Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
110     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
111     __m128i          vfitab;
112     __m128i          ifour       = _mm_set1_epi32(4);
113     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
114     real             *vftab;
115     __m128i          ewitab;
116     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     real             *ewtab;
118     __m128d          dummy_mask,cutoff_mask;
119     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
120     __m128d          one     = _mm_set1_pd(1.0);
121     __m128d          two     = _mm_set1_pd(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm_set1_pd(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138
139     vftab            = kernel_data->table_vdw->data;
140     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
141
142     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
143     ewtab            = fr->ic->tabq_coul_FDV0;
144     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
145     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
146
147     /* Setup water-specific parameters */
148     inr              = nlist->iinr[0];
149     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
150     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
151     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
152     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154     jq0              = _mm_set1_pd(charge[inr+0]);
155     jq1              = _mm_set1_pd(charge[inr+1]);
156     jq2              = _mm_set1_pd(charge[inr+2]);
157     vdwjidx0A        = 2*vdwtype[inr+0];
158     qq00             = _mm_mul_pd(iq0,jq0);
159     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
160     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
161     qq01             = _mm_mul_pd(iq0,jq1);
162     qq02             = _mm_mul_pd(iq0,jq2);
163     qq10             = _mm_mul_pd(iq1,jq0);
164     qq11             = _mm_mul_pd(iq1,jq1);
165     qq12             = _mm_mul_pd(iq1,jq2);
166     qq20             = _mm_mul_pd(iq2,jq0);
167     qq21             = _mm_mul_pd(iq2,jq1);
168     qq22             = _mm_mul_pd(iq2,jq2);
169
170     /* Avoid stupid compiler warnings */
171     jnrA = jnrB = 0;
172     j_coord_offsetA = 0;
173     j_coord_offsetB = 0;
174
175     outeriter        = 0;
176     inneriter        = 0;
177
178     /* Start outer loop over neighborlists */
179     for(iidx=0; iidx<nri; iidx++)
180     {
181         /* Load shift vector for this list */
182         i_shift_offset   = DIM*shiftidx[iidx];
183
184         /* Load limits for loop over neighbors */
185         j_index_start    = jindex[iidx];
186         j_index_end      = jindex[iidx+1];
187
188         /* Get outer coordinate index */
189         inr              = iinr[iidx];
190         i_coord_offset   = DIM*inr;
191
192         /* Load i particle coords and add shift vector */
193         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
194                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
195
196         fix0             = _mm_setzero_pd();
197         fiy0             = _mm_setzero_pd();
198         fiz0             = _mm_setzero_pd();
199         fix1             = _mm_setzero_pd();
200         fiy1             = _mm_setzero_pd();
201         fiz1             = _mm_setzero_pd();
202         fix2             = _mm_setzero_pd();
203         fiy2             = _mm_setzero_pd();
204         fiz2             = _mm_setzero_pd();
205
206         /* Reset potential sums */
207         velecsum         = _mm_setzero_pd();
208         vvdwsum          = _mm_setzero_pd();
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrA             = jjnr[jidx];
216             jnrB             = jjnr[jidx+1];
217             j_coord_offsetA  = DIM*jnrA;
218             j_coord_offsetB  = DIM*jnrB;
219
220             /* load j atom coordinates */
221             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
222                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
223
224             /* Calculate displacement vector */
225             dx00             = _mm_sub_pd(ix0,jx0);
226             dy00             = _mm_sub_pd(iy0,jy0);
227             dz00             = _mm_sub_pd(iz0,jz0);
228             dx01             = _mm_sub_pd(ix0,jx1);
229             dy01             = _mm_sub_pd(iy0,jy1);
230             dz01             = _mm_sub_pd(iz0,jz1);
231             dx02             = _mm_sub_pd(ix0,jx2);
232             dy02             = _mm_sub_pd(iy0,jy2);
233             dz02             = _mm_sub_pd(iz0,jz2);
234             dx10             = _mm_sub_pd(ix1,jx0);
235             dy10             = _mm_sub_pd(iy1,jy0);
236             dz10             = _mm_sub_pd(iz1,jz0);
237             dx11             = _mm_sub_pd(ix1,jx1);
238             dy11             = _mm_sub_pd(iy1,jy1);
239             dz11             = _mm_sub_pd(iz1,jz1);
240             dx12             = _mm_sub_pd(ix1,jx2);
241             dy12             = _mm_sub_pd(iy1,jy2);
242             dz12             = _mm_sub_pd(iz1,jz2);
243             dx20             = _mm_sub_pd(ix2,jx0);
244             dy20             = _mm_sub_pd(iy2,jy0);
245             dz20             = _mm_sub_pd(iz2,jz0);
246             dx21             = _mm_sub_pd(ix2,jx1);
247             dy21             = _mm_sub_pd(iy2,jy1);
248             dz21             = _mm_sub_pd(iz2,jz1);
249             dx22             = _mm_sub_pd(ix2,jx2);
250             dy22             = _mm_sub_pd(iy2,jy2);
251             dz22             = _mm_sub_pd(iz2,jz2);
252
253             /* Calculate squared distance and things based on it */
254             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
255             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
256             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
257             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
258             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
259             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
260             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
261             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
262             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
263
264             rinv00           = gmx_mm_invsqrt_pd(rsq00);
265             rinv01           = gmx_mm_invsqrt_pd(rsq01);
266             rinv02           = gmx_mm_invsqrt_pd(rsq02);
267             rinv10           = gmx_mm_invsqrt_pd(rsq10);
268             rinv11           = gmx_mm_invsqrt_pd(rsq11);
269             rinv12           = gmx_mm_invsqrt_pd(rsq12);
270             rinv20           = gmx_mm_invsqrt_pd(rsq20);
271             rinv21           = gmx_mm_invsqrt_pd(rsq21);
272             rinv22           = gmx_mm_invsqrt_pd(rsq22);
273
274             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
275             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
276             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
277             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
278             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
279             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
280             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
281             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
282             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
283
284             fjx0             = _mm_setzero_pd();
285             fjy0             = _mm_setzero_pd();
286             fjz0             = _mm_setzero_pd();
287             fjx1             = _mm_setzero_pd();
288             fjy1             = _mm_setzero_pd();
289             fjz1             = _mm_setzero_pd();
290             fjx2             = _mm_setzero_pd();
291             fjy2             = _mm_setzero_pd();
292             fjz2             = _mm_setzero_pd();
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Calculate table index by multiplying r with table scale and truncate to integer */
301             rt               = _mm_mul_pd(r00,vftabscale);
302             vfitab           = _mm_cvttpd_epi32(rt);
303             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
304             vfitab           = _mm_slli_epi32(vfitab,3);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r00,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
312             ewitab           = _mm_slli_epi32(ewitab,2);
313             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
314             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
315             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
316             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
317             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
318             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
319             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
320             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
321             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
322             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
323
324             /* CUBIC SPLINE TABLE DISPERSION */
325             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
326             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
327             GMX_MM_TRANSPOSE2_PD(Y,F);
328             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
329             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
330             GMX_MM_TRANSPOSE2_PD(G,H);
331             Heps             = _mm_mul_pd(vfeps,H);
332             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
333             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
334             vvdw6            = _mm_mul_pd(c6_00,VV);
335             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
336             fvdw6            = _mm_mul_pd(c6_00,FF);
337
338             /* CUBIC SPLINE TABLE REPULSION */
339             vfitab           = _mm_add_epi32(vfitab,ifour);
340             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
341             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
342             GMX_MM_TRANSPOSE2_PD(Y,F);
343             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
344             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
345             GMX_MM_TRANSPOSE2_PD(G,H);
346             Heps             = _mm_mul_pd(vfeps,H);
347             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
348             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
349             vvdw12           = _mm_mul_pd(c12_00,VV);
350             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
351             fvdw12           = _mm_mul_pd(c12_00,FF);
352             vvdw             = _mm_add_pd(vvdw12,vvdw6);
353             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_pd(velecsum,velec);
357             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
358
359             fscal            = _mm_add_pd(felec,fvdw);
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_pd(fscal,dx00);
363             ty               = _mm_mul_pd(fscal,dy00);
364             tz               = _mm_mul_pd(fscal,dz00);
365
366             /* Update vectorial force */
367             fix0             = _mm_add_pd(fix0,tx);
368             fiy0             = _mm_add_pd(fiy0,ty);
369             fiz0             = _mm_add_pd(fiz0,tz);
370
371             fjx0             = _mm_add_pd(fjx0,tx);
372             fjy0             = _mm_add_pd(fjy0,ty);
373             fjz0             = _mm_add_pd(fjz0,tz);
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             r01              = _mm_mul_pd(rsq01,rinv01);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _mm_mul_pd(r01,ewtabscale);
385             ewitab           = _mm_cvttpd_epi32(ewrt);
386             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
390             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
391             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
392             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
393             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
394             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
395             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
396             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
397             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velecsum         = _mm_add_pd(velecsum,velec);
401
402             fscal            = felec;
403
404             /* Calculate temporary vectorial force */
405             tx               = _mm_mul_pd(fscal,dx01);
406             ty               = _mm_mul_pd(fscal,dy01);
407             tz               = _mm_mul_pd(fscal,dz01);
408
409             /* Update vectorial force */
410             fix0             = _mm_add_pd(fix0,tx);
411             fiy0             = _mm_add_pd(fiy0,ty);
412             fiz0             = _mm_add_pd(fiz0,tz);
413
414             fjx1             = _mm_add_pd(fjx1,tx);
415             fjy1             = _mm_add_pd(fjy1,ty);
416             fjz1             = _mm_add_pd(fjz1,tz);
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             r02              = _mm_mul_pd(rsq02,rinv02);
