Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
140     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
141     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182         vvdwsum          = _mm_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_pd(ix0,jx0);
200             dy00             = _mm_sub_pd(iy0,jy0);
201             dz00             = _mm_sub_pd(iz0,jz0);
202             dx10             = _mm_sub_pd(ix1,jx0);
203             dy10             = _mm_sub_pd(iy1,jy0);
204             dz10             = _mm_sub_pd(iz1,jz0);
205             dx20             = _mm_sub_pd(ix2,jx0);
206             dy20             = _mm_sub_pd(iy2,jy0);
207             dz20             = _mm_sub_pd(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217
218             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r00              = _mm_mul_pd(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm_mul_pd(iq0,jq0);
239             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
240                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
241
242             /* Calculate table index by multiplying r with table scale and truncate to integer */
243             rt               = _mm_mul_pd(r00,vftabscale);
244             vfitab           = _mm_cvttpd_epi32(rt);
245             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
246             vfitab           = _mm_slli_epi32(vfitab,3);
247
248             /* EWALD ELECTROSTATICS */
249
250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
251             ewrt             = _mm_mul_pd(r00,ewtabscale);
252             ewitab           = _mm_cvttpd_epi32(ewrt);
253             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
254             ewitab           = _mm_slli_epi32(ewitab,2);
255             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
256             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
257             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
258             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
259             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
260             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
261             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
262             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
263             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
264             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
265
266             /* CUBIC SPLINE TABLE DISPERSION */
267             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             GMX_MM_TRANSPOSE2_PD(Y,F);
270             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
271             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
272             GMX_MM_TRANSPOSE2_PD(G,H);
273             Heps             = _mm_mul_pd(vfeps,H);
274             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
275             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
276             vvdw6            = _mm_mul_pd(c6_00,VV);
277             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
278             fvdw6            = _mm_mul_pd(c6_00,FF);
279
280             /* CUBIC SPLINE TABLE REPULSION */
281             vfitab           = _mm_add_epi32(vfitab,ifour);
282             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
283             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
284             GMX_MM_TRANSPOSE2_PD(Y,F);
285             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
286             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
287             GMX_MM_TRANSPOSE2_PD(G,H);
288             Heps             = _mm_mul_pd(vfeps,H);
289             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
290             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
291             vvdw12           = _mm_mul_pd(c12_00,VV);
292             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
293             fvdw12           = _mm_mul_pd(c12_00,FF);
294             vvdw             = _mm_add_pd(vvdw12,vvdw6);
295             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_pd(velecsum,velec);
299             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
300
301             fscal            = _mm_add_pd(felec,fvdw);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_pd(fscal,dx00);
305             ty               = _mm_mul_pd(fscal,dy00);
306             tz               = _mm_mul_pd(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm_add_pd(fix0,tx);
310             fiy0             = _mm_add_pd(fiy0,ty);
311             fiz0             = _mm_add_pd(fiz0,tz);
312
313             fjx0             = _mm_add_pd(fjx0,tx);
314             fjy0             = _mm_add_pd(fjy0,ty);
315             fjz0             = _mm_add_pd(fjz0,tz);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_pd(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_pd(iq1,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _mm_mul_pd(r10,ewtabscale);
330             ewitab           = _mm_cvttpd_epi32(ewrt);
331             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
332             ewitab           = _mm_slli_epi32(ewitab,2);
333             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
334             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
335             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
336             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
337             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
338             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
339             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
340             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
341             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
342             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx10);
351             ty               = _mm_mul_pd(fscal,dy10);
352             tz               = _mm_mul_pd(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm_add_pd(fix1,tx);
356             fiy1             = _mm_add_pd(fiy1,ty);
357             fiz1             = _mm_add_pd(fiz1,tz);
358
359             fjx0             = _mm_add_pd(fjx0,tx);
360             fjy0             = _mm_add_pd(fjy0,ty);
