Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128i          ewitab;
104     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
138     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
139     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171         fix1             = _mm_setzero_pd();
172         fiy1             = _mm_setzero_pd();
173         fiz1             = _mm_setzero_pd();
174         fix2             = _mm_setzero_pd();
175         fiy2             = _mm_setzero_pd();
176         fiz2             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_pd(rsq00);
213             rinv10           = gmx_mm_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm_invsqrt_pd(rsq20);
215
216             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
217             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224
225             fjx0             = _mm_setzero_pd();
226             fjy0             = _mm_setzero_pd();
227             fjz0             = _mm_setzero_pd();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             r00              = _mm_mul_pd(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_pd(iq0,jq0);
237             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
239
240             /* Calculate table index by multiplying r with table scale and truncate to integer */
241             rt               = _mm_mul_pd(r00,vftabscale);
242             vfitab           = _mm_cvttpd_epi32(rt);
243             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
244             vfitab           = _mm_slli_epi32(vfitab,3);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _mm_mul_pd(r00,ewtabscale);
250             ewitab           = _mm_cvttpd_epi32(ewrt);
251             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
252             ewitab           = _mm_slli_epi32(ewitab,2);
253             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
254             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
255             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
256             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
257             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
259             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
260             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
261             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
262             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
263
264             /* CUBIC SPLINE TABLE DISPERSION */
265             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
266             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
267             GMX_MM_TRANSPOSE2_PD(Y,F);
268             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
269             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(G,H);
271             Heps             = _mm_mul_pd(vfeps,H);
272             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
273             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
274             vvdw6            = _mm_mul_pd(c6_00,VV);
275             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
276             fvdw6            = _mm_mul_pd(c6_00,FF);
277
278             /* CUBIC SPLINE TABLE REPULSION */
279             vfitab           = _mm_add_epi32(vfitab,ifour);
280             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             GMX_MM_TRANSPOSE2_PD(Y,F);
283             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
284             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
285             GMX_MM_TRANSPOSE2_PD(G,H);
286             Heps             = _mm_mul_pd(vfeps,H);
287             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
288             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
289             vvdw12           = _mm_mul_pd(c12_00,VV);
290             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
291             fvdw12           = _mm_mul_pd(c12_00,FF);
292             vvdw             = _mm_add_pd(vvdw12,vvdw6);
293             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_pd(velecsum,velec);
297             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
298
299             fscal            = _mm_add_pd(felec,fvdw);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm_mul_pd(fscal,dx00);
303             ty               = _mm_mul_pd(fscal,dy00);
304             tz               = _mm_mul_pd(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm_add_pd(fix0,tx);
308             fiy0             = _mm_add_pd(fiy0,ty);
309             fiz0             = _mm_add_pd(fiz0,tz);
310
311             fjx0             = _mm_add_pd(fjx0,tx);
312             fjy0             = _mm_add_pd(fjy0,ty);
313             fjz0             = _mm_add_pd(fjz0,tz);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r10              = _mm_mul_pd(rsq10,rinv10);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_pd(iq1,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_pd(r10,ewtabscale);
328             ewitab           = _mm_cvttpd_epi32(ewrt);
329             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
334             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
335             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
336             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
337             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
338             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
339             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
340             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velecsum         = _mm_add_pd(velecsum,velec);
344
345             fscal            = felec;
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_pd(fscal,dx10);
349             ty               = _mm_mul_pd(fscal,dy10);
350             tz               = _mm_mul_pd(fscal,dz10);
351
352             /* Update vectorial force */
353             fix1             = _mm_add_pd(fix1,tx);
354             fiy1             = _mm_add_pd(fiy1,ty);
355             fiz1             = _mm_add_pd(fiz1,tz);
356
357             fjx0             = _mm_add_pd(fjx0,tx);
358             fjy0             = _mm_add_pd(fjy0,ty);
359             fjz0             = _mm_add_pd(fjz0,tz);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             r20              = _mm_mul_pd(rsq20,rinv20);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq20             = _mm_mul_pd(iq2,jq0);
369
370             /* EWALD ELECTROSTATICS */
371
372             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
373             ewrt             = _mm_mul_pd(r20,ewtabscale);
374             ewitab           = _mm_cvttpd_epi32(ewrt);
375             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