423
424             /* EWALD ELECTROSTATICS */
425
426             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
427             ewrt             = _mm_mul_pd(r02,ewtabscale);
428             ewitab           = _mm_cvttpd_epi32(ewrt);
429             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
430             ewitab           = _mm_slli_epi32(ewitab,2);
431             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
432             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
433             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
434             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
435             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
436             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
437             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
438             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
439             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
440             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velecsum         = _mm_add_pd(velecsum,velec);
444
445             fscal            = felec;
446
447             /* Calculate temporary vectorial force */
448             tx               = _mm_mul_pd(fscal,dx02);
449             ty               = _mm_mul_pd(fscal,dy02);
450             tz               = _mm_mul_pd(fscal,dz02);
451
452             /* Update vectorial force */
453             fix0             = _mm_add_pd(fix0,tx);
454             fiy0             = _mm_add_pd(fiy0,ty);
455             fiz0             = _mm_add_pd(fiz0,tz);
456
457             fjx2             = _mm_add_pd(fjx2,tx);
458             fjy2             = _mm_add_pd(fjy2,ty);
459             fjz2             = _mm_add_pd(fjz2,tz);
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             r10              = _mm_mul_pd(rsq10,rinv10);
466
467             /* EWALD ELECTROSTATICS */
468
469             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
470             ewrt             = _mm_mul_pd(r10,ewtabscale);
471             ewitab           = _mm_cvttpd_epi32(ewrt);
472             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
473             ewitab           = _mm_slli_epi32(ewitab,2);
474             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
475             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
476             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
477             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
478             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
479             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
480             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
481             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
482             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
483             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velecsum         = _mm_add_pd(velecsum,velec);
487
488             fscal            = felec;
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm_mul_pd(fscal,dx10);
492             ty               = _mm_mul_pd(fscal,dy10);
493             tz               = _mm_mul_pd(fscal,dz10);
494
495             /* Update vectorial force */
496             fix1             = _mm_add_pd(fix1,tx);
497             fiy1             = _mm_add_pd(fiy1,ty);
498             fiz1             = _mm_add_pd(fiz1,tz);
499
500             fjx0             = _mm_add_pd(fjx0,tx);
501             fjy0             = _mm_add_pd(fjy0,ty);
502             fjz0             = _mm_add_pd(fjz0,tz);
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             r11              = _mm_mul_pd(rsq11,rinv11);
509
510             /* EWALD ELECTROSTATICS */
511
512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513             ewrt             = _mm_mul_pd(r11,ewtabscale);
514             ewitab           = _mm_cvttpd_epi32(ewrt);
515             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
516             ewitab           = _mm_slli_epi32(ewitab,2);
517             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
518             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
519             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
520             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
521             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
522             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
523             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
524             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
525             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
526             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             velecsum         = _mm_add_pd(velecsum,velec);
530
531             fscal            = felec;
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm_mul_pd(fscal,dx11);
535             ty               = _mm_mul_pd(fscal,dy11);
536             tz               = _mm_mul_pd(fscal,dz11);
537
538             /* Update vectorial force */
539             fix1             = _mm_add_pd(fix1,tx);
540             fiy1             = _mm_add_pd(fiy1,ty);
541             fiz1             = _mm_add_pd(fiz1,tz);
542
543             fjx1             = _mm_add_pd(fjx1,tx);
544             fjy1             = _mm_add_pd(fjy1,ty);
545             fjz1             = _mm_add_pd(fjz1,tz);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             r12              = _mm_mul_pd(rsq12,rinv12);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = _mm_mul_pd(r12,ewtabscale);
557             ewitab           = _mm_cvttpd_epi32(ewrt);
558             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
559             ewitab           = _mm_slli_epi32(ewitab,2);
560             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
561             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
562             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
563             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
564             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
565             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
566             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
567             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
568             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
569             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velecsum         = _mm_add_pd(velecsum,velec);
573
574             fscal            = felec;
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm_mul_pd(fscal,dx12);
578             ty               = _mm_mul_pd(fscal,dy12);
579             tz               = _mm_mul_pd(fscal,dz12);
580
581             /* Update vectorial force */
582             fix1             = _mm_add_pd(fix1,tx);
583             fiy1             = _mm_add_pd(fiy1,ty);
584             fiz1             = _mm_add_pd(fiz1,tz);
585
586             fjx2             = _mm_add_pd(fjx2,tx);
587             fjy2             = _mm_add_pd(fjy2,ty);
588             fjz2             = _mm_add_pd(fjz2,tz);
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             r20              = _mm_mul_pd(rsq20,rinv20);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _mm_mul_pd(r20,ewtabscale);
600             ewitab           = _mm_cvttpd_epi32(ewrt);
601             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
602             ewitab           = _mm_slli_epi32(ewitab,2);
603             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
604             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
605             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
606             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
607             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
608             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
609             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
610             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
611             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
612             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velecsum         = _mm_add_pd(velecsum,velec);
616
617             fscal            = felec;
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_pd(fscal,dx20);
621             ty               = _mm_mul_pd(fscal,dy20);
622             tz               = _mm_mul_pd(fscal,dz20);
623
624             /* Update vectorial force */
625             fix2             = _mm_add_pd(fix2,tx);
626             fiy2             = _mm_add_pd(fiy2,ty);
627             fiz2             = _mm_add_pd(fiz2,tz);
628
629             fjx0             = _mm_add_pd(fjx0,tx);
630             fjy0             = _mm_add_pd(fjy0,ty);
631             fjz0             = _mm_add_pd(fjz0,tz);
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             r21              = _mm_mul_pd(rsq21,rinv21);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = _mm_mul_pd(r21,ewtabscale);
643             ewitab           = _mm_cvttpd_epi32(ewrt);
644             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
645             ewitab           = _mm_slli_epi32(ewitab,2);
646             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
647             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
648             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
649             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
650             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
651             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
652             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
653             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
654             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
655             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velecsum         = _mm_add_pd(velecsum,velec);
659
660             fscal            = felec;
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm_mul_pd(fscal,dx21);
664             ty               = _mm_mul_pd(fscal,dy21);
665             tz               = _mm_mul_pd(fscal,dz21);
666
667             /* Update vectorial force */
668             fix2             = _mm_add_pd(fix2,tx);
669             fiy2             = _mm_add_pd(fiy2,ty);
670             fiz2             = _mm_add_pd(fiz2,tz);
671
672             fjx1             = _mm_add_pd(fjx1,tx);
673             fjy1             = _mm_add_pd(fjy1,ty);
674             fjz1             = _mm_add_pd(fjz1,tz);
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             r22              = _mm_mul_pd(rsq22,rinv22);
681
682             /* EWALD ELECTROSTATICS */
683
684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
685             ewrt             = _mm_mul_pd(r22,ewtabscale);
686             ewitab           = _mm_cvttpd_epi32(ewrt);
687             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
688             ewitab           = _mm_slli_epi32(ewitab,2);
689             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
690             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
691             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
692             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
693             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
694             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
695             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
696             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
697             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
698             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
699
700             /* Update potential sum for this i atom from the interaction with this j atom. */
701             velecsum         = _mm_add_pd(velecsum,velec);
702
703             fscal            = felec;
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm_mul_pd(fscal,dx22);
707             ty               = _mm_mul_pd(fscal,dy22);
708             tz               = _mm_mul_pd(fscal,dz22);
709
710             /* Update vectorial force */
711             fix2             = _mm_add_pd(fix2,tx);
712             fiy2             = _mm_add_pd(fiy2,ty);
713             fiz2             = _mm_add_pd(fiz2,tz);
714
715             fjx2             = _mm_add_pd(fjx2,tx);
716             fjy2             = _mm_add_pd(fjy2,ty);
717             fjz2             = _mm_add_pd(fjz2,tz);
718
719             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
720
721             /* Inner loop uses 403 flops */
722         }
723
724         if(jidx<j_index_end)
725         {
726
727             jnrA             = jjnr[jidx];
728             j_coord_offsetA  = DIM*jnrA;
729
730             /* load j atom coordinates */
731             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
732                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
733
734             /* Calculate displacement vector */
735             dx00             = _mm_sub_pd(ix0,jx0);
736             dy00             = _mm_sub_pd(iy0,jy0);
737             dz00             = _mm_sub_pd(iz0,jz0);