361             fjz0             = _mm_add_pd(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm_mul_pd(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_pd(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm_mul_pd(r20,ewtabscale);
376             ewitab           = _mm_cvttpd_epi32(ewrt);
377             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
381             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
382             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
383             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
384             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
385             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
386             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
387             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
388             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_pd(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_pd(fscal,dx20);
397             ty               = _mm_mul_pd(fscal,dy20);
398             tz               = _mm_mul_pd(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm_add_pd(fix2,tx);
402             fiy2             = _mm_add_pd(fiy2,ty);
403             fiz2             = _mm_add_pd(fiz2,tz);
404
405             fjx0             = _mm_add_pd(fjx0,tx);
406             fjy0             = _mm_add_pd(fjy0,ty);
407             fjz0             = _mm_add_pd(fjz0,tz);
408
409             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
410
411             /* Inner loop uses 160 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             jnrA             = jjnr[jidx];
418             j_coord_offsetA  = DIM*jnrA;
419
420             /* load j atom coordinates */
421             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
422                                               &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm_sub_pd(ix0,jx0);
426             dy00             = _mm_sub_pd(iy0,jy0);
427             dz00             = _mm_sub_pd(iz0,jz0);
428             dx10             = _mm_sub_pd(ix1,jx0);
429             dy10             = _mm_sub_pd(iy1,jy0);
430             dz10             = _mm_sub_pd(iz1,jz0);
431             dx20             = _mm_sub_pd(ix2,jx0);
432             dy20             = _mm_sub_pd(iy2,jy0);
433             dz20             = _mm_sub_pd(iz2,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
437             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
438             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
439
440             rinv00           = gmx_mm_invsqrt_pd(rsq00);
441             rinv10           = gmx_mm_invsqrt_pd(rsq10);
442             rinv20           = gmx_mm_invsqrt_pd(rsq20);
443
444             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
445             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
446             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
447
448             /* Load parameters for j particles */
449             jq0              = _mm_load_sd(charge+jnrA+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451
452             fjx0             = _mm_setzero_pd();
453             fjy0             = _mm_setzero_pd();
454             fjz0             = _mm_setzero_pd();
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             r00              = _mm_mul_pd(rsq00,rinv00);
461
462             /* Compute parameters for interactions between i and j atoms */
463             qq00             = _mm_mul_pd(iq0,jq0);
464             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
465
466             /* Calculate table index by multiplying r with table scale and truncate to integer */
467             rt               = _mm_mul_pd(r00,vftabscale);
468             vfitab           = _mm_cvttpd_epi32(rt);
469             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
470             vfitab           = _mm_slli_epi32(vfitab,3);
471
472             /* EWALD ELECTROSTATICS */
473
474             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
475             ewrt             = _mm_mul_pd(r00,ewtabscale);
476             ewitab           = _mm_cvttpd_epi32(ewrt);
477             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
478             ewitab           = _mm_slli_epi32(ewitab,2);
479             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
480             ewtabD           = _mm_setzero_pd();
481             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
482             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
483             ewtabFn          = _mm_setzero_pd();
484             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
485             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
486             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
487             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
488             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
489
490             /* CUBIC SPLINE TABLE DISPERSION */
491             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
492             F                = _mm_setzero_pd();
493             GMX_MM_TRANSPOSE2_PD(Y,F);
494             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
495             H                = _mm_setzero_pd();
496             GMX_MM_TRANSPOSE2_PD(G,H);
497             Heps             = _mm_mul_pd(vfeps,H);
498             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
499             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
500             vvdw6            = _mm_mul_pd(c6_00,VV);
501             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
502             fvdw6            = _mm_mul_pd(c6_00,FF);
503
504             /* CUBIC SPLINE TABLE REPULSION */
505             vfitab           = _mm_add_epi32(vfitab,ifour);
506             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
507             F                = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(Y,F);
509             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
510             H                = _mm_setzero_pd();
511             GMX_MM_TRANSPOSE2_PD(G,H);
512             Heps             = _mm_mul_pd(vfeps,H);
513             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
514             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
515             vvdw12           = _mm_mul_pd(c12_00,VV);
