721
722         if(jidx<j_index_end)
723         {
724
725             jnrA             = jjnr[jidx];
726             j_coord_offsetA  = DIM*jnrA;
727
728             /* load j atom coordinates */
729             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
730                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
731
732             /* Calculate displacement vector */
733             dx00             = _mm_sub_pd(ix0,jx0);
734             dy00             = _mm_sub_pd(iy0,jy0);
735             dz00             = _mm_sub_pd(iz0,jz0);
736             dx01             = _mm_sub_pd(ix0,jx1);
737             dy01             = _mm_sub_pd(iy0,jy1);
738             dz01             = _mm_sub_pd(iz0,jz1);
739             dx02             = _mm_sub_pd(ix0,jx2);
740             dy02             = _mm_sub_pd(iy0,jy2);
741             dz02             = _mm_sub_pd(iz0,jz2);
742             dx10             = _mm_sub_pd(ix1,jx0);
743             dy10             = _mm_sub_pd(iy1,jy0);
744             dz10             = _mm_sub_pd(iz1,jz0);
745             dx11             = _mm_sub_pd(ix1,jx1);
746             dy11             = _mm_sub_pd(iy1,jy1);
747             dz11             = _mm_sub_pd(iz1,jz1);
748             dx12             = _mm_sub_pd(ix1,jx2);
749             dy12             = _mm_sub_pd(iy1,jy2);
750             dz12             = _mm_sub_pd(iz1,jz2);
751             dx20             = _mm_sub_pd(ix2,jx0);
752             dy20             = _mm_sub_pd(iy2,jy0);
753             dz20             = _mm_sub_pd(iz2,jz0);
754             dx21             = _mm_sub_pd(ix2,jx1);
755             dy21             = _mm_sub_pd(iy2,jy1);
756             dz21             = _mm_sub_pd(iz2,jz1);
757             dx22             = _mm_sub_pd(ix2,jx2);
758             dy22             = _mm_sub_pd(iy2,jy2);
759             dz22             = _mm_sub_pd(iz2,jz2);
760
761             /* Calculate squared distance and things based on it */
762             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
763             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
764             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
765             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
766             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
767             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
768             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
769             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
770             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
771
772             rinv00           = gmx_mm_invsqrt_pd(rsq00);
773             rinv01           = gmx_mm_invsqrt_pd(rsq01);
774             rinv02           = gmx_mm_invsqrt_pd(rsq02);
775             rinv10           = gmx_mm_invsqrt_pd(rsq10);
776             rinv11           = gmx_mm_invsqrt_pd(rsq11);
777             rinv12           = gmx_mm_invsqrt_pd(rsq12);
778             rinv20           = gmx_mm_invsqrt_pd(rsq20);
779             rinv21           = gmx_mm_invsqrt_pd(rsq21);
780             rinv22           = gmx_mm_invsqrt_pd(rsq22);
781
782             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
783             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
784             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
785             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
786             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
787             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
788             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
789             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
790             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
791
792             fjx0             = _mm_setzero_pd();
793             fjy0             = _mm_setzero_pd();
794             fjz0             = _mm_setzero_pd();
795             fjx1             = _mm_setzero_pd();
796             fjy1             = _mm_setzero_pd();
797             fjz1             = _mm_setzero_pd();
798             fjx2             = _mm_setzero_pd();
799             fjy2             = _mm_setzero_pd();
800             fjz2             = _mm_setzero_pd();
801
802             /**************************
803              * CALCULATE INTERACTIONS *
804              **************************/
805
806             r00              = _mm_mul_pd(rsq00,rinv00);
807
808             /* Calculate table index by multiplying r with table scale and truncate to integer */
809             rt               = _mm_mul_pd(r00,vftabscale);
810             vfitab           = _mm_cvttpd_epi32(rt);
811             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
812             vfitab           = _mm_slli_epi32(vfitab,3);
813
814             /* EWALD ELECTROSTATICS */
815
816             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
817             ewrt             = _mm_mul_pd(r00,ewtabscale);
818             ewitab           = _mm_cvttpd_epi32(ewrt);
819             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
820             ewitab           = _mm_slli_epi32(ewitab,2);
821             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
822             ewtabD           = _mm_setzero_pd();
823             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
824             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
825             ewtabFn          = _mm_setzero_pd();
826             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
827             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
828             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
829             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
830             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
831
832             /* CUBIC SPLINE TABLE DISPERSION */
833             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
834             F                = _mm_setzero_pd();
835             GMX_MM_TRANSPOSE2_PD(Y,F);
836             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
837             H                = _mm_setzero_pd();
838             GMX_MM_TRANSPOSE2_PD(G,H);
839             Heps             = _mm_mul_pd(vfeps,H);
840             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
841             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
842             vvdw6            = _mm_mul_pd(c6_00,VV);
843             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
844             fvdw6            = _mm_mul_pd(c6_00,FF);
845
846             /* CUBIC SPLINE TABLE REPULSION */
847             vfitab           = _mm_add_epi32(vfitab,ifour);
848             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
849             F                = _mm_setzero_pd();
850             GMX_MM_TRANSPOSE2_PD(Y,F);
851             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
852             H                = _mm_setzero_pd();
853             GMX_MM_TRANSPOSE2_PD(G,H);
854             Heps             = _mm_mul_pd(vfeps,H);
855             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
856             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
857             vvdw12           = _mm_mul_pd(c12_00,VV);
858             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
859             fvdw12           = _mm_mul_pd(c12_00,FF);
860             vvdw             = _mm_add_pd(vvdw12,vvdw6);
861             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
862
863             /* Update potential sum for this i atom from the interaction with this j atom. */
864             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
865             velecsum         = _mm_add_pd(velecsum,velec);
866             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
867             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
868
869             fscal            = _mm_add_pd(felec,fvdw);
870
871             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
872
873             /* Calculate temporary vectorial force */
874             tx               = _mm_mul_pd(fscal,dx00);
875             ty               = _mm_mul_pd(fscal,dy00);
876             tz               = _mm_mul_pd(fscal,dz00);
877
878             /* Update vectorial force */
879             fix0             = _mm_add_pd(fix0,tx);
880             fiy0             = _mm_add_pd(fiy0,ty);
881             fiz0             = _mm_add_pd(fiz0,tz);
882
883             fjx0             = _mm_add_pd(fjx0,tx);
884             fjy0             = _mm_add_pd(fjy0,ty);
885             fjz0             = _mm_add_pd(fjz0,tz);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r01              = _mm_mul_pd(rsq01,rinv01);
892
893             /* EWALD ELECTROSTATICS */