738             dx01             = _mm_sub_pd(ix0,jx1);
739             dy01             = _mm_sub_pd(iy0,jy1);
740             dz01             = _mm_sub_pd(iz0,jz1);
741             dx02             = _mm_sub_pd(ix0,jx2);
742             dy02             = _mm_sub_pd(iy0,jy2);
743             dz02             = _mm_sub_pd(iz0,jz2);
744             dx10             = _mm_sub_pd(ix1,jx0);
745             dy10             = _mm_sub_pd(iy1,jy0);
746             dz10             = _mm_sub_pd(iz1,jz0);
747             dx11             = _mm_sub_pd(ix1,jx1);
748             dy11             = _mm_sub_pd(iy1,jy1);
749             dz11             = _mm_sub_pd(iz1,jz1);
750             dx12             = _mm_sub_pd(ix1,jx2);
751             dy12             = _mm_sub_pd(iy1,jy2);
752             dz12             = _mm_sub_pd(iz1,jz2);
753             dx20             = _mm_sub_pd(ix2,jx0);
754             dy20             = _mm_sub_pd(iy2,jy0);
755             dz20             = _mm_sub_pd(iz2,jz0);
756             dx21             = _mm_sub_pd(ix2,jx1);
757             dy21             = _mm_sub_pd(iy2,jy1);
758             dz21             = _mm_sub_pd(iz2,jz1);
759             dx22             = _mm_sub_pd(ix2,jx2);
760             dy22             = _mm_sub_pd(iy2,jy2);
761             dz22             = _mm_sub_pd(iz2,jz2);
762
763             /* Calculate squared distance and things based on it */
764             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
765             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
766             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
767             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
768             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
769             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
770             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
771             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
772             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
773
774             rinv00           = gmx_mm_invsqrt_pd(rsq00);
775             rinv01           = gmx_mm_invsqrt_pd(rsq01);
776             rinv02           = gmx_mm_invsqrt_pd(rsq02);
777             rinv10           = gmx_mm_invsqrt_pd(rsq10);
778             rinv11           = gmx_mm_invsqrt_pd(rsq11);
779             rinv12           = gmx_mm_invsqrt_pd(rsq12);
780             rinv20           = gmx_mm_invsqrt_pd(rsq20);
781             rinv21           = gmx_mm_invsqrt_pd(rsq21);
782             rinv22           = gmx_mm_invsqrt_pd(rsq22);
783
784             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
785             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
786             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
787             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
788             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
789             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
790             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
791             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
792             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
793
794             fjx0             = _mm_setzero_pd();
795             fjy0             = _mm_setzero_pd();
796             fjz0             = _mm_setzero_pd();
797             fjx1             = _mm_setzero_pd();
798             fjy1             = _mm_setzero_pd();
799             fjz1             = _mm_setzero_pd();
800             fjx2             = _mm_setzero_pd();
801             fjy2             = _mm_setzero_pd();
802             fjz2             = _mm_setzero_pd();
803
804             /**************************
805              * CALCULATE INTERACTIONS *
806              **************************/
807
808             r00              = _mm_mul_pd(rsq00,rinv00);
809
810             /* Calculate table index by multiplying r with table scale and truncate to integer */
811             rt               = _mm_mul_pd(r00,vftabscale);
812             vfitab           = _mm_cvttpd_epi32(rt);
813             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
814             vfitab           = _mm_slli_epi32(vfitab,3);
815
816             /* EWALD ELECTROSTATICS */
817
818             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
819             ewrt             = _mm_mul_pd(r00,ewtabscale);
820             ewitab           = _mm_cvttpd_epi32(ewrt);
821             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
822             ewitab           = _mm_slli_epi32(ewitab,2);
823             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
824             ewtabD           = _mm_setzero_pd();
825             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
826             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
827             ewtabFn          = _mm_setzero_pd();
828             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
829             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
830             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
831             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
832             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
833
834             /* CUBIC SPLINE TABLE DISPERSION */
835             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
836             F                = _mm_setzero_pd();
837             GMX_MM_TRANSPOSE2_PD(Y,F);
838             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
839             H                = _mm_setzero_pd();
840             GMX_MM_TRANSPOSE2_PD(G,H);
841             Heps             = _mm_mul_pd(vfeps,H);
842             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
843             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
844             vvdw6            = _mm_mul_pd(c6_00,VV);
845             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
846             fvdw6            = _mm_mul_pd(c6_00,FF);
847
848             /* CUBIC SPLINE TABLE REPULSION */
849             vfitab           = _mm_add_epi32(vfitab,ifour);
850             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
851             F                = _mm_setzero_pd();
852             GMX_MM_TRANSPOSE2_PD(Y,F);
853             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
854             H                = _mm_setzero_pd();
855             GMX_MM_TRANSPOSE2_PD(G,H);
856             Heps             = _mm_mul_pd(vfeps,H);
857             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
858             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
859             vvdw12           = _mm_mul_pd(c12_00,VV);
860             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
861             fvdw12           = _mm_mul_pd(c12_00,FF);
862             vvdw             = _mm_add_pd(vvdw12,vvdw6);
863             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
864
865             /* Update potential sum for this i atom from the interaction with this j atom. */
866             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
867             velecsum         = _mm_add_pd(velecsum,velec);
868             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
869             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
870
871             fscal            = _mm_add_pd(felec,fvdw);
872
873             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
874
875             /* Calculate temporary vectorial force */
876             tx               = _mm_mul_pd(fscal,dx00);
877             ty               = _mm_mul_pd(fscal,dy00);
878             tz               = _mm_mul_pd(fscal,dz00);
879
880             /* Update vectorial force */
881             fix0             = _mm_add_pd(fix0,tx);
882             fiy0             = _mm_add_pd(fiy0,ty);
883             fiz0             = _mm_add_pd(fiz0,tz);
884
885             fjx0             = _mm_add_pd(fjx0,tx);
886             fjy0             = _mm_add_pd(fjy0,ty);
887             fjz0             = _mm_add_pd(fjz0,tz);
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r01              = _mm_mul_pd(rsq01,rinv01);
894
895             /* EWALD ELECTROSTATICS */
896
897             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
898             ewrt             = _mm_mul_pd(r01,ewtabscale);
899             ewitab           = _mm_cvttpd_epi32(ewrt);
900             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
901             ewitab           = _mm_slli_epi32(ewitab,2);
902             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
903             ewtabD           = _mm_setzero_pd();
904             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
905             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
906             ewtabFn          = _mm_setzero_pd();
907             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
908             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
909             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
910             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
911             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
912
913             /* Update potential sum for this i atom from the interaction with this j atom. */
914             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
915             velecsum         = _mm_add_pd(velecsum,velec);
916
917             fscal            = felec;
918
919             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
920
921             /* Calculate temporary vectorial force */
922             tx               = _mm_mul_pd(fscal,dx01);
923             ty               = _mm_mul_pd(fscal,dy01);
924             tz               = _mm_mul_pd(fscal,dz01);
925
926             /* Update vectorial force */
927             fix0             = _mm_add_pd(fix0,tx);
928             fiy0             = _mm_add_pd(fiy0,ty);
929             fiz0             = _mm_add_pd(fiz0,tz);
930
931             fjx1             = _mm_add_pd(fjx1,tx);
932             fjy1             = _mm_add_pd(fjy1,ty);
933             fjz1             = _mm_add_pd(fjz1,tz);
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             r02              = _mm_mul_pd(rsq02,rinv02);
940
941             /* EWALD ELECTROSTATICS */
942
943             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
944             ewrt             = _mm_mul_pd(r02,ewtabscale);
945             ewitab           = _mm_cvttpd_epi32(ewrt);
946             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
947             ewitab           = _mm_slli_epi32(ewitab,2);
948             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
949             ewtabD           = _mm_setzero_pd();
950             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
951             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
952             ewtabFn          = _mm_setzero_pd();
953             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
954             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
955             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
956             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
957             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
958
959             /* Update potential sum for this i atom from the interaction with this j atom. */
960             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
961             velecsum         = _mm_add_pd(velecsum,velec);
962
963             fscal            = felec;
964
965             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm_mul_pd(fscal,dx02);
969             ty               = _mm_mul_pd(fscal,dy02);
970             tz               = _mm_mul_pd(fscal,dz02);
971
972             /* Update vectorial force */
973             fix0             = _mm_add_pd(fix0,tx);
974             fiy0             = _mm_add_pd(fiy0,ty);
975             fiz0             = _mm_add_pd(fiz0,tz);
976
977             fjx2             = _mm_add_pd(fjx2,tx);
978             fjy2             = _mm_add_pd(fjy2,ty);
979             fjz2             = _mm_add_pd(fjz2,tz);
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             r10              = _mm_mul_pd(rsq10,rinv10);
986
987             /* EWALD ELECTROSTATICS */
988
989             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
990             ewrt             = _mm_mul_pd(r10,ewtabscale);
991             ewitab           = _mm_cvttpd_epi32(ewrt);
992             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
993             ewitab           = _mm_slli_epi32(ewitab,2);
994             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
995             ewtabD           = _mm_setzero_pd();
996             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
997             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
998             ewtabFn          = _mm_setzero_pd();
999             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1000             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1001             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1002             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1003             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1004