516             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
517             fvdw12           = _mm_mul_pd(c12_00,FF);
518             vvdw             = _mm_add_pd(vvdw12,vvdw6);
519             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
525             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
526
527             fscal            = _mm_add_pd(felec,fvdw);
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx00);
533             ty               = _mm_mul_pd(fscal,dy00);
534             tz               = _mm_mul_pd(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_pd(fix0,tx);
538             fiy0             = _mm_add_pd(fiy0,ty);
539             fiz0             = _mm_add_pd(fiz0,tz);
540
541             fjx0             = _mm_add_pd(fjx0,tx);
542             fjy0             = _mm_add_pd(fjy0,ty);
543             fjz0             = _mm_add_pd(fjz0,tz);
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r10              = _mm_mul_pd(rsq10,rinv10);
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq10             = _mm_mul_pd(iq1,jq0);
553
554             /* EWALD ELECTROSTATICS */
555
556             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
557             ewrt             = _mm_mul_pd(r10,ewtabscale);
558             ewitab           = _mm_cvttpd_epi32(ewrt);
559             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
560             ewitab           = _mm_slli_epi32(ewitab,2);
561             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
562             ewtabD           = _mm_setzero_pd();
563             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
564             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
565             ewtabFn          = _mm_setzero_pd();
566             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
567             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
568             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
569             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
570             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
574             velecsum         = _mm_add_pd(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_pd(fscal,dx10);
582             ty               = _mm_mul_pd(fscal,dy10);
583             tz               = _mm_mul_pd(fscal,dz10);
584
585             /* Update vectorial force */
586             fix1             = _mm_add_pd(fix1,tx);
587             fiy1             = _mm_add_pd(fiy1,ty);
588             fiz1             = _mm_add_pd(fiz1,tz);
589
590             fjx0             = _mm_add_pd(fjx0,tx);
591             fjy0             = _mm_add_pd(fjy0,ty);
592             fjz0             = _mm_add_pd(fjz0,tz);
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r20              = _mm_mul_pd(rsq20,rinv20);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq20             = _mm_mul_pd(iq2,jq0);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm_mul_pd(r20,ewtabscale);
607             ewitab           = _mm_cvttpd_epi32(ewrt);
608             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
609             ewitab           = _mm_slli_epi32(ewitab,2);
610             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
611             ewtabD           = _mm_setzero_pd();
612             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
613             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
614             ewtabFn          = _mm_setzero_pd();
615             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
616             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
617             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
618             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
619             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
623             velecsum         = _mm_add_pd(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm_mul_pd(fscal,dx20);
631             ty               = _mm_mul_pd(fscal,dy20);
632             tz               = _mm_mul_pd(fscal,dz20);
633
634             /* Update vectorial force */
635             fix2             = _mm_add_pd(fix2,tx);
636             fiy2             = _mm_add_pd(fiy2,ty);
637             fiz2             = _mm_add_pd(fiz2,tz);
638
639             fjx0             = _mm_add_pd(fjx0,tx);
640             fjy0             = _mm_add_pd(fjy0,ty);
641             fjz0             = _mm_add_pd(fjz0,tz);
642
643             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
644
645             /* Inner loop uses 160 flops */
646         }
647
648         /* End of innermost loop */
649
650         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
651                                               f+i_coord_offset,fshift+i_shift_offset);
652
653         ggid                        = gid[iidx];
654         /* Update potential energies */
655         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
656         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
657
658         /* Increment number of inner iterations */
659         inneriter                  += j_index_end - j_index_start;
660
661         /* Outer loop uses 20 flops */
662     }
663
664     /* Increment number of outer iterations */
665     outeriter        += nri;
666
667     /* Update outer/inner flops */
668
669     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
670 }
671 /*
672  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_double
673  * Electrostatics interaction: Ewald
674  * VdW interaction:            CubicSplineTable
675  * Geometry:                   Water3-Particle
676  * Calculate force/pot:        Force
677  */
678 void
679 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_double
680                     (t_nblist                    * gmx_restrict       nlist,
681                      rvec                        * gmx_restrict          xx,
682                      rvec                        * gmx_restrict          ff,
683                      t_forcerec                  * gmx_restrict          fr,
684                      t_mdatoms                   * gmx_restrict     mdatoms,
685                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
686                      t_nrnb                      * gmx_restrict        nrnb)
687 {
688     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
689      * just 0 for non-waters.