376             ewitab           = _mm_slli_epi32(ewitab,2);
377             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
378             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
379             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
380             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
381             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
382             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
383             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
384             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
385             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
386             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm_mul_pd(fscal,dx20);
395             ty               = _mm_mul_pd(fscal,dy20);
396             tz               = _mm_mul_pd(fscal,dz20);
397
398             /* Update vectorial force */
399             fix2             = _mm_add_pd(fix2,tx);
400             fiy2             = _mm_add_pd(fiy2,ty);
401             fiz2             = _mm_add_pd(fiz2,tz);
402
403             fjx0             = _mm_add_pd(fjx0,tx);
404             fjy0             = _mm_add_pd(fjy0,ty);
405             fjz0             = _mm_add_pd(fjz0,tz);
406
407             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
408
409             /* Inner loop uses 160 flops */
410         }
411
412         if(jidx<j_index_end)
413         {
414
415             jnrA             = jjnr[jidx];
416             j_coord_offsetA  = DIM*jnrA;
417
418             /* load j atom coordinates */
419             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
420                                               &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm_sub_pd(ix0,jx0);
424             dy00             = _mm_sub_pd(iy0,jy0);
425             dz00             = _mm_sub_pd(iz0,jz0);
426             dx10             = _mm_sub_pd(ix1,jx0);
427             dy10             = _mm_sub_pd(iy1,jy0);
428             dz10             = _mm_sub_pd(iz1,jz0);
429             dx20             = _mm_sub_pd(ix2,jx0);
430             dy20             = _mm_sub_pd(iy2,jy0);
431             dz20             = _mm_sub_pd(iz2,jz0);
432
433             /* Calculate squared distance and things based on it */
434             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
435             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
436             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
437
438             rinv00           = gmx_mm_invsqrt_pd(rsq00);
439             rinv10           = gmx_mm_invsqrt_pd(rsq10);
440             rinv20           = gmx_mm_invsqrt_pd(rsq20);
441
442             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
443             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
444             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
445
446             /* Load parameters for j particles */
447             jq0              = _mm_load_sd(charge+jnrA+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449
450             fjx0             = _mm_setzero_pd();
451             fjy0             = _mm_setzero_pd();
452             fjz0             = _mm_setzero_pd();
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             r00              = _mm_mul_pd(rsq00,rinv00);
459
460             /* Compute parameters for interactions between i and j atoms */
461             qq00             = _mm_mul_pd(iq0,jq0);
462             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
463
464             /* Calculate table index by multiplying r with table scale and truncate to integer */
465             rt               = _mm_mul_pd(r00,vftabscale);
466             vfitab           = _mm_cvttpd_epi32(rt);
467             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
468             vfitab           = _mm_slli_epi32(vfitab,3);
469
470             /* EWALD ELECTROSTATICS */
471
472             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
473             ewrt             = _mm_mul_pd(r00,ewtabscale);
474             ewitab           = _mm_cvttpd_epi32(ewrt);
475             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
476             ewitab           = _mm_slli_epi32(ewitab,2);
477             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
478             ewtabD           = _mm_setzero_pd();
479             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
480             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
481             ewtabFn          = _mm_setzero_pd();
482             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
483             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
484             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
485             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
486             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
487
488             /* CUBIC SPLINE TABLE DISPERSION */
489             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
490             F                = _mm_setzero_pd();
491             GMX_MM_TRANSPOSE2_PD(Y,F);
492             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
493             H                = _mm_setzero_pd();
494             GMX_MM_TRANSPOSE2_PD(G,H);
495             Heps             = _mm_mul_pd(vfeps,H);
496             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
497             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
498             vvdw6            = _mm_mul_pd(c6_00,VV);
499             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
500             fvdw6            = _mm_mul_pd(c6_00,FF);
501
502             /* CUBIC SPLINE TABLE REPULSION */
503             vfitab           = _mm_add_epi32(vfitab,ifour);
504             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
505             F                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Heps             = _mm_mul_pd(vfeps,H);
511             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
512             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
513             vvdw12           = _mm_mul_pd(c12_00,VV);
514             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
515             fvdw12           = _mm_mul_pd(c12_00,FF);
516             vvdw             = _mm_add_pd(vvdw12,vvdw6);
517             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
523             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
524
525             fscal            = _mm_add_pd(felec,fvdw);
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx00);
531             ty               = _mm_mul_pd(fscal,dy00);
532             tz               = _mm_mul_pd(fscal,dz00);
533
534             /* Update vectorial force */