1005             /* Update potential sum for this i atom from the interaction with this j atom. */
1006             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1007             velecsum         = _mm_add_pd(velecsum,velec);
1008
1009             fscal            = felec;
1010
1011             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1012
1013             /* Calculate temporary vectorial force */
1014             tx               = _mm_mul_pd(fscal,dx10);
1015             ty               = _mm_mul_pd(fscal,dy10);
1016             tz               = _mm_mul_pd(fscal,dz10);
1017
1018             /* Update vectorial force */
1019             fix1             = _mm_add_pd(fix1,tx);
1020             fiy1             = _mm_add_pd(fiy1,ty);
1021             fiz1             = _mm_add_pd(fiz1,tz);
1022
1023             fjx0             = _mm_add_pd(fjx0,tx);
1024             fjy0             = _mm_add_pd(fjy0,ty);
1025             fjz0             = _mm_add_pd(fjz0,tz);
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             r11              = _mm_mul_pd(rsq11,rinv11);
1032
1033             /* EWALD ELECTROSTATICS */
1034
1035             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1036             ewrt             = _mm_mul_pd(r11,ewtabscale);
1037             ewitab           = _mm_cvttpd_epi32(ewrt);
1038             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1039             ewitab           = _mm_slli_epi32(ewitab,2);
1040             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1041             ewtabD           = _mm_setzero_pd();
1042             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1043             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1044             ewtabFn          = _mm_setzero_pd();
1045             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1046             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1047             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1048             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1049             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1050
1051             /* Update potential sum for this i atom from the interaction with this j atom. */
1052             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1053             velecsum         = _mm_add_pd(velecsum,velec);
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm_mul_pd(fscal,dx11);
1061             ty               = _mm_mul_pd(fscal,dy11);
1062             tz               = _mm_mul_pd(fscal,dz11);
1063
1064             /* Update vectorial force */
1065             fix1             = _mm_add_pd(fix1,tx);
1066             fiy1             = _mm_add_pd(fiy1,ty);
1067             fiz1             = _mm_add_pd(fiz1,tz);
1068
1069             fjx1             = _mm_add_pd(fjx1,tx);
1070             fjy1             = _mm_add_pd(fjy1,ty);
1071             fjz1             = _mm_add_pd(fjz1,tz);
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             r12              = _mm_mul_pd(rsq12,rinv12);
1078
1079             /* EWALD ELECTROSTATICS */
1080
1081             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1082             ewrt             = _mm_mul_pd(r12,ewtabscale);
1083             ewitab           = _mm_cvttpd_epi32(ewrt);
1084             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1085             ewitab           = _mm_slli_epi32(ewitab,2);
1086             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1087             ewtabD           = _mm_setzero_pd();
1088             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1089             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1090             ewtabFn          = _mm_setzero_pd();
1091             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1092             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1093             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1094             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1095             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1096
1097             /* Update potential sum for this i atom from the interaction with this j atom. */
1098             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1099             velecsum         = _mm_add_pd(velecsum,velec);
1100
1101             fscal            = felec;
1102
1103             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1104
1105             /* Calculate temporary vectorial force */
1106             tx               = _mm_mul_pd(fscal,dx12);
1107             ty               = _mm_mul_pd(fscal,dy12);
1108             tz               = _mm_mul_pd(fscal,dz12);
1109
1110             /* Update vectorial force */
1111             fix1             = _mm_add_pd(fix1,tx);
1112             fiy1             = _mm_add_pd(fiy1,ty);
1113             fiz1             = _mm_add_pd(fiz1,tz);
1114
1115             fjx2             = _mm_add_pd(fjx2,tx);
1116             fjy2             = _mm_add_pd(fjy2,ty);
1117             fjz2             = _mm_add_pd(fjz2,tz);
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             r20              = _mm_mul_pd(rsq20,rinv20);
1124
1125             /* EWALD ELECTROSTATICS */
1126
1127             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1128             ewrt             = _mm_mul_pd(r20,ewtabscale);
1129             ewitab           = _mm_cvttpd_epi32(ewrt);
1130             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1131             ewitab           = _mm_slli_epi32(ewitab,2);
1132             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1133             ewtabD           = _mm_setzero_pd();
1134             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1135             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1136             ewtabFn          = _mm_setzero_pd();
1137             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1138             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1139             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1140             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1141             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1142
1143             /* Update potential sum for this i atom from the interaction with this j atom. */
1144             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1145             velecsum         = _mm_add_pd(velecsum,velec);
1146
1147             fscal            = felec;
1148
1149             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = _mm_mul_pd(fscal,dx20);
1153             ty               = _mm_mul_pd(fscal,dy20);
1154             tz               = _mm_mul_pd(fscal,dz20);
1155
1156             /* Update vectorial force */
1157             fix2             = _mm_add_pd(fix2,tx);
1158             fiy2             = _mm_add_pd(fiy2,ty);
1159             fiz2             = _mm_add_pd(fiz2,tz);
1160
1161             fjx0             = _mm_add_pd(fjx0,tx);
1162             fjy0             = _mm_add_pd(fjy0,ty);
1163             fjz0             = _mm_add_pd(fjz0,tz);
1164
1165             /**************************
1166              * CALCULATE INTERACTIONS *
1167              **************************/
1168
1169             r21              = _mm_mul_pd(rsq21,rinv21);
1170
1171             /* EWALD ELECTROSTATICS */
1172
1173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174             ewrt             = _mm_mul_pd(r21,ewtabscale);
1175             ewitab           = _mm_cvttpd_epi32(ewrt);
1176             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1177             ewitab           = _mm_slli_epi32(ewitab,2);
1178             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1179             ewtabD           = _mm_setzero_pd();
1180             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1181             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1182             ewtabFn          = _mm_setzero_pd();
1183             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1184             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1185             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1186             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1187             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1188
1189             /* Update potential sum for this i atom from the interaction with this j atom. */
1190             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1191             velecsum         = _mm_add_pd(velecsum,velec);
1192
1193             fscal            = felec;
1194
1195             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1196
1197             /* Calculate temporary vectorial force */
1198             tx               = _mm_mul_pd(fscal,dx21);
1199             ty               = _mm_mul_pd(fscal,dy21);
1200             tz               = _mm_mul_pd(fscal,dz21);
1201
1202             /* Update vectorial force */
1203             fix2             = _mm_add_pd(fix2,tx);
1204             fiy2             = _mm_add_pd(fiy2,ty);
1205             fiz2             = _mm_add_pd(fiz2,tz);
1206
1207             fjx1             = _mm_add_pd(fjx1,tx);
1208             fjy1             = _mm_add_pd(fjy1,ty);
1209             fjz1             = _mm_add_pd(fjz1,tz);
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             r22              = _mm_mul_pd(rsq22,rinv22);
1216
1217             /* EWALD ELECTROSTATICS */
1218
1219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1220             ewrt             = _mm_mul_pd(r22,ewtabscale);
1221             ewitab           = _mm_cvttpd_epi32(ewrt);
1222             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1223             ewitab           = _mm_slli_epi32(ewitab,2);
1224             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1225             ewtabD           = _mm_setzero_pd();
1226             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1227             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1228             ewtabFn          = _mm_setzero_pd();
1229             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1230             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1231             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1232             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1233             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1234
1235             /* Update potential sum for this i atom from the interaction with this j atom. */
1236             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1237             velecsum         = _mm_add_pd(velecsum,velec);
1238
1239             fscal            = felec;
1240
1241             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm_mul_pd(fscal,dx22);
1245             ty               = _mm_mul_pd(fscal,dy22);
1246             tz               = _mm_mul_pd(fscal,dz22);
1247
1248             /* Update vectorial force */
1249             fix2             = _mm_add_pd(fix2,tx);
1250             fiy2             = _mm_add_pd(fiy2,ty);
1251             fiz2             = _mm_add_pd(fiz2,tz);
1252
1253             fjx2             = _mm_add_pd(fjx2,tx);
1254             fjy2             = _mm_add_pd(fjy2,ty);
1255             fjz2             = _mm_add_pd(fjz2,tz);
1256
1257             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1258
1259             /* Inner loop uses 403 flops */
1260         }
1261
1262         /* End of innermost loop */
1263
1264         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1265                                               f+i_coord_offset,fshift+i_shift_offset);
1266
1267         ggid                        = gid[iidx];
1268         /* Update potential energies */
1269         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1270         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1271
1272         /* Increment number of inner iterations */
1273         inneriter                  += j_index_end - j_index_start;
1274
1275         /* Outer loop uses 20 flops */
1276     }
1277
1278     /* Increment number of outer iterations */
1279     outeriter        += nri;
1280
1281     /* Update outer/inner flops */
1282
1283     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*403);
1284 }
1285 /*
1286  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse4_1_double
1287  * Electrostatics interaction: Ewald
1288  * VdW interaction:            CubicSplineTable
1289  * Geometry:                   Water3-Water3
1290  * Calculate force/pot:        Force
1291  */
1292 void
1293 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse4_1_double
1294                     (t_nblist                    * gmx_restrict       nlist,
1295                      rvec                        * gmx_restrict          xx,
1296                      rvec                        * gmx_restrict          ff,
1297                      t_forcerec                  * gmx_restrict          fr,
1298                      t_mdatoms                   * gmx_restrict     mdatoms,
1299                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1300                      t_nrnb                      * gmx_restrict        nrnb)
1301 {
1302     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1303      * just 0 for non-waters.