690      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
691      * jnr indices corresponding to data put in the four positions in the SIMD register.
692      */
693     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
694     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
695     int              jnrA,jnrB;
696     int              j_coord_offsetA,j_coord_offsetB;
697     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
698     real             rcutoff_scalar;
699     real             *shiftvec,*fshift,*x,*f;
700     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
701     int              vdwioffset0;
702     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
703     int              vdwioffset1;
704     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
705     int              vdwioffset2;
706     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
707     int              vdwjidx0A,vdwjidx0B;
708     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
709     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
710     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
711     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
712     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
713     real             *charge;
714     int              nvdwtype;
715     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
716     int              *vdwtype;
717     real             *vdwparam;
718     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
719     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
720     __m128i          vfitab;
721     __m128i          ifour       = _mm_set1_epi32(4);
722     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
723     real             *vftab;
724     __m128i          ewitab;
725     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
726     real             *ewtab;
727     __m128d          dummy_mask,cutoff_mask;
728     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
729     __m128d          one     = _mm_set1_pd(1.0);
730     __m128d          two     = _mm_set1_pd(2.0);
731     x                = xx[0];
732     f                = ff[0];
733
734     nri              = nlist->nri;
735     iinr             = nlist->iinr;
736     jindex           = nlist->jindex;
737     jjnr             = nlist->jjnr;
738     shiftidx         = nlist->shift;
739     gid              = nlist->gid;
740     shiftvec         = fr->shift_vec[0];
741     fshift           = fr->fshift[0];
742     facel            = _mm_set1_pd(fr->epsfac);
743     charge           = mdatoms->chargeA;
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     vftab            = kernel_data->table_vdw->data;
749     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
750
751     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
752     ewtab            = fr->ic->tabq_coul_F;
753     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
754     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
755
756     /* Setup water-specific parameters */
757     inr              = nlist->iinr[0];
758     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
759     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
760     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
761     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
762
763     /* Avoid stupid compiler warnings */
764     jnrA = jnrB = 0;
765     j_coord_offsetA = 0;
766     j_coord_offsetB = 0;
767
768     outeriter        = 0;
769     inneriter        = 0;
770
771     /* Start outer loop over neighborlists */
772     for(iidx=0; iidx<nri; iidx++)
773     {
774         /* Load shift vector for this list */
775         i_shift_offset   = DIM*shiftidx[iidx];
776
777         /* Load limits for loop over neighbors */
778         j_index_start    = jindex[iidx];
779         j_index_end      = jindex[iidx+1];
780
781         /* Get outer coordinate index */
782         inr              = iinr[iidx];
783         i_coord_offset   = DIM*inr;
784
785         /* Load i particle coords and add shift vector */
786         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
787                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
788
789         fix0             = _mm_setzero_pd();
790         fiy0             = _mm_setzero_pd();
791         fiz0             = _mm_setzero_pd();
792         fix1             = _mm_setzero_pd();
793         fiy1             = _mm_setzero_pd();
794         fiz1             = _mm_setzero_pd();
795         fix2             = _mm_setzero_pd();
796         fiy2             = _mm_setzero_pd();
797         fiz2             = _mm_setzero_pd();
798
799         /* Start inner kernel loop */
800         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
801         {
802
803             /* Get j neighbor index, and coordinate index */
804             jnrA             = jjnr[jidx];
805             jnrB             = jjnr[jidx+1];
806             j_coord_offsetA  = DIM*jnrA;
807             j_coord_offsetB  = DIM*jnrB;
808
809             /* load j atom coordinates */
810             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
811                                               &jx0,&jy0,&jz0);
812
813             /* Calculate displacement vector */
814             dx00             = _mm_sub_pd(ix0,jx0);
815             dy00             = _mm_sub_pd(iy0,jy0);
816             dz00             = _mm_sub_pd(iz0,jz0);
817             dx10             = _mm_sub_pd(ix1,jx0);