894
895             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
896             ewrt             = _mm_mul_pd(r01,ewtabscale);
897             ewitab           = _mm_cvttpd_epi32(ewrt);
898             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
899             ewitab           = _mm_slli_epi32(ewitab,2);
900             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
901             ewtabD           = _mm_setzero_pd();
902             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
903             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
904             ewtabFn          = _mm_setzero_pd();
905             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
906             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
907             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
908             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
909             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
910
911             /* Update potential sum for this i atom from the interaction with this j atom. */
912             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
913             velecsum         = _mm_add_pd(velecsum,velec);
914
915             fscal            = felec;
916
917             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx01);
921             ty               = _mm_mul_pd(fscal,dy01);
922             tz               = _mm_mul_pd(fscal,dz01);
923
924             /* Update vectorial force */
925             fix0             = _mm_add_pd(fix0,tx);
926             fiy0             = _mm_add_pd(fiy0,ty);
927             fiz0             = _mm_add_pd(fiz0,tz);
928
929             fjx1             = _mm_add_pd(fjx1,tx);
930             fjy1             = _mm_add_pd(fjy1,ty);
931             fjz1             = _mm_add_pd(fjz1,tz);
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             r02              = _mm_mul_pd(rsq02,rinv02);
938
939             /* EWALD ELECTROSTATICS */
940
941             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
942             ewrt             = _mm_mul_pd(r02,ewtabscale);
943             ewitab           = _mm_cvttpd_epi32(ewrt);
944             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
945             ewitab           = _mm_slli_epi32(ewitab,2);
946             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
947             ewtabD           = _mm_setzero_pd();
948             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
949             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
950             ewtabFn          = _mm_setzero_pd();
951             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
952             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
953             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
954             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
955             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
956
957             /* Update potential sum for this i atom from the interaction with this j atom. */
958             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
959             velecsum         = _mm_add_pd(velecsum,velec);
960
961             fscal            = felec;
962
963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm_mul_pd(fscal,dx02);
967             ty               = _mm_mul_pd(fscal,dy02);
968             tz               = _mm_mul_pd(fscal,dz02);
969
970             /* Update vectorial force */
971             fix0             = _mm_add_pd(fix0,tx);
972             fiy0             = _mm_add_pd(fiy0,ty);
973             fiz0             = _mm_add_pd(fiz0,tz);
974
975             fjx2             = _mm_add_pd(fjx2,tx);
976             fjy2             = _mm_add_pd(fjy2,ty);
977             fjz2             = _mm_add_pd(fjz2,tz);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             r10              = _mm_mul_pd(rsq10,rinv10);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r10,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
991             ewitab           = _mm_slli_epi32(ewitab,2);
992             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
993             ewtabD           = _mm_setzero_pd();
994             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
995             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
996             ewtabFn          = _mm_setzero_pd();
997             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
998             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
999             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1000             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1001             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1002
1003             /* Update potential sum for this i atom from the interaction with this j atom. */
1004             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1005             velecsum         = _mm_add_pd(velecsum,velec);
1006
1007             fscal            = felec;
1008
1009             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm_mul_pd(fscal,dx10);
1013             ty               = _mm_mul_pd(fscal,dy10);
1014             tz               = _mm_mul_pd(fscal,dz10);
1015
1016             /* Update vectorial force */
1017             fix1             = _mm_add_pd(fix1,tx);
1018             fiy1             = _mm_add_pd(fiy1,ty);
1019             fiz1             = _mm_add_pd(fiz1,tz);
1020
1021             fjx0             = _mm_add_pd(fjx0,tx);
1022             fjy0             = _mm_add_pd(fjy0,ty);
1023             fjz0             = _mm_add_pd(fjz0,tz);
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             r11              = _mm_mul_pd(rsq11,rinv11);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_pd(r11,ewtabscale);
1035             ewitab           = _mm_cvttpd_epi32(ewrt);
1036             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1037             ewitab           = _mm_slli_epi32(ewitab,2);
1038             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1039             ewtabD           = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1041             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1042             ewtabFn          = _mm_setzero_pd();
1043             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1044             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1045             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1046             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1047             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1048
1049             /* Update potential sum for this i atom from the interaction with this j atom. */
1050             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1051             velecsum         = _mm_add_pd(velecsum,velec);
1052
1053             fscal            = felec;
1054
1055             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm_mul_pd(fscal,dx11);
1059             ty               = _mm_mul_pd(fscal,dy11);
1060             tz               = _mm_mul_pd(fscal,dz11);
1061
1062             /* Update vectorial force */
1063             fix1             = _mm_add_pd(fix1,tx);
1064             fiy1             = _mm_add_pd(fiy1,ty);
1065             fiz1             = _mm_add_pd(fiz1,tz);
1066
1067             fjx1             = _mm_add_pd(fjx1,tx);
1068             fjy1             = _mm_add_pd(fjy1,ty);
1069             fjz1             = _mm_add_pd(fjz1,tz);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             r12              = _mm_mul_pd(rsq12,rinv12);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _mm_mul_pd(r12,ewtabscale);
1081             ewitab           = _mm_cvttpd_epi32(ewrt);
1082             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1083             ewitab           = _mm_slli_epi32(ewitab,2);
1084             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1085             ewtabD           = _mm_setzero_pd();
1086             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1087             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1088             ewtabFn          = _mm_setzero_pd();
1089             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1090             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1091             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1092             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1094
1095             /* Update potential sum for this i atom from the interaction with this j atom. */
1096             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1097             velecsum         = _mm_add_pd(velecsum,velec);
1098
1099             fscal            = felec;