1304      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1305      * jnr indices corresponding to data put in the four positions in the SIMD register.
1306      */
1307     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1308     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1309     int              jnrA,jnrB;
1310     int              j_coord_offsetA,j_coord_offsetB;
1311     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1312     real             rcutoff_scalar;
1313     real             *shiftvec,*fshift,*x,*f;
1314     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1315     int              vdwioffset0;
1316     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1317     int              vdwioffset1;
1318     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1319     int              vdwioffset2;
1320     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1321     int              vdwjidx0A,vdwjidx0B;
1322     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1323     int              vdwjidx1A,vdwjidx1B;
1324     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1325     int              vdwjidx2A,vdwjidx2B;
1326     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1327     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1328     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1329     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1330     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1331     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1332     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1333     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1334     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1335     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1336     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1337     real             *charge;
1338     int              nvdwtype;
1339     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1340     int              *vdwtype;
1341     real             *vdwparam;
1342     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1343     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1344     __m128i          vfitab;
1345     __m128i          ifour       = _mm_set1_epi32(4);
1346     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1347     real             *vftab;
1348     __m128i          ewitab;
1349     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1350     real             *ewtab;
1351     __m128d          dummy_mask,cutoff_mask;
1352     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1353     __m128d          one     = _mm_set1_pd(1.0);
1354     __m128d          two     = _mm_set1_pd(2.0);
1355     x                = xx[0];
1356     f                = ff[0];
1357
1358     nri              = nlist->nri;
1359     iinr             = nlist->iinr;
1360     jindex           = nlist->jindex;
1361     jjnr             = nlist->jjnr;
1362     shiftidx         = nlist->shift;
1363     gid              = nlist->gid;
1364     shiftvec         = fr->shift_vec[0];
1365     fshift           = fr->fshift[0];
1366     facel            = _mm_set1_pd(fr->epsfac);
1367     charge           = mdatoms->chargeA;
1368     nvdwtype         = fr->ntype;
1369     vdwparam         = fr->nbfp;
1370     vdwtype          = mdatoms->typeA;
1371
1372     vftab            = kernel_data->table_vdw->data;
1373     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
1374
1375     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1376     ewtab            = fr->ic->tabq_coul_F;
1377     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1378     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1379
1380     /* Setup water-specific parameters */
1381     inr              = nlist->iinr[0];
1382     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1383     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1384     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1385     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1386
1387     jq0              = _mm_set1_pd(charge[inr+0]);
1388     jq1              = _mm_set1_pd(charge[inr+1]);
1389     jq2              = _mm_set1_pd(charge[inr+2]);
1390     vdwjidx0A        = 2*vdwtype[inr+0];
1391     qq00             = _mm_mul_pd(iq0,jq0);
1392     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1393     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1394     qq01             = _mm_mul_pd(iq0,jq1);
1395     qq02             = _mm_mul_pd(iq0,jq2);
1396     qq10             = _mm_mul_pd(iq1,jq0);
1397     qq11             = _mm_mul_pd(iq1,jq1);
1398     qq12             = _mm_mul_pd(iq1,jq2);
1399     qq20             = _mm_mul_pd(iq2,jq0);
1400     qq21             = _mm_mul_pd(iq2,jq1);
1401     qq22             = _mm_mul_pd(iq2,jq2);
1402
1403     /* Avoid stupid compiler warnings */
1404     jnrA = jnrB = 0;
1405     j_coord_offsetA = 0;
1406     j_coord_offsetB = 0;
1407
1408     outeriter        = 0;
1409     inneriter        = 0;
1410
1411     /* Start outer loop over neighborlists */
1412     for(iidx=0; iidx<nri; iidx++)
1413     {
1414         /* Load shift vector for this list */
1415         i_shift_offset   = DIM*shiftidx[iidx];
1416
1417         /* Load limits for loop over neighbors */
1418         j_index_start    = jindex[iidx];
1419         j_index_end      = jindex[iidx+1];
1420
1421         /* Get outer coordinate index */
1422         inr              = iinr[iidx];
1423         i_coord_offset   = DIM*inr;
1424
1425         /* Load i particle coords and add shift vector */
1426         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1427                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1428
1429         fix0             = _mm_setzero_pd();
1430         fiy0             = _mm_setzero_pd();
1431         fiz0             = _mm_setzero_pd();
1432         fix1             = _mm_setzero_pd();
1433         fiy1             = _mm_setzero_pd();
1434         fiz1             = _mm_setzero_pd();
1435         fix2             = _mm_setzero_pd();
1436         fiy2             = _mm_setzero_pd();
1437         fiz2             = _mm_setzero_pd();
1438
1439         /* Start inner kernel loop */
1440         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1441         {
1442
1443             /* Get j neighbor index, and coordinate index */
1444             jnrA             = jjnr[jidx];
1445             jnrB             = jjnr[jidx+1];
1446             j_coord_offsetA  = DIM*jnrA;
1447             j_coord_offsetB  = DIM*jnrB;
1448
1449             /* load j atom coordinates */
1450             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1451                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1452
1453             /* Calculate displacement vector */
1454             dx00             = _mm_sub_pd(ix0,jx0);
1455             dy00             = _mm_sub_pd(iy0,jy0);
1456             dz00             = _mm_sub_pd(iz0,jz0);
1457             dx01             = _mm_sub_pd(ix0,jx1);
1458             dy01             = _mm_sub_pd(iy0,jy1);
1459             dz01             = _mm_sub_pd(iz0,jz1);
1460             dx02             = _mm_sub_pd(ix0,jx2);
1461             dy02             = _mm_sub_pd(iy0,jy2);
1462             dz02             = _mm_sub_pd(iz0,jz2);
1463             dx10             = _mm_sub_pd(ix1,jx0);
1464             dy10             = _mm_sub_pd(iy1,jy0);
1465             dz10             = _mm_sub_pd(iz1,jz0);
1466             dx11             = _mm_sub_pd(ix1,jx1);
1467             dy11             = _mm_sub_pd(iy1,jy1);
1468             dz11             = _mm_sub_pd(iz1,jz1);
1469             dx12             = _mm_sub_pd(ix1,jx2);
1470             dy12             = _mm_sub_pd(iy1,jy2);
1471             dz12             = _mm_sub_pd(iz1,jz2);
1472             dx20             = _mm_sub_pd(ix2,jx0);
1473             dy20             = _mm_sub_pd(iy2,jy0);
1474             dz20             = _mm_sub_pd(iz2,jz0);
1475             dx21             = _mm_sub_pd(ix2,jx1);
1476             dy21             = _mm_sub_pd(iy2,jy1);
1477             dz21             = _mm_sub_pd(iz2,jz1);
1478             dx22             = _mm_sub_pd(ix2,jx2);
1479             dy22             = _mm_sub_pd(iy2,jy2);
1480             dz22             = _mm_sub_pd(iz2,jz2);
1481
1482             /* Calculate squared distance and things based on it */
1483             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1484             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1485             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1486             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1487             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1488             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1489             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1490             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1491             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1492
1493             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1494             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1495             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1496             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1497             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1498             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1499             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1500             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1501             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1502
1503             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1504             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1505             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1506             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1507             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1508             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1509             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1510             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1511             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1512
1513             fjx0             = _mm_setzero_pd();
1514             fjy0             = _mm_setzero_pd();
1515             fjz0             = _mm_setzero_pd();
1516             fjx1             = _mm_setzero_pd();
1517             fjy1             = _mm_setzero_pd();
1518             fjz1             = _mm_setzero_pd();
1519             fjx2             = _mm_setzero_pd();
1520             fjy2             = _mm_setzero_pd();
1521             fjz2             = _mm_setzero_pd();
1522
1523             /**************************
1524              * CALCULATE INTERACTIONS *
1525              **************************/
1526
1527             r00              = _mm_mul_pd(rsq00,rinv00);
1528
1529             /* Calculate table index by multiplying r with table scale and truncate to integer */
1530             rt               = _mm_mul_pd(r00,vftabscale);
1531             vfitab           = _mm_cvttpd_epi32(rt);
1532             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1533             vfitab           = _mm_slli_epi32(vfitab,3);
1534
1535             /* EWALD ELECTROSTATICS */
1536
1537             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1538             ewrt             = _mm_mul_pd(r00,ewtabscale);
1539             ewitab           = _mm_cvttpd_epi32(ewrt);