818             dy10             = _mm_sub_pd(iy1,jy0);
819             dz10             = _mm_sub_pd(iz1,jz0);
820             dx20             = _mm_sub_pd(ix2,jx0);
821             dy20             = _mm_sub_pd(iy2,jy0);
822             dz20             = _mm_sub_pd(iz2,jz0);
823
824             /* Calculate squared distance and things based on it */
825             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
826             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
827             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
828
829             rinv00           = gmx_mm_invsqrt_pd(rsq00);
830             rinv10           = gmx_mm_invsqrt_pd(rsq10);
831             rinv20           = gmx_mm_invsqrt_pd(rsq20);
832
833             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
834             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
835             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
836
837             /* Load parameters for j particles */
838             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
839             vdwjidx0A        = 2*vdwtype[jnrA+0];
840             vdwjidx0B        = 2*vdwtype[jnrB+0];
841
842             fjx0             = _mm_setzero_pd();
843             fjy0             = _mm_setzero_pd();
844             fjz0             = _mm_setzero_pd();
845
846             /**************************
847              * CALCULATE INTERACTIONS *
848              **************************/
849
850             r00              = _mm_mul_pd(rsq00,rinv00);
851
852             /* Compute parameters for interactions between i and j atoms */
853             qq00             = _mm_mul_pd(iq0,jq0);
854             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
855                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
856
857             /* Calculate table index by multiplying r with table scale and truncate to integer */
858             rt               = _mm_mul_pd(r00,vftabscale);
859             vfitab           = _mm_cvttpd_epi32(rt);
860             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
861             vfitab           = _mm_slli_epi32(vfitab,3);
862
863             /* EWALD ELECTROSTATICS */
864
865             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
866             ewrt             = _mm_mul_pd(r00,ewtabscale);
867             ewitab           = _mm_cvttpd_epi32(ewrt);
868             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
869             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
870                                          &ewtabF,&ewtabFn);
871             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
872             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
873
874             /* CUBIC SPLINE TABLE DISPERSION */
875             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
876             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
877             GMX_MM_TRANSPOSE2_PD(Y,F);
878             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
879             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
880             GMX_MM_TRANSPOSE2_PD(G,H);
881             Heps             = _mm_mul_pd(vfeps,H);
882             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
883             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
884             fvdw6            = _mm_mul_pd(c6_00,FF);
885
886             /* CUBIC SPLINE TABLE REPULSION */
887             vfitab           = _mm_add_epi32(vfitab,ifour);
888             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
889             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
890             GMX_MM_TRANSPOSE2_PD(Y,F);
891             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
892             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
893             GMX_MM_TRANSPOSE2_PD(G,H);
894             Heps             = _mm_mul_pd(vfeps,H);
895             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
896             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
897             fvdw12           = _mm_mul_pd(c12_00,FF);
898             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
899
900             fscal            = _mm_add_pd(felec,fvdw);
901
902             /* Calculate temporary vectorial force */
903             tx               = _mm_mul_pd(fscal,dx00);
904             ty               = _mm_mul_pd(fscal,dy00);
905             tz               = _mm_mul_pd(fscal,dz00);
906
907             /* Update vectorial force */
908             fix0             = _mm_add_pd(fix0,tx);
909             fiy0             = _mm_add_pd(fiy0,ty);
910             fiz0             = _mm_add_pd(fiz0,tz);
911
912             fjx0             = _mm_add_pd(fjx0,tx);
913             fjy0             = _mm_add_pd(fjy0,ty);
914             fjz0             = _mm_add_pd(fjz0,tz);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r10              = _mm_mul_pd(rsq10,rinv10);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq10             = _mm_mul_pd(iq1,jq0);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
928             ewrt             = _mm_mul_pd(r10,ewtabscale);
929             ewitab           = _mm_cvttpd_epi32(ewrt);
930             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
931             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
932                                          &ewtabF,&ewtabFn);