1100
1101             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1102
1103             /* Calculate temporary vectorial force */
1104             tx               = _mm_mul_pd(fscal,dx12);
1105             ty               = _mm_mul_pd(fscal,dy12);
1106             tz               = _mm_mul_pd(fscal,dz12);
1107
1108             /* Update vectorial force */
1109             fix1             = _mm_add_pd(fix1,tx);
1110             fiy1             = _mm_add_pd(fiy1,ty);
1111             fiz1             = _mm_add_pd(fiz1,tz);
1112
1113             fjx2             = _mm_add_pd(fjx2,tx);
1114             fjy2             = _mm_add_pd(fjy2,ty);
1115             fjz2             = _mm_add_pd(fjz2,tz);
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             r20              = _mm_mul_pd(rsq20,rinv20);
1122
1123             /* EWALD ELECTROSTATICS */
1124
1125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1126             ewrt             = _mm_mul_pd(r20,ewtabscale);
1127             ewitab           = _mm_cvttpd_epi32(ewrt);
1128             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1129             ewitab           = _mm_slli_epi32(ewitab,2);
1130             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1131             ewtabD           = _mm_setzero_pd();
1132             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1133             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1134             ewtabFn          = _mm_setzero_pd();
1135             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1136             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1137             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1138             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1139             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1140
1141             /* Update potential sum for this i atom from the interaction with this j atom. */
1142             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1143             velecsum         = _mm_add_pd(velecsum,velec);
1144
1145             fscal            = felec;
1146
1147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm_mul_pd(fscal,dx20);
1151             ty               = _mm_mul_pd(fscal,dy20);
1152             tz               = _mm_mul_pd(fscal,dz20);
1153
1154             /* Update vectorial force */
1155             fix2             = _mm_add_pd(fix2,tx);
1156             fiy2             = _mm_add_pd(fiy2,ty);
1157             fiz2             = _mm_add_pd(fiz2,tz);
1158
1159             fjx0             = _mm_add_pd(fjx0,tx);
1160             fjy0             = _mm_add_pd(fjy0,ty);
1161             fjz0             = _mm_add_pd(fjz0,tz);
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             r21              = _mm_mul_pd(rsq21,rinv21);
1168
1169             /* EWALD ELECTROSTATICS */
1170
1171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1172             ewrt             = _mm_mul_pd(r21,ewtabscale);
1173             ewitab           = _mm_cvttpd_epi32(ewrt);
1174             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1175             ewitab           = _mm_slli_epi32(ewitab,2);
1176             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1177             ewtabD           = _mm_setzero_pd();
1178             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1179             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1180             ewtabFn          = _mm_setzero_pd();
1181             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1182             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1183             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1184             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1185             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1186
1187             /* Update potential sum for this i atom from the interaction with this j atom. */
1188             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1189             velecsum         = _mm_add_pd(velecsum,velec);
1190
1191             fscal            = felec;
1192
1193             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm_mul_pd(fscal,dx21);
1197             ty               = _mm_mul_pd(fscal,dy21);
1198             tz               = _mm_mul_pd(fscal,dz21);
1199
1200             /* Update vectorial force */
1201             fix2             = _mm_add_pd(fix2,tx);
1202             fiy2             = _mm_add_pd(fiy2,ty);
1203             fiz2             = _mm_add_pd(fiz2,tz);
1204
1205             fjx1             = _mm_add_pd(fjx1,tx);
1206             fjy1             = _mm_add_pd(fjy1,ty);
1207             fjz1             = _mm_add_pd(fjz1,tz);
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             r22              = _mm_mul_pd(rsq22,rinv22);
1214
1215             /* EWALD ELECTROSTATICS */
1216
1217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1218             ewrt             = _mm_mul_pd(r22,ewtabscale);
1219             ewitab           = _mm_cvttpd_epi32(ewrt);
1220             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1221             ewitab           = _mm_slli_epi32(ewitab,2);
1222             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1223             ewtabD           = _mm_setzero_pd();
1224             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1225             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1226             ewtabFn          = _mm_setzero_pd();
1227             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1228             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1229             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1230             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1231             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1232
1233             /* Update potential sum for this i atom from the interaction with this j atom. */
1234             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1235             velecsum         = _mm_add_pd(velecsum,velec);
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm_mul_pd(fscal,dx22);
1243             ty               = _mm_mul_pd(fscal,dy22);
1244             tz               = _mm_mul_pd(fscal,dz22);
1245
1246             /* Update vectorial force */
1247             fix2             = _mm_add_pd(fix2,tx);
1248             fiy2             = _mm_add_pd(fiy2,ty);
1249             fiz2             = _mm_add_pd(fiz2,tz);
1250
1251             fjx2             = _mm_add_pd(fjx2,tx);
1252             fjy2             = _mm_add_pd(fjy2,ty);
1253             fjz2             = _mm_add_pd(fjz2,tz);
1254
1255             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1256
1257             /* Inner loop uses 403 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1263                                               f+i_coord_offset,fshift+i_shift_offset);
1264
1265         ggid                        = gid[iidx];
1266         /* Update potential energies */
1267         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1268         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1269
1270         /* Increment number of inner iterations */
1271         inneriter                  += j_index_end - j_index_start;
1272
1273         /* Outer loop uses 20 flops */
1274     }
1275
1276     /* Increment number of outer iterations */
1277     outeriter        += nri;
1278
1279     /* Update outer/inner flops */
1280
1281     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*403);
1282 }
1283 /*
1284  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse4_1_double
1285  * Electrostatics interaction: Ewald
1286  * VdW interaction:            CubicSplineTable
1287  * Geometry:                   Water3-Water3
1288  * Calculate force/pot:        Force
1289  */
1290 void
1291 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse4_1_double
1292                     (t_nblist                    * gmx_restrict       nlist,
1293                      rvec                        * gmx_restrict          xx,
1294                      rvec                        * gmx_restrict          ff,
1295                      t_forcerec                  * gmx_restrict          fr,
1296                      t_mdatoms                   * gmx_restrict     mdatoms,
1297                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1298                      t_nrnb                      * gmx_restrict        nrnb)
1299 {
1300     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1301      * just 0 for non-waters.
1302      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1303      * jnr indices corresponding to data put in the four positions in the SIMD register.