1540             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1541             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1542                                          &ewtabF,&ewtabFn);
1543             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1544             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1545
1546             /* CUBIC SPLINE TABLE DISPERSION */
1547             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1548             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1549             GMX_MM_TRANSPOSE2_PD(Y,F);
1550             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1551             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1552             GMX_MM_TRANSPOSE2_PD(G,H);
1553             Heps             = _mm_mul_pd(vfeps,H);
1554             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1555             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1556             fvdw6            = _mm_mul_pd(c6_00,FF);
1557
1558             /* CUBIC SPLINE TABLE REPULSION */
1559             vfitab           = _mm_add_epi32(vfitab,ifour);
1560             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1561             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1562             GMX_MM_TRANSPOSE2_PD(Y,F);
1563             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1564             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1565             GMX_MM_TRANSPOSE2_PD(G,H);
1566             Heps             = _mm_mul_pd(vfeps,H);
1567             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1568             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1569             fvdw12           = _mm_mul_pd(c12_00,FF);
1570             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1571
1572             fscal            = _mm_add_pd(felec,fvdw);
1573
1574             /* Calculate temporary vectorial force */
1575             tx               = _mm_mul_pd(fscal,dx00);
1576             ty               = _mm_mul_pd(fscal,dy00);
1577             tz               = _mm_mul_pd(fscal,dz00);
1578
1579             /* Update vectorial force */
1580             fix0             = _mm_add_pd(fix0,tx);
1581             fiy0             = _mm_add_pd(fiy0,ty);
1582             fiz0             = _mm_add_pd(fiz0,tz);
1583
1584             fjx0             = _mm_add_pd(fjx0,tx);
1585             fjy0             = _mm_add_pd(fjy0,ty);
1586             fjz0             = _mm_add_pd(fjz0,tz);
1587
1588             /**************************
1589              * CALCULATE INTERACTIONS *
1590              **************************/
1591
1592             r01              = _mm_mul_pd(rsq01,rinv01);
1593
1594             /* EWALD ELECTROSTATICS */
1595
1596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1597             ewrt             = _mm_mul_pd(r01,ewtabscale);
1598             ewitab           = _mm_cvttpd_epi32(ewrt);
1599             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1600             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1601                                          &ewtabF,&ewtabFn);
1602             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1603             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1604
1605             fscal            = felec;
1606
1607             /* Calculate temporary vectorial force */
1608             tx               = _mm_mul_pd(fscal,dx01);
1609             ty               = _mm_mul_pd(fscal,dy01);
1610             tz               = _mm_mul_pd(fscal,dz01);
1611
1612             /* Update vectorial force */
1613             fix0             = _mm_add_pd(fix0,tx);
1614             fiy0             = _mm_add_pd(fiy0,ty);
1615             fiz0             = _mm_add_pd(fiz0,tz);
1616
1617             fjx1             = _mm_add_pd(fjx1,tx);
1618             fjy1             = _mm_add_pd(fjy1,ty);
1619             fjz1             = _mm_add_pd(fjz1,tz);
1620
1621             /**************************
1622              * CALCULATE INTERACTIONS *
1623              **************************/
1624
1625             r02              = _mm_mul_pd(rsq02,rinv02);
1626
1627             /* EWALD ELECTROSTATICS */
1628
1629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1630             ewrt             = _mm_mul_pd(r02,ewtabscale);
1631             ewitab           = _mm_cvttpd_epi32(ewrt);
1632             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1633             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1634                                          &ewtabF,&ewtabFn);
1635             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1636             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1637
1638             fscal            = felec;
1639
1640             /* Calculate temporary vectorial force */
1641             tx               = _mm_mul_pd(fscal,dx02);
1642             ty               = _mm_mul_pd(fscal,dy02);
1643             tz               = _mm_mul_pd(fscal,dz02);
1644
1645             /* Update vectorial force */
1646             fix0             = _mm_add_pd(fix0,tx);
1647             fiy0             = _mm_add_pd(fiy0,ty);
1648             fiz0             = _mm_add_pd(fiz0,tz);
1649
1650             fjx2             = _mm_add_pd(fjx2,tx);
1651             fjy2             = _mm_add_pd(fjy2,ty);
1652             fjz2             = _mm_add_pd(fjz2,tz);
1653
1654             /**************************
1655              * CALCULATE INTERACTIONS *
1656              **************************/
1657
1658             r10              = _mm_mul_pd(rsq10,rinv10);
1659
1660             /* EWALD ELECTROSTATICS */
1661
1662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1663             ewrt             = _mm_mul_pd(r10,ewtabscale);
1664             ewitab           = _mm_cvttpd_epi32(ewrt);
1665             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1666             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1667                                          &ewtabF,&ewtabFn);
1668             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1669             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1670
1671             fscal            = felec;
1672
1673             /* Calculate temporary vectorial force */
1674             tx               = _mm_mul_pd(fscal,dx10);
1675             ty               = _mm_mul_pd(fscal,dy10);
1676             tz               = _mm_mul_pd(fscal,dz10);
1677
1678             /* Update vectorial force */
1679             fix1             = _mm_add_pd(fix1,tx);
1680             fiy1             = _mm_add_pd(fiy1,ty);
1681             fiz1             = _mm_add_pd(fiz1,tz);
1682
1683             fjx0             = _mm_add_pd(fjx0,tx);
1684             fjy0             = _mm_add_pd(fjy0,ty);
1685             fjz0             = _mm_add_pd(fjz0,tz);
1686
1687             /**************************
1688              * CALCULATE INTERACTIONS *
1689              **************************/
1690
1691             r11              = _mm_mul_pd(rsq11,rinv11);
1692
1693             /* EWALD ELECTROSTATICS */
1694
1695             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1696             ewrt             = _mm_mul_pd(r11,ewtabscale);
1697             ewitab           = _mm_cvttpd_epi32(ewrt);
1698             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1699             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1700                                          &ewtabF,&ewtabFn);
1701             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1702             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1703
1704             fscal            = felec;
1705
1706             /* Calculate temporary vectorial force */
1707             tx               = _mm_mul_pd(fscal,dx11);
1708             ty               = _mm_mul_pd(fscal,dy11);
1709             tz               = _mm_mul_pd(fscal,dz11);
1710
1711             /* Update vectorial force */
1712             fix1             = _mm_add_pd(fix1,tx);
1713             fiy1             = _mm_add_pd(fiy1,ty);
1714             fiz1             = _mm_add_pd(fiz1,tz);
1715
1716             fjx1             = _mm_add_pd(fjx1,tx);
1717             fjy1             = _mm_add_pd(fjy1,ty);
1718             fjz1             = _mm_add_pd(fjz1,tz);
1719
1720             /**************************
1721              * CALCULATE INTERACTIONS *
1722              **************************/
1723
1724             r12              = _mm_mul_pd(rsq12,rinv12);
1725
1726             /* EWALD ELECTROSTATICS */
1727
1728             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1729             ewrt             = _mm_mul_pd(r12,ewtabscale);
1730             ewitab           = _mm_cvttpd_epi32(ewrt);
1731             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1732             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1733                                          &ewtabF,&ewtabFn);
1734             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1735             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1736
1737             fscal            = felec;
1738
1739             /* Calculate temporary vectorial force */
1740             tx               = _mm_mul_pd(fscal,dx12);
1741             ty               = _mm_mul_pd(fscal,dy12);
1742             tz               = _mm_mul_pd(fscal,dz12);
1743
1744             /* Update vectorial force */
1745             fix1             = _mm_add_pd(fix1,tx);
1746             fiy1             = _mm_add_pd(fiy1,ty);
1747             fiz1             = _mm_add_pd(fiz1,tz);
1748
1749             fjx2             = _mm_add_pd(fjx2,tx);
1750             fjy2             = _mm_add_pd(fjy2,ty);
1751             fjz2             = _mm_add_pd(fjz2,tz);
1752
1753             /**************************
1754              * CALCULATE INTERACTIONS *
1755              **************************/
1756
1757             r20              = _mm_mul_pd(rsq20,rinv20);
1758
1759             /* EWALD ELECTROSTATICS */
1760
1761             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1762             ewrt             = _mm_mul_pd(r20,ewtabscale);
1763             ewitab           = _mm_cvttpd_epi32(ewrt);
1764             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1765             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1766                                          &ewtabF,&ewtabFn);
1767             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1768             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1769
1770             fscal            = felec;
1771
1772             /* Calculate temporary vectorial force */
1773             tx               = _mm_mul_pd(fscal,dx20);
1774             ty               = _mm_mul_pd(fscal,dy20);
1775             tz               = _mm_mul_pd(fscal,dz20);
1776
1777             /* Update vectorial force */
1778             fix2             = _mm_add_pd(fix2,tx);
1779             fiy2             = _mm_add_pd(fiy2,ty);
1780             fiz2             = _mm_add_pd(fiz2,tz);
1781
1782             fjx0             = _mm_add_pd(fjx0,tx);
1783             fjy0             = _mm_add_pd(fjy0,ty);
1784             fjz0             = _mm_add_pd(fjz0,tz);
1785
1786             /**************************
1787              * CALCULATE INTERACTIONS *
1788              **************************/
1789
1790             r21              = _mm_mul_pd(rsq21,rinv21);