933             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
934             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
935
936             fscal            = felec;
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_pd(fscal,dx10);
940             ty               = _mm_mul_pd(fscal,dy10);
941             tz               = _mm_mul_pd(fscal,dz10);
942
943             /* Update vectorial force */
944             fix1             = _mm_add_pd(fix1,tx);
945             fiy1             = _mm_add_pd(fiy1,ty);
946             fiz1             = _mm_add_pd(fiz1,tz);
947
948             fjx0             = _mm_add_pd(fjx0,tx);
949             fjy0             = _mm_add_pd(fjy0,ty);
950             fjz0             = _mm_add_pd(fjz0,tz);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             r20              = _mm_mul_pd(rsq20,rinv20);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq20             = _mm_mul_pd(iq2,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_pd(r20,ewtabscale);
965             ewitab           = _mm_cvttpd_epi32(ewrt);
966             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
967             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
968                                          &ewtabF,&ewtabFn);
969             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
970             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
971
972             fscal            = felec;
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_pd(fscal,dx20);
976             ty               = _mm_mul_pd(fscal,dy20);
977             tz               = _mm_mul_pd(fscal,dz20);
978
979             /* Update vectorial force */
980             fix2             = _mm_add_pd(fix2,tx);
981             fiy2             = _mm_add_pd(fiy2,ty);
982             fiz2             = _mm_add_pd(fiz2,tz);
983
984             fjx0             = _mm_add_pd(fjx0,tx);
985             fjy0             = _mm_add_pd(fjy0,ty);
986             fjz0             = _mm_add_pd(fjz0,tz);
987
988             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
989
990             /* Inner loop uses 137 flops */
991         }
992
993         if(jidx<j_index_end)
994         {
995
996             jnrA             = jjnr[jidx];
997             j_coord_offsetA  = DIM*jnrA;
998
999             /* load j atom coordinates */
1000             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1001                                               &jx0,&jy0,&jz0);
1002
1003             /* Calculate displacement vector */
1004             dx00             = _mm_sub_pd(ix0,jx0);
1005             dy00             = _mm_sub_pd(iy0,jy0);
1006             dz00             = _mm_sub_pd(iz0,jz0);
1007             dx10             = _mm_sub_pd(ix1,jx0);
1008             dy10             = _mm_sub_pd(iy1,jy0);
1009             dz10             = _mm_sub_pd(iz1,jz0);
1010             dx20             = _mm_sub_pd(ix2,jx0);
1011             dy20             = _mm_sub_pd(iy2,jy0);
1012             dz20             = _mm_sub_pd(iz2,jz0);
1013
1014             /* Calculate squared distance and things based on it */
1015             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1016             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1017             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1018
1019             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1020             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1021             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1022
1023             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1024             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1025             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1026
1027             /* Load parameters for j particles */
1028             jq0              = _mm_load_sd(charge+jnrA+0);
1029             vdwjidx0A        = 2*vdwtype[jnrA+0];
1030
1031             fjx0             = _mm_setzero_pd();
1032             fjy0             = _mm_setzero_pd();
1033             fjz0             = _mm_setzero_pd();
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r00              = _mm_mul_pd(rsq00,rinv00);
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq00             = _mm_mul_pd(iq0,jq0);
1043             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1044
1045             /* Calculate table index by multiplying r with table scale and truncate to integer */
1046             rt               = _mm_mul_pd(r00,vftabscale);
1047             vfitab           = _mm_cvttpd_epi32(rt);
1048             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1049             vfitab           = _mm_slli_epi32(vfitab,3);
1050
1051             /* EWALD ELECTROSTATICS */
1052
1053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054             ewrt             = _mm_mul_pd(r00,ewtabscale);
1055             ewitab           = _mm_cvttpd_epi32(ewrt);
1056             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1057             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1058             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1059             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1060
1061             /* CUBIC SPLINE TABLE DISPERSION */
1062             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1063             F                = _mm_setzero_pd();
1064             GMX_MM_TRANSPOSE2_PD(Y,F);