1304      */
1305     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1306     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1307     int              jnrA,jnrB;
1308     int              j_coord_offsetA,j_coord_offsetB;
1309     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1310     real             rcutoff_scalar;
1311     real             *shiftvec,*fshift,*x,*f;
1312     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1313     int              vdwioffset0;
1314     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1315     int              vdwioffset1;
1316     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1317     int              vdwioffset2;
1318     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1319     int              vdwjidx0A,vdwjidx0B;
1320     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1321     int              vdwjidx1A,vdwjidx1B;
1322     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1323     int              vdwjidx2A,vdwjidx2B;
1324     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1325     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1326     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1327     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1328     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1329     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1330     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1331     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1332     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1333     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1334     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1335     real             *charge;
1336     int              nvdwtype;
1337     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1338     int              *vdwtype;
1339     real             *vdwparam;
1340     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1341     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1342     __m128i          vfitab;
1343     __m128i          ifour       = _mm_set1_epi32(4);
1344     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1345     real             *vftab;
1346     __m128i          ewitab;
1347     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1348     real             *ewtab;
1349     __m128d          dummy_mask,cutoff_mask;
1350     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1351     __m128d          one     = _mm_set1_pd(1.0);
1352     __m128d          two     = _mm_set1_pd(2.0);
1353     x                = xx[0];
1354     f                = ff[0];
1355
1356     nri              = nlist->nri;
1357     iinr             = nlist->iinr;
1358     jindex           = nlist->jindex;
1359     jjnr             = nlist->jjnr;
1360     shiftidx         = nlist->shift;
1361     gid              = nlist->gid;
1362     shiftvec         = fr->shift_vec[0];
1363     fshift           = fr->fshift[0];
1364     facel            = _mm_set1_pd(fr->epsfac);
1365     charge           = mdatoms->chargeA;
1366     nvdwtype         = fr->ntype;
1367     vdwparam         = fr->nbfp;
1368     vdwtype          = mdatoms->typeA;
1369
1370     vftab            = kernel_data->table_vdw->data;
1371     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
1372
1373     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1374     ewtab            = fr->ic->tabq_coul_F;
1375     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1376     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1377
1378     /* Setup water-specific parameters */
1379     inr              = nlist->iinr[0];
1380     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1381     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1382     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1383     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1384
1385     jq0              = _mm_set1_pd(charge[inr+0]);
1386     jq1              = _mm_set1_pd(charge[inr+1]);
1387     jq2              = _mm_set1_pd(charge[inr+2]);
1388     vdwjidx0A        = 2*vdwtype[inr+0];
1389     qq00             = _mm_mul_pd(iq0,jq0);
1390     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1391     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1392     qq01             = _mm_mul_pd(iq0,jq1);
1393     qq02             = _mm_mul_pd(iq0,jq2);
1394     qq10             = _mm_mul_pd(iq1,jq0);
1395     qq11             = _mm_mul_pd(iq1,jq1);
1396     qq12             = _mm_mul_pd(iq1,jq2);
1397     qq20             = _mm_mul_pd(iq2,jq0);
1398     qq21             = _mm_mul_pd(iq2,jq1);
1399     qq22             = _mm_mul_pd(iq2,jq2);
1400
1401     /* Avoid stupid compiler warnings */
1402     jnrA = jnrB = 0;
1403     j_coord_offsetA = 0;
1404     j_coord_offsetB = 0;
1405
1406     outeriter        = 0;
1407     inneriter        = 0;
1408
1409     /* Start outer loop over neighborlists */
1410     for(iidx=0; iidx<nri; iidx++)
1411     {
1412         /* Load shift vector for this list */
1413         i_shift_offset   = DIM*shiftidx[iidx];
1414
1415         /* Load limits for loop over neighbors */
1416         j_index_start    = jindex[iidx];
1417         j_index_end      = jindex[iidx+1];
1418
1419         /* Get outer coordinate index */
1420         inr              = iinr[iidx];
1421         i_coord_offset   = DIM*inr;
1422
1423         /* Load i particle coords and add shift vector */
1424         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1425                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1426
1427         fix0             = _mm_setzero_pd();
1428         fiy0             = _mm_setzero_pd();
1429         fiz0             = _mm_setzero_pd();
1430         fix1             = _mm_setzero_pd();
1431         fiy1             = _mm_setzero_pd();
1432         fiz1             = _mm_setzero_pd();
1433         fix2             = _mm_setzero_pd();
1434         fiy2             = _mm_setzero_pd();
1435         fiz2             = _mm_setzero_pd();
1436
1437         /* Start inner kernel loop */
1438         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1439         {
1440
1441             /* Get j neighbor index, and coordinate index */
1442             jnrA             = jjnr[jidx];
1443             jnrB             = jjnr[jidx+1];
1444             j_coord_offsetA  = DIM*jnrA;
1445             j_coord_offsetB  = DIM*jnrB;
1446
1447             /* load j atom coordinates */
1448             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1449                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1450
1451             /* Calculate displacement vector */
1452             dx00             = _mm_sub_pd(ix0,jx0);
1453             dy00             = _mm_sub_pd(iy0,jy0);
1454             dz00             = _mm_sub_pd(iz0,jz0);
1455             dx01             = _mm_sub_pd(ix0,jx1);
1456             dy01             = _mm_sub_pd(iy0,jy1);
1457             dz01             = _mm_sub_pd(iz0,jz1);
1458             dx02             = _mm_sub_pd(ix0,jx2);
1459             dy02             = _mm_sub_pd(iy0,jy2);
1460             dz02             = _mm_sub_pd(iz0,jz2);
1461             dx10             = _mm_sub_pd(ix1,jx0);
1462             dy10             = _mm_sub_pd(iy1,jy0);
1463             dz10             = _mm_sub_pd(iz1,jz0);
1464             dx11             = _mm_sub_pd(ix1,jx1);
1465             dy11             = _mm_sub_pd(iy1,jy1);
1466             dz11             = _mm_sub_pd(iz1,jz1);
1467             dx12             = _mm_sub_pd(ix1,jx2);
1468             dy12             = _mm_sub_pd(iy1,jy2);
1469             dz12             = _mm_sub_pd(iz1,jz2);
1470             dx20             = _mm_sub_pd(ix2,jx0);
1471             dy20             = _mm_sub_pd(iy2,jy0);
1472             dz20             = _mm_sub_pd(iz2,jz0);
1473             dx21             = _mm_sub_pd(ix2,jx1);
1474             dy21             = _mm_sub_pd(iy2,jy1);
1475             dz21             = _mm_sub_pd(iz2,jz1);
1476             dx22             = _mm_sub_pd(ix2,jx2);
1477             dy22             = _mm_sub_pd(iy2,jy2);
1478             dz22             = _mm_sub_pd(iz2,jz2);
1479
1480             /* Calculate squared distance and things based on it */
1481             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1482             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1483             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1484             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1485             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1486             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1487             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1488             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1489             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1490
1491             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1492             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1493             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1494             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1495             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1496             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1497             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1498             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1499             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1500