1791
1792             /* EWALD ELECTROSTATICS */
1793
1794             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1795             ewrt             = _mm_mul_pd(r21,ewtabscale);
1796             ewitab           = _mm_cvttpd_epi32(ewrt);
1797             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1798             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1799                                          &ewtabF,&ewtabFn);
1800             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1801             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1802
1803             fscal            = felec;
1804
1805             /* Calculate temporary vectorial force */
1806             tx               = _mm_mul_pd(fscal,dx21);
1807             ty               = _mm_mul_pd(fscal,dy21);
1808             tz               = _mm_mul_pd(fscal,dz21);
1809
1810             /* Update vectorial force */
1811             fix2             = _mm_add_pd(fix2,tx);
1812             fiy2             = _mm_add_pd(fiy2,ty);
1813             fiz2             = _mm_add_pd(fiz2,tz);
1814
1815             fjx1             = _mm_add_pd(fjx1,tx);
1816             fjy1             = _mm_add_pd(fjy1,ty);
1817             fjz1             = _mm_add_pd(fjz1,tz);
1818
1819             /**************************
1820              * CALCULATE INTERACTIONS *
1821              **************************/
1822
1823             r22              = _mm_mul_pd(rsq22,rinv22);
1824
1825             /* EWALD ELECTROSTATICS */
1826
1827             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1828             ewrt             = _mm_mul_pd(r22,ewtabscale);
1829             ewitab           = _mm_cvttpd_epi32(ewrt);
1830             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1831             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1832                                          &ewtabF,&ewtabFn);
1833             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1834             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1835
1836             fscal            = felec;
1837
1838             /* Calculate temporary vectorial force */
1839             tx               = _mm_mul_pd(fscal,dx22);
1840             ty               = _mm_mul_pd(fscal,dy22);
1841             tz               = _mm_mul_pd(fscal,dz22);
1842
1843             /* Update vectorial force */
1844             fix2             = _mm_add_pd(fix2,tx);
1845             fiy2             = _mm_add_pd(fiy2,ty);
1846             fiz2             = _mm_add_pd(fiz2,tz);
1847
1848             fjx2             = _mm_add_pd(fjx2,tx);
1849             fjy2             = _mm_add_pd(fjy2,ty);
1850             fjz2             = _mm_add_pd(fjz2,tz);
1851
1852             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1853
1854             /* Inner loop uses 350 flops */
1855         }
1856
1857         if(jidx<j_index_end)
1858         {
1859
1860             jnrA             = jjnr[jidx];
1861             j_coord_offsetA  = DIM*jnrA;
1862
1863             /* load j atom coordinates */
1864             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1865                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1866
1867             /* Calculate displacement vector */
1868             dx00             = _mm_sub_pd(ix0,jx0);
1869             dy00             = _mm_sub_pd(iy0,jy0);
1870             dz00             = _mm_sub_pd(iz0,jz0);
1871             dx01             = _mm_sub_pd(ix0,jx1);
1872             dy01             = _mm_sub_pd(iy0,jy1);
1873             dz01             = _mm_sub_pd(iz0,jz1);
1874             dx02             = _mm_sub_pd(ix0,jx2);
1875             dy02             = _mm_sub_pd(iy0,jy2);
1876             dz02             = _mm_sub_pd(iz0,jz2);
1877             dx10             = _mm_sub_pd(ix1,jx0);
1878             dy10             = _mm_sub_pd(iy1,jy0);
1879             dz10             = _mm_sub_pd(iz1,jz0);
1880             dx11             = _mm_sub_pd(ix1,jx1);
1881             dy11             = _mm_sub_pd(iy1,jy1);
1882             dz11             = _mm_sub_pd(iz1,jz1);
1883             dx12             = _mm_sub_pd(ix1,jx2);
1884             dy12             = _mm_sub_pd(iy1,jy2);
1885             dz12             = _mm_sub_pd(iz1,jz2);
1886             dx20             = _mm_sub_pd(ix2,jx0);
1887             dy20             = _mm_sub_pd(iy2,jy0);
1888             dz20             = _mm_sub_pd(iz2,jz0);
1889             dx21             = _mm_sub_pd(ix2,jx1);
1890             dy21             = _mm_sub_pd(iy2,jy1);
1891             dz21             = _mm_sub_pd(iz2,jz1);
1892             dx22             = _mm_sub_pd(ix2,jx2);
1893             dy22             = _mm_sub_pd(iy2,jy2);
1894             dz22             = _mm_sub_pd(iz2,jz2);
1895
1896             /* Calculate squared distance and things based on it */
1897             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1898             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1899             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1900             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1901             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1902             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1903             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1904             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1905             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1906
1907             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1908             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1909             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1910             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1911             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1912             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1913             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1914             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1915             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1916
1917             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1918             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1919             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1920             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1921             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1922             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1923             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1924             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1925             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1926
1927             fjx0             = _mm_setzero_pd();
1928             fjy0             = _mm_setzero_pd();
1929             fjz0             = _mm_setzero_pd();
1930             fjx1             = _mm_setzero_pd();
1931             fjy1             = _mm_setzero_pd();
1932             fjz1             = _mm_setzero_pd();
1933             fjx2             = _mm_setzero_pd();
1934             fjy2             = _mm_setzero_pd();
1935             fjz2             = _mm_setzero_pd();
1936
1937             /**************************
1938              * CALCULATE INTERACTIONS *
1939              **************************/
1940
1941             r00              = _mm_mul_pd(rsq00,rinv00);
1942
1943             /* Calculate table index by multiplying r with table scale and truncate to integer */
1944             rt               = _mm_mul_pd(r00,vftabscale);
1945             vfitab           = _mm_cvttpd_epi32(rt);
1946             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1947             vfitab           = _mm_slli_epi32(vfitab,3);
1948
1949             /* EWALD ELECTROSTATICS */
1950
1951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1952             ewrt             = _mm_mul_pd(r00,ewtabscale);
1953             ewitab           = _mm_cvttpd_epi32(ewrt);
1954             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1955             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1956             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1957             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1958
1959             /* CUBIC SPLINE TABLE DISPERSION */
1960             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1961             F                = _mm_setzero_pd();
1962             GMX_MM_TRANSPOSE2_PD(Y,F);
1963             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1964             H                = _mm_setzero_pd();
1965             GMX_MM_TRANSPOSE2_PD(G,H);
1966             Heps             = _mm_mul_pd(vfeps,H);
1967             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1968             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1969             fvdw6            = _mm_mul_pd(c6_00,FF);
1970
1971             /* CUBIC SPLINE TABLE REPULSION */
1972             vfitab           = _mm_add_epi32(vfitab,ifour);
1973             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1974             F                = _mm_setzero_pd();
1975             GMX_MM_TRANSPOSE2_PD(Y,F);
1976             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1977             H                = _mm_setzero_pd();
1978             GMX_MM_TRANSPOSE2_PD(G,H);
1979             Heps             = _mm_mul_pd(vfeps,H);
1980             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1981             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1982             fvdw12           = _mm_mul_pd(c12_00,FF);
1983             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1984
1985             fscal            = _mm_add_pd(felec,fvdw);
1986
1987             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1988
1989             /* Calculate temporary vectorial force */
1990             tx               = _mm_mul_pd(fscal,dx00);
1991             ty               = _mm_mul_pd(fscal,dy00);
1992             tz               = _mm_mul_pd(fscal,dz00);
1993
1994             /* Update vectorial force */
1995             fix0             = _mm_add_pd(fix0,tx);
1996             fiy0             = _mm_add_pd(fiy0,ty);
1997             fiz0             = _mm_add_pd(fiz0,tz);
1998
1999             fjx0             = _mm_add_pd(fjx0,tx);
2000             fjy0             = _mm_add_pd(fjy0,ty);
2001             fjz0             = _mm_add_pd(fjz0,tz);
2002
2003             /**************************
2004              * CALCULATE INTERACTIONS *
2005              **************************/
2006
2007             r01              = _mm_mul_pd(rsq01,rinv01);
2008
2009             /* EWALD ELECTROSTATICS */
2010
2011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2012             ewrt             = _mm_mul_pd(r01,ewtabscale);
2013             ewitab           = _mm_cvttpd_epi32(ewrt);
2014             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2015             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2016             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2017             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2018
2019             fscal            = felec;
2020
2021             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2022
2023             /* Calculate temporary vectorial force */
2024             tx               = _mm_mul_pd(fscal,dx01);
2025             ty               = _mm_mul_pd(fscal,dy01);