1065             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1066             H                = _mm_setzero_pd();
1067             GMX_MM_TRANSPOSE2_PD(G,H);
1068             Heps             = _mm_mul_pd(vfeps,H);
1069             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1070             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1071             fvdw6            = _mm_mul_pd(c6_00,FF);
1072
1073             /* CUBIC SPLINE TABLE REPULSION */
1074             vfitab           = _mm_add_epi32(vfitab,ifour);
1075             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1076             F                = _mm_setzero_pd();
1077             GMX_MM_TRANSPOSE2_PD(Y,F);
1078             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1079             H                = _mm_setzero_pd();
1080             GMX_MM_TRANSPOSE2_PD(G,H);
1081             Heps             = _mm_mul_pd(vfeps,H);
1082             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1083             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1084             fvdw12           = _mm_mul_pd(c12_00,FF);
1085             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1086
1087             fscal            = _mm_add_pd(felec,fvdw);
1088
1089             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1090
1091             /* Calculate temporary vectorial force */
1092             tx               = _mm_mul_pd(fscal,dx00);
1093             ty               = _mm_mul_pd(fscal,dy00);
1094             tz               = _mm_mul_pd(fscal,dz00);
1095
1096             /* Update vectorial force */
1097             fix0             = _mm_add_pd(fix0,tx);
1098             fiy0             = _mm_add_pd(fiy0,ty);
1099             fiz0             = _mm_add_pd(fiz0,tz);
1100
1101             fjx0             = _mm_add_pd(fjx0,tx);
1102             fjy0             = _mm_add_pd(fjy0,ty);
1103             fjz0             = _mm_add_pd(fjz0,tz);
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             r10              = _mm_mul_pd(rsq10,rinv10);
1110
1111             /* Compute parameters for interactions between i and j atoms */
1112             qq10             = _mm_mul_pd(iq1,jq0);
1113
1114             /* EWALD ELECTROSTATICS */
1115
1116             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1117             ewrt             = _mm_mul_pd(r10,ewtabscale);
1118             ewitab           = _mm_cvttpd_epi32(ewrt);
1119             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1120             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1121             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1122             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1123
1124             fscal            = felec;
1125
1126             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1127
1128             /* Calculate temporary vectorial force */
1129             tx               = _mm_mul_pd(fscal,dx10);
1130             ty               = _mm_mul_pd(fscal,dy10);
1131             tz               = _mm_mul_pd(fscal,dz10);
1132
1133             /* Update vectorial force */
1134             fix1             = _mm_add_pd(fix1,tx);
1135             fiy1             = _mm_add_pd(fiy1,ty);
1136             fiz1             = _mm_add_pd(fiz1,tz);
1137
1138             fjx0             = _mm_add_pd(fjx0,tx);
1139             fjy0             = _mm_add_pd(fjy0,ty);
1140             fjz0             = _mm_add_pd(fjz0,tz);
1141
1142             /**************************
1143              * CALCULATE INTERACTIONS *
1144              **************************/
1145
1146             r20              = _mm_mul_pd(rsq20,rinv20);
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq20             = _mm_mul_pd(iq2,jq0);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1154             ewrt             = _mm_mul_pd(r20,ewtabscale);
1155             ewitab           = _mm_cvttpd_epi32(ewrt);
1156             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1157             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1158             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1159             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_pd(fscal,dx20);
1167             ty               = _mm_mul_pd(fscal,dy20);
1168             tz               = _mm_mul_pd(fscal,dz20);
1169
1170             /* Update vectorial force */
1171             fix2             = _mm_add_pd(fix2,tx);
1172             fiy2             = _mm_add_pd(fiy2,ty);
1173             fiz2             = _mm_add_pd(fiz2,tz);
1174
1175             fjx0             = _mm_add_pd(fjx0,tx);
1176             fjy0             = _mm_add_pd(fjy0,ty);
1177             fjz0             = _mm_add_pd(fjz0,tz);
1178
1179             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1180
1181             /* Inner loop uses 137 flops */
1182         }
1183
1184         /* End of innermost loop */
1185
1186         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1187                                               f+i_coord_offset,fshift+i_shift_offset);
1188
1189         /* Increment number of inner iterations */
1190         inneriter                  += j_index_end - j_index_start;
1191
1192         /* Outer loop uses 18 flops */
1193     }
1194
1195     /* Increment number of outer iterations */
1196     outeriter        += nri;
1197
1198     /* Update outer/inner flops */
1199
1200     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1201 }