1501             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1502             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1503             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1504             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1505             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1506             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1507             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1508             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1509             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1510
1511             fjx0             = _mm_setzero_pd();
1512             fjy0             = _mm_setzero_pd();
1513             fjz0             = _mm_setzero_pd();
1514             fjx1             = _mm_setzero_pd();
1515             fjy1             = _mm_setzero_pd();
1516             fjz1             = _mm_setzero_pd();
1517             fjx2             = _mm_setzero_pd();
1518             fjy2             = _mm_setzero_pd();
1519             fjz2             = _mm_setzero_pd();
1520
1521             /**************************
1522              * CALCULATE INTERACTIONS *
1523              **************************/
1524
1525             r00              = _mm_mul_pd(rsq00,rinv00);
1526
1527             /* Calculate table index by multiplying r with table scale and truncate to integer */
1528             rt               = _mm_mul_pd(r00,vftabscale);
1529             vfitab           = _mm_cvttpd_epi32(rt);
1530             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1531             vfitab           = _mm_slli_epi32(vfitab,3);
1532
1533             /* EWALD ELECTROSTATICS */
1534
1535             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1536             ewrt             = _mm_mul_pd(r00,ewtabscale);
1537             ewitab           = _mm_cvttpd_epi32(ewrt);
1538             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1539             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1540                                          &ewtabF,&ewtabFn);
1541             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1542             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1543
1544             /* CUBIC SPLINE TABLE DISPERSION */
1545             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1546             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1547             GMX_MM_TRANSPOSE2_PD(Y,F);
1548             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1549             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1550             GMX_MM_TRANSPOSE2_PD(G,H);
1551             Heps             = _mm_mul_pd(vfeps,H);
1552             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1553             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1554             fvdw6            = _mm_mul_pd(c6_00,FF);
1555
1556             /* CUBIC SPLINE TABLE REPULSION */
1557             vfitab           = _mm_add_epi32(vfitab,ifour);
1558             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1559             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1560             GMX_MM_TRANSPOSE2_PD(Y,F);
1561             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1562             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1563             GMX_MM_TRANSPOSE2_PD(G,H);
1564             Heps             = _mm_mul_pd(vfeps,H);
1565             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1566             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1567             fvdw12           = _mm_mul_pd(c12_00,FF);
1568             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1569
1570             fscal            = _mm_add_pd(felec,fvdw);
1571
1572             /* Calculate temporary vectorial force */
1573             tx               = _mm_mul_pd(fscal,dx00);
1574             ty               = _mm_mul_pd(fscal,dy00);
1575             tz               = _mm_mul_pd(fscal,dz00);
1576
1577             /* Update vectorial force */
1578             fix0             = _mm_add_pd(fix0,tx);
1579             fiy0             = _mm_add_pd(fiy0,ty);
1580             fiz0             = _mm_add_pd(fiz0,tz);
1581
1582             fjx0             = _mm_add_pd(fjx0,tx);
1583             fjy0             = _mm_add_pd(fjy0,ty);
1584             fjz0             = _mm_add_pd(fjz0,tz);
1585
1586             /**************************
1587              * CALCULATE INTERACTIONS *
1588              **************************/
1589
1590             r01              = _mm_mul_pd(rsq01,rinv01);
1591
1592             /* EWALD ELECTROSTATICS */
1593
1594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1595             ewrt             = _mm_mul_pd(r01,ewtabscale);
1596             ewitab           = _mm_cvttpd_epi32(ewrt);
1597             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1598             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1599                                          &ewtabF,&ewtabFn);
1600             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1601             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1602
1603             fscal            = felec;
1604
1605             /* Calculate temporary vectorial force */
1606             tx               = _mm_mul_pd(fscal,dx01);
1607             ty               = _mm_mul_pd(fscal,dy01);
1608             tz               = _mm_mul_pd(fscal,dz01);
1609
1610             /* Update vectorial force */
1611             fix0             = _mm_add_pd(fix0,tx);
1612             fiy0             = _mm_add_pd(fiy0,ty);
1613             fiz0             = _mm_add_pd(fiz0,tz);
1614
1615             fjx1             = _mm_add_pd(fjx1,tx);
1616             fjy1             = _mm_add_pd(fjy1,ty);
1617             fjz1             = _mm_add_pd(fjz1,tz);
1618
1619             /**************************
1620              * CALCULATE INTERACTIONS *
1621              **************************/
1622
1623             r02              = _mm_mul_pd(rsq02,rinv02);
1624
1625             /* EWALD ELECTROSTATICS */
1626
1627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1628             ewrt             = _mm_mul_pd(r02,ewtabscale);
1629             ewitab           = _mm_cvttpd_epi32(ewrt);
1630             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1631             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1632                                          &ewtabF,&ewtabFn);
1633             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1634             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1635
1636             fscal            = felec;
1637
1638             /* Calculate temporary vectorial force */
1639             tx               = _mm_mul_pd(fscal,dx02);
1640             ty               = _mm_mul_pd(fscal,dy02);
1641             tz               = _mm_mul_pd(fscal,dz02);
1642
1643             /* Update vectorial force */
1644             fix0             = _mm_add_pd(fix0,tx);
1645             fiy0             = _mm_add_pd(fiy0,ty);
1646             fiz0             = _mm_add_pd(fiz0,tz);
1647
1648             fjx2             = _mm_add_pd(fjx2,tx);
1649             fjy2             = _mm_add_pd(fjy2,ty);
1650             fjz2             = _mm_add_pd(fjz2,tz);
1651
1652             /**************************
1653              * CALCULATE INTERACTIONS *
1654              **************************/
1655
1656             r10              = _mm_mul_pd(rsq10,rinv10);
1657
1658             /* EWALD ELECTROSTATICS */
1659
1660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1661             ewrt             = _mm_mul_pd(r10,ewtabscale);
1662             ewitab           = _mm_cvttpd_epi32(ewrt);
1663             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1664             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1665                                          &ewtabF,&ewtabFn);
1666             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1667             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1668
1669             fscal            = felec;
1670
1671             /* Calculate temporary vectorial force */
1672             tx               = _mm_mul_pd(fscal,dx10);
1673             ty               = _mm_mul_pd(fscal,dy10);
1674             tz               = _mm_mul_pd(fscal,dz10);
1675
1676             /* Update vectorial force */
1677             fix1             = _mm_add_pd(fix1,tx);
1678             fiy1             = _mm_add_pd(fiy1,ty);
1679             fiz1             = _mm_add_pd(fiz1,tz);
1680
1681             fjx0             = _mm_add_pd(fjx0,tx);
1682             fjy0             = _mm_add_pd(fjy0,ty);
1683             fjz0             = _mm_add_pd(fjz0,tz);
1684
1685             /**************************
1686              * CALCULATE INTERACTIONS *