2026             tz               = _mm_mul_pd(fscal,dz01);
2027
2028             /* Update vectorial force */
2029             fix0             = _mm_add_pd(fix0,tx);
2030             fiy0             = _mm_add_pd(fiy0,ty);
2031             fiz0             = _mm_add_pd(fiz0,tz);
2032
2033             fjx1             = _mm_add_pd(fjx1,tx);
2034             fjy1             = _mm_add_pd(fjy1,ty);
2035             fjz1             = _mm_add_pd(fjz1,tz);
2036
2037             /**************************
2038              * CALCULATE INTERACTIONS *
2039              **************************/
2040
2041             r02              = _mm_mul_pd(rsq02,rinv02);
2042
2043             /* EWALD ELECTROSTATICS */
2044
2045             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2046             ewrt             = _mm_mul_pd(r02,ewtabscale);
2047             ewitab           = _mm_cvttpd_epi32(ewrt);
2048             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2049             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2050             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2051             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2052
2053             fscal            = felec;
2054
2055             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2056
2057             /* Calculate temporary vectorial force */
2058             tx               = _mm_mul_pd(fscal,dx02);
2059             ty               = _mm_mul_pd(fscal,dy02);
2060             tz               = _mm_mul_pd(fscal,dz02);
2061
2062             /* Update vectorial force */
2063             fix0             = _mm_add_pd(fix0,tx);
2064             fiy0             = _mm_add_pd(fiy0,ty);
2065             fiz0             = _mm_add_pd(fiz0,tz);
2066
2067             fjx2             = _mm_add_pd(fjx2,tx);
2068             fjy2             = _mm_add_pd(fjy2,ty);
2069             fjz2             = _mm_add_pd(fjz2,tz);
2070
2071             /**************************
2072              * CALCULATE INTERACTIONS *
2073              **************************/
2074
2075             r10              = _mm_mul_pd(rsq10,rinv10);
2076
2077             /* EWALD ELECTROSTATICS */
2078
2079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2080             ewrt             = _mm_mul_pd(r10,ewtabscale);
2081             ewitab           = _mm_cvttpd_epi32(ewrt);
2082             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2083             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2084             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2085             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2086
2087             fscal            = felec;
2088
2089             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2090
2091             /* Calculate temporary vectorial force */
2092             tx               = _mm_mul_pd(fscal,dx10);
2093             ty               = _mm_mul_pd(fscal,dy10);
2094             tz               = _mm_mul_pd(fscal,dz10);
2095
2096             /* Update vectorial force */
2097             fix1             = _mm_add_pd(fix1,tx);
2098             fiy1             = _mm_add_pd(fiy1,ty);
2099             fiz1             = _mm_add_pd(fiz1,tz);
2100
2101             fjx0             = _mm_add_pd(fjx0,tx);
2102             fjy0             = _mm_add_pd(fjy0,ty);
2103             fjz0             = _mm_add_pd(fjz0,tz);
2104
2105             /**************************
2106              * CALCULATE INTERACTIONS *
2107              **************************/
2108
2109             r11              = _mm_mul_pd(rsq11,rinv11);
2110
2111             /* EWALD ELECTROSTATICS */
2112
2113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2114             ewrt             = _mm_mul_pd(r11,ewtabscale);
2115             ewitab           = _mm_cvttpd_epi32(ewrt);
2116             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2117             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2118             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2119             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2120
2121             fscal            = felec;
2122
2123             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2124
2125             /* Calculate temporary vectorial force */
2126             tx               = _mm_mul_pd(fscal,dx11);
2127             ty               = _mm_mul_pd(fscal,dy11);
2128             tz               = _mm_mul_pd(fscal,dz11);
2129
2130             /* Update vectorial force */
2131             fix1             = _mm_add_pd(fix1,tx);
2132             fiy1             = _mm_add_pd(fiy1,ty);
2133             fiz1             = _mm_add_pd(fiz1,tz);
2134
2135             fjx1             = _mm_add_pd(fjx1,tx);
2136             fjy1             = _mm_add_pd(fjy1,ty);
2137             fjz1             = _mm_add_pd(fjz1,tz);
2138
2139             /**************************
2140              * CALCULATE INTERACTIONS *
2141              **************************/
2142
2143             r12              = _mm_mul_pd(rsq12,rinv12);
2144
2145             /* EWALD ELECTROSTATICS */
2146
2147             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2148             ewrt             = _mm_mul_pd(r12,ewtabscale);
2149             ewitab           = _mm_cvttpd_epi32(ewrt);
2150             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2151             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2152             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2153             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2154
2155             fscal            = felec;
2156
2157             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2158
2159             /* Calculate temporary vectorial force */
2160             tx               = _mm_mul_pd(fscal,dx12);
2161             ty               = _mm_mul_pd(fscal,dy12);
2162             tz               = _mm_mul_pd(fscal,dz12);
2163
2164             /* Update vectorial force */
2165             fix1             = _mm_add_pd(fix1,tx);
2166             fiy1             = _mm_add_pd(fiy1,ty);
2167             fiz1             = _mm_add_pd(fiz1,tz);
2168
2169             fjx2             = _mm_add_pd(fjx2,tx);
2170             fjy2             = _mm_add_pd(fjy2,ty);
2171             fjz2             = _mm_add_pd(fjz2,tz);
2172
2173             /**************************
2174              * CALCULATE INTERACTIONS *
2175              **************************/
2176
2177             r20              = _mm_mul_pd(rsq20,rinv20);
2178
2179             /* EWALD ELECTROSTATICS */
2180
2181             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2182             ewrt             = _mm_mul_pd(r20,ewtabscale);
2183             ewitab           = _mm_cvttpd_epi32(ewrt);
2184             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2185             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2186             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2187             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2188
2189             fscal            = felec;
2190
2191             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2192
2193             /* Calculate temporary vectorial force */
2194             tx               = _mm_mul_pd(fscal,dx20);
2195             ty               = _mm_mul_pd(fscal,dy20);
2196             tz               = _mm_mul_pd(fscal,dz20);
2197
2198             /* Update vectorial force */
2199             fix2             = _mm_add_pd(fix2,tx);
2200             fiy2             = _mm_add_pd(fiy2,ty);
2201             fiz2             = _mm_add_pd(fiz2,tz);
2202
2203             fjx0             = _mm_add_pd(fjx0,tx);
2204             fjy0             = _mm_add_pd(fjy0,ty);
2205             fjz0             = _mm_add_pd(fjz0,tz);
2206
2207             /**************************
2208              * CALCULATE INTERACTIONS *
2209              **************************/
2210
2211             r21              = _mm_mul_pd(rsq21,rinv21);
2212
2213             /* EWALD ELECTROSTATICS */
2214
2215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2216             ewrt             = _mm_mul_pd(r21,ewtabscale);
2217             ewitab           = _mm_cvttpd_epi32(ewrt);
2218             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2219             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2220             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2221             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2222
2223             fscal            = felec;
2224
2225             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2226
2227             /* Calculate temporary vectorial force */
2228             tx               = _mm_mul_pd(fscal,dx21);
2229             ty               = _mm_mul_pd(fscal,dy21);
2230             tz               = _mm_mul_pd(fscal,dz21);
2231
2232             /* Update vectorial force */
2233             fix2             = _mm_add_pd(fix2,tx);
2234             fiy2             = _mm_add_pd(fiy2,ty);
2235             fiz2             = _mm_add_pd(fiz2,tz);
2236
2237             fjx1             = _mm_add_pd(fjx1,tx);
2238             fjy1             = _mm_add_pd(fjy1,ty);
2239             fjz1             = _mm_add_pd(fjz1,tz);
2240
2241             /**************************
2242              * CALCULATE INTERACTIONS *
2243              **************************/
2244
2245             r22              = _mm_mul_pd(rsq22,rinv22);
2246
2247             /* EWALD ELECTROSTATICS */
2248
2249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2250             ewrt             = _mm_mul_pd(r22,ewtabscale);
2251             ewitab           = _mm_cvttpd_epi32(ewrt);
2252             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2253             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2254             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2255             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2256
2257             fscal            = felec;
2258
2259             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2260
2261             /* Calculate temporary vectorial force */
2262             tx               = _mm_mul_pd(fscal,dx22);
2263             ty               = _mm_mul_pd(fscal,dy22);
2264             tz               = _mm_mul_pd(fscal,dz22);
2265
2266             /* Update vectorial force */
2267             fix2             = _mm_add_pd(fix2,tx);
2268             fiy2             = _mm_add_pd(fiy2,ty);
2269             fiz2             = _mm_add_pd(fiz2,tz);
2270
2271             fjx2             = _mm_add_pd(fjx2,tx);
2272             fjy2             = _mm_add_pd(fjy2,ty);
2273             fjz2             = _mm_add_pd(fjz2,tz);
2274
2275             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2276
2277             /* Inner loop uses 350 flops */
2278         }
2279
2280         /* End of innermost loop */
2281
2282         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2283                                               f+i_coord_offset,fshift+i_shift_offset);
2284
2285         /* Increment number of inner iterations */
2286         inneriter                  += j_index_end - j_index_start;
2287
2288         /* Outer loop uses 18 flops */
2289     }
2290
2291     /* Increment number of outer iterations */
2292     outeriter        += nri;
2293
2294     /* Update outer/inner flops */
2295
2296     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*350);
2297 }