1687              **************************/
1688
1689             r11              = _mm_mul_pd(rsq11,rinv11);
1690
1691             /* EWALD ELECTROSTATICS */
1692
1693             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1694             ewrt             = _mm_mul_pd(r11,ewtabscale);
1695             ewitab           = _mm_cvttpd_epi32(ewrt);
1696             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1697             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1698                                          &ewtabF,&ewtabFn);
1699             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1700             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1701
1702             fscal            = felec;
1703
1704             /* Calculate temporary vectorial force */
1705             tx               = _mm_mul_pd(fscal,dx11);
1706             ty               = _mm_mul_pd(fscal,dy11);
1707             tz               = _mm_mul_pd(fscal,dz11);
1708
1709             /* Update vectorial force */
1710             fix1             = _mm_add_pd(fix1,tx);
1711             fiy1             = _mm_add_pd(fiy1,ty);
1712             fiz1             = _mm_add_pd(fiz1,tz);
1713
1714             fjx1             = _mm_add_pd(fjx1,tx);
1715             fjy1             = _mm_add_pd(fjy1,ty);
1716             fjz1             = _mm_add_pd(fjz1,tz);
1717
1718             /**************************
1719              * CALCULATE INTERACTIONS *
1720              **************************/
1721
1722             r12              = _mm_mul_pd(rsq12,rinv12);
1723
1724             /* EWALD ELECTROSTATICS */
1725
1726             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1727             ewrt             = _mm_mul_pd(r12,ewtabscale);
1728             ewitab           = _mm_cvttpd_epi32(ewrt);
1729             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1730             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1731                                          &ewtabF,&ewtabFn);
1732             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1733             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1734
1735             fscal            = felec;
1736
1737             /* Calculate temporary vectorial force */
1738             tx               = _mm_mul_pd(fscal,dx12);
1739             ty               = _mm_mul_pd(fscal,dy12);
1740             tz               = _mm_mul_pd(fscal,dz12);
1741
1742             /* Update vectorial force */
1743             fix1             = _mm_add_pd(fix1,tx);
1744             fiy1             = _mm_add_pd(fiy1,ty);
1745             fiz1             = _mm_add_pd(fiz1,tz);
1746
1747             fjx2             = _mm_add_pd(fjx2,tx);
1748             fjy2             = _mm_add_pd(fjy2,ty);
1749             fjz2             = _mm_add_pd(fjz2,tz);
1750
1751             /**************************
1752              * CALCULATE INTERACTIONS *
1753              **************************/
1754
1755             r20              = _mm_mul_pd(rsq20,rinv20);
1756
1757             /* EWALD ELECTROSTATICS */
1758
1759             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1760             ewrt             = _mm_mul_pd(r20,ewtabscale);
1761             ewitab           = _mm_cvttpd_epi32(ewrt);
1762             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1763             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1764                                          &ewtabF,&ewtabFn);
1765             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1766             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1767
1768             fscal            = felec;
1769
1770             /* Calculate temporary vectorial force */
1771             tx               = _mm_mul_pd(fscal,dx20);
1772             ty               = _mm_mul_pd(fscal,dy20);
1773             tz               = _mm_mul_pd(fscal,dz20);
1774
1775             /* Update vectorial force */
1776             fix2             = _mm_add_pd(fix2,tx);
1777             fiy2             = _mm_add_pd(fiy2,ty);
1778             fiz2             = _mm_add_pd(fiz2,tz);
1779
1780             fjx0             = _mm_add_pd(fjx0,tx);
1781             fjy0             = _mm_add_pd(fjy0,ty);
1782             fjz0             = _mm_add_pd(fjz0,tz);
1783
1784             /**************************
1785              * CALCULATE INTERACTIONS *
1786              **************************/
1787
1788             r21              = _mm_mul_pd(rsq21,rinv21);
1789
1790             /* EWALD ELECTROSTATICS */
1791
1792             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1793             ewrt             = _mm_mul_pd(r21,ewtabscale);
1794             ewitab           = _mm_cvttpd_epi32(ewrt);
1795             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1796             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1797                                          &ewtabF,&ewtabFn);
1798             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1799             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1800
1801             fscal            = felec;
1802
1803             /* Calculate temporary vectorial force */
1804             tx               = _mm_mul_pd(fscal,dx21);
1805             ty               = _mm_mul_pd(fscal,dy21);
1806             tz               = _mm_mul_pd(fscal,dz21);
1807
1808             /* Update vectorial force */
1809             fix2             = _mm_add_pd(fix2,tx);
1810             fiy2             = _mm_add_pd(fiy2,ty);
1811             fiz2             = _mm_add_pd(fiz2,tz);
1812
1813             fjx1             = _mm_add_pd(fjx1,tx);
1814             fjy1             = _mm_add_pd(fjy1,ty);
1815             fjz1             = _mm_add_pd(fjz1,tz);
1816
1817             /**************************
1818              * CALCULATE INTERACTIONS *
1819              **************************/
1820
1821             r22              = _mm_mul_pd(rsq22,rinv22);
1822
1823             /* EWALD ELECTROSTATICS */
1824
1825             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1826             ewrt             = _mm_mul_pd(r22,ewtabscale);
1827             ewitab           = _mm_cvttpd_epi32(ewrt);
1828             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1829             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1830                                          &ewtabF,&ewtabFn);
1831             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1832             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1833
1834             fscal            = felec;
1835
1836             /* Calculate temporary vectorial force */
1837             tx               = _mm_mul_pd(fscal,dx22);
1838             ty               = _mm_mul_pd(fscal,dy22);
1839             tz               = _mm_mul_pd(fscal,dz22);
1840
1841             /* Update vectorial force */
1842             fix2             = _mm_add_pd(fix2,tx);
1843             fiy2             = _mm_add_pd(fiy2,ty);
1844             fiz2             = _mm_add_pd(fiz2,tz);
1845
1846             fjx2             = _mm_add_pd(fjx2,tx);
1847             fjy2             = _mm_add_pd(fjy2,ty);
1848             fjz2             = _mm_add_pd(fjz2,tz);
1849
1850             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1851
1852             /* Inner loop uses 350 flops */
1853         }
1854
1855         if(jidx<j_index_end)
1856         {
1857
1858             jnrA             = jjnr[jidx];
1859             j_coord_offsetA  = DIM*jnrA;
1860
1861             /* load j atom coordinates */
1862             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1863                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1864
1865             /* Calculate displacement vector */
1866             dx00             = _mm_sub_pd(ix0,jx0);
1867             dy00             = _mm_sub_pd(iy0,jy0);
1868             dz00             = _mm_sub_pd(iz0,jz0);
1869             dx01             = _mm_sub_pd(ix0,jx1);
1870             dy01             = _mm_sub_pd(iy0,jy1);
1871             dz01             = _mm_sub_pd(iz0,jz1);
1872             dx02             = _mm_sub_pd(ix0,jx2);
1873             dy02             = _mm_sub_pd(iy0,jy2);
1874             dz02             = _mm_sub_pd(iz0,jz2);
1875             dx10             = _mm_sub_pd(ix1,jx0);
1876             dy10             = _mm_sub_pd(iy1,jy0);
1877             dz10             = _mm_sub_pd(iz1,jz0);
1878             dx11             = _mm_sub_pd(ix1,jx1);
1879             dy11             = _mm_sub_pd(iy1,jy1);
1880             dz11             = _mm_sub_pd(iz1,jz1);
1881             dx12             = _mm_sub_pd(ix1,jx2);
1882             dy12             = _mm_sub_pd(iy1,jy2);
1883             dz12             = _mm_sub_pd(iz1,jz2);
1884             dx20             = _mm_sub_pd(ix2,jx0);
1885             dy20             = _mm_sub_pd(iy2,jy0);
1886             dz20             = _mm_sub_pd(iz2,jz0);
1887             dx21             = _mm_sub_pd(ix2,jx1);
1888             dy21             = _mm_sub_pd(iy2,jy1);
1889             dz21             = _mm_sub_pd(iz2,jz1);
1890             dx22             = _mm_sub_pd(ix2,jx2);
1891             dy22             = _mm_sub_pd(iy2,jy2);
1892             dz22             = _mm_sub_pd(iz2,jz2);
1893
1894             /* Calculate squared distance and things based on it */
1895             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1896             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1897             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1898             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1899             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1900             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1901             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1902             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1903             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1904
1905             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1906             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1907             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1908             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1909             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1910             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1911             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1912             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1913             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1914
1915             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1916             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1917             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1918             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1919             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1920             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1921             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1922             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1923             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1924
1925             fjx0             = _mm_setzero_pd();
1926             fjy0             = _mm_setzero_pd();
1927             fjz0             = _mm_setzero_pd();
1928             fjx1             = _mm_setzero_pd();
1929             fjy1             = _mm_setzero_pd();
1930             fjz1             = _mm_setzero_pd();
1931             fjx2             = _mm_setzero_pd();
1932             fjy2             = _mm_setzero_pd();
1933             fjz2             = _mm_setzero_pd();
1934
1935             /**************************
1936              * CALCULATE INTERACTIONS *
1937              **************************/
1938
1939             r00              = _mm_mul_pd(rsq00,rinv00);
1940
1941             /* Calculate table index by multiplying r with table scale and truncate to integer */
1942             rt               = _mm_mul_pd(r00,vftabscale);
1943             vfitab           = _mm_cvttpd_epi32(rt);
1944             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1945             vfitab           = _mm_slli_epi32(vfitab,3);
1946
1947             /* EWALD ELECTROSTATICS */
1948
1949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1950             ewrt             = _mm_mul_pd(r00,ewtabscale);
1951             ewitab           = _mm_cvttpd_epi32(ewrt);
1952             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1953             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1954             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1955             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1956
1957             /* CUBIC SPLINE TABLE DISPERSION */
1958             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1959             F                = _mm_setzero_pd();
1960             GMX_MM_TRANSPOSE2_PD(Y,F);
1961             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1962             H                = _mm_setzero_pd();
1963             GMX_MM_TRANSPOSE2_PD(G,H);
1964             Heps             = _mm_mul_pd(vfeps,H);
1965             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1966             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1967             fvdw6            = _mm_mul_pd(c6_00,FF);
1968
1969             /* CUBIC SPLINE TABLE REPULSION */
1970             vfitab           = _mm_add_epi32(vfitab,ifour);
1971             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1972             F                = _mm_setzero_pd();
1973             GMX_MM_TRANSPOSE2_PD(Y,F);
1974             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1975             H                = _mm_setzero_pd();
1976             GMX_MM_TRANSPOSE2_PD(G,H);
1977             Heps             = _mm_mul_pd(vfeps,H);
1978             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1979             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1980             fvdw12           = _mm_mul_pd(c12_00,FF);
1981             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1982
1983             fscal            = _mm_add_pd(felec,fvdw);
1984
1985             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1986
1987             /* Calculate temporary vectorial force */
1988             tx               = _mm_mul_pd(fscal,dx00);
1989             ty               = _mm_mul_pd(fscal,dy00);
1990             tz               = _mm_mul_pd(fscal,dz00);
1991
1992             /* Update vectorial force */
1993             fix0             = _mm_add_pd(fix0,tx);
1994             fiy0             = _mm_add_pd(fiy0,ty);
1995             fiz0             = _mm_add_pd(fiz0,tz);
1996
1997             fjx0             = _mm_add_pd(fjx0,tx);
1998             fjy0             = _mm_add_pd(fjy0,ty);
1999             fjz0             = _mm_add_pd(fjz0,tz);
2000
2001             /**************************
2002              * CALCULATE INTERACTIONS *
2003              **************************/
2004
2005             r01              = _mm_mul_pd(rsq01,rinv01);
2006
2007             /* EWALD ELECTROSTATICS */
2008
2009             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2010             ewrt             = _mm_mul_pd(r01,ewtabscale);
2011             ewitab           = _mm_cvttpd_epi32(ewrt);
2012             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2013             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2014             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2015             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2016
2017             fscal            = felec;
2018
2019             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2020
2021             /* Calculate temporary vectorial force */
2022             tx               = _mm_mul_pd(fscal,dx01);
2023             ty               = _mm_mul_pd(fscal,dy01);
2024             tz               = _mm_mul_pd(fscal,dz01);
2025
2026             /* Update vectorial force */
2027             fix0             = _mm_add_pd(fix0,tx);
2028             fiy0             = _mm_add_pd(fiy0,ty);
2029             fiz0             = _mm_add_pd(fiz0,tz);
2030
2031             fjx1             = _mm_add_pd(fjx1,tx);
2032             fjy1             = _mm_add_pd(fjy1,ty);
2033             fjz1             = _mm_add_pd(fjz1,tz);
2034
2035             /**************************
2036              * CALCULATE INTERACTIONS *
2037              **************************/
2038
2039             r02              = _mm_mul_pd(rsq02,rinv02);
2040
2041             /* EWALD ELECTROSTATICS */
2042
2043             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2044             ewrt             = _mm_mul_pd(r02,ewtabscale);
2045             ewitab           = _mm_cvttpd_epi32(ewrt);
2046             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2047             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2048             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2049             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2050
2051             fscal            = felec;
2052
2053             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2054
2055             /* Calculate temporary vectorial force */
2056             tx               = _mm_mul_pd(fscal,dx02);
2057             ty               = _mm_mul_pd(fscal,dy02);
2058             tz               = _mm_mul_pd(fscal,dz02);
2059
2060             /* Update vectorial force */
2061             fix0             = _mm_add_pd(fix0,tx);
2062             fiy0             = _mm_add_pd(fiy0,ty);
2063             fiz0             = _mm_add_pd(fiz0,tz);
2064
2065             fjx2             = _mm_add_pd(fjx2,tx);
2066             fjy2             = _mm_add_pd(fjy2,ty);
2067             fjz2             = _mm_add_pd(fjz2,tz);
2068
2069             /**************************
2070              * CALCULATE INTERACTIONS *
2071              **************************/
2072
2073             r10              = _mm_mul_pd(rsq10,rinv10);
2074
2075             /* EWALD ELECTROSTATICS */
2076
2077             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2078             ewrt             = _mm_mul_pd(r10,ewtabscale);
2079             ewitab           = _mm_cvttpd_epi32(ewrt);
2080             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2081             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2082             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2083             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2084
2085             fscal            = felec;
2086
2087             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2088
2089             /* Calculate temporary vectorial force */
2090             tx               = _mm_mul_pd(fscal,dx10);
2091             ty               = _mm_mul_pd(fscal,dy10);
2092             tz               = _mm_mul_pd(fscal,dz10);
2093
2094             /* Update vectorial force */
2095             fix1             = _mm_add_pd(fix1,tx);
2096             fiy1             = _mm_add_pd(fiy1,ty);
2097             fiz1             = _mm_add_pd(fiz1,tz);
2098
2099             fjx0             = _mm_add_pd(fjx0,tx);
2100             fjy0             = _mm_add_pd(fjy0,ty);
2101             fjz0             = _mm_add_pd(fjz0,tz);
2102
2103             /**************************
2104              * CALCULATE INTERACTIONS *
2105              **************************/
2106
2107             r11              = _mm_mul_pd(rsq11,rinv11);
2108
2109             /* EWALD ELECTROSTATICS */
2110
2111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2112             ewrt             = _mm_mul_pd(r11,ewtabscale);
2113             ewitab           = _mm_cvttpd_epi32(ewrt);
2114             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2115             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2116             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2117             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2118
2119             fscal            = felec;
2120
2121             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2122
2123             /* Calculate temporary vectorial force */
2124             tx               = _mm_mul_pd(fscal,dx11);
2125             ty               = _mm_mul_pd(fscal,dy11);
2126             tz               = _mm_mul_pd(fscal,dz11);
2127
2128             /* Update vectorial force */
2129             fix1             = _mm_add_pd(fix1,tx);
2130             fiy1             = _mm_add_pd(fiy1,ty);
2131             fiz1             = _mm_add_pd(fiz1,tz);
2132
2133             fjx1             = _mm_add_pd(fjx1,tx);
2134             fjy1             = _mm_add_pd(fjy1,ty);
2135             fjz1             = _mm_add_pd(fjz1,tz);
2136
2137             /**************************
2138              * CALCULATE INTERACTIONS *
2139              **************************/
2140
2141             r12              = _mm_mul_pd(rsq12,rinv12);
2142
2143             /* EWALD ELECTROSTATICS */
2144
2145             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2146             ewrt             = _mm_mul_pd(r12,ewtabscale);
2147             ewitab           = _mm_cvttpd_epi32(ewrt);
2148             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2149             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2150             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2151             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2152
2153             fscal            = felec;
2154
2155             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2156
2157             /* Calculate temporary vectorial force */
2158             tx               = _mm_mul_pd(fscal,dx12);
2159             ty               = _mm_mul_pd(fscal,dy12);
2160             tz               = _mm_mul_pd(fscal,dz12);
2161
2162             /* Update vectorial force */
2163             fix1             = _mm_add_pd(fix1,tx);
2164             fiy1             = _mm_add_pd(fiy1,ty);
2165             fiz1             = _mm_add_pd(fiz1,tz);
2166
2167             fjx2             = _mm_add_pd(fjx2,tx);
2168             fjy2             = _mm_add_pd(fjy2,ty);
2169             fjz2             = _mm_add_pd(fjz2,tz);
2170
2171             /**************************
2172              * CALCULATE INTERACTIONS *
2173              **************************/
2174
2175             r20              = _mm_mul_pd(rsq20,rinv20);
2176
2177             /* EWALD ELECTROSTATICS */
2178
2179             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2180             ewrt             = _mm_mul_pd(r20,ewtabscale);
2181             ewitab           = _mm_cvttpd_epi32(ewrt);
2182             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2183             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2184             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2185             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2186
2187             fscal            = felec;
2188
2189             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2190
2191             /* Calculate temporary vectorial force */
2192             tx               = _mm_mul_pd(fscal,dx20);
2193             ty               = _mm_mul_pd(fscal,dy20);
2194             tz               = _mm_mul_pd(fscal,dz20);
2195
2196             /* Update vectorial force */
2197             fix2             = _mm_add_pd(fix2,tx);
2198             fiy2             = _mm_add_pd(fiy2,ty);
2199             fiz2             = _mm_add_pd(fiz2,tz);
2200
2201             fjx0             = _mm_add_pd(fjx0,tx);
2202             fjy0             = _mm_add_pd(fjy0,ty);
2203             fjz0             = _mm_add_pd(fjz0,tz);
2204
2205             /**************************
2206              * CALCULATE INTERACTIONS *
2207              **************************/
2208
2209             r21              = _mm_mul_pd(rsq21,rinv21);
2210
2211             /* EWALD ELECTROSTATICS */
2212
2213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2214             ewrt             = _mm_mul_pd(r21,ewtabscale);
2215             ewitab           = _mm_cvttpd_epi32(ewrt);
2216             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2217             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2218             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2219             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2220
2221             fscal            = felec;
2222
2223             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2224
2225             /* Calculate temporary vectorial force */
2226             tx               = _mm_mul_pd(fscal,dx21);
2227             ty               = _mm_mul_pd(fscal,dy21);
2228             tz               = _mm_mul_pd(fscal,dz21);
2229
2230             /* Update vectorial force */
2231             fix2             = _mm_add_pd(fix2,tx);
2232             fiy2             = _mm_add_pd(fiy2,ty);
2233             fiz2             = _mm_add_pd(fiz2,tz);
2234
2235             fjx1             = _mm_add_pd(fjx1,tx);
2236             fjy1             = _mm_add_pd(fjy1,ty);
2237             fjz1             = _mm_add_pd(fjz1,tz);
2238
2239             /**************************
2240              * CALCULATE INTERACTIONS *
2241              **************************/
2242
2243             r22              = _mm_mul_pd(rsq22,rinv22);
2244
2245             /* EWALD ELECTROSTATICS */
2246
2247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2248             ewrt             = _mm_mul_pd(r22,ewtabscale);
2249             ewitab           = _mm_cvttpd_epi32(ewrt);
2250             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2251             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2252             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2253             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2254
2255             fscal            = felec;
2256
2257             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2258
2259             /* Calculate temporary vectorial force */
2260             tx               = _mm_mul_pd(fscal,dx22);
2261             ty               = _mm_mul_pd(fscal,dy22);
2262             tz               = _mm_mul_pd(fscal,dz22);
2263
2264             /* Update vectorial force */
2265             fix2             = _mm_add_pd(fix2,tx);
2266             fiy2             = _mm_add_pd(fiy2,ty);
2267             fiz2             = _mm_add_pd(fiz2,tz);
2268
2269             fjx2             = _mm_add_pd(fjx2,tx);
2270             fjy2             = _mm_add_pd(fjy2,ty);
2271             fjz2             = _mm_add_pd(fjz2,tz);
2272
2273             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2274
2275             /* Inner loop uses 350 flops */
2276         }
2277
2278         /* End of innermost loop */
2279
2280         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2281                                               f+i_coord_offset,fshift+i_shift_offset);
2282
2283         /* Increment number of inner iterations */
2284         inneriter                  += j_index_end - j_index_start;
2285
2286         /* Outer loop uses 18 flops */
2287     }
2288
2289     /* Increment number of outer iterations */
2290     outeriter        += nri;
2291
2292     /* Update outer/inner flops */
2293
2294     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*350);
2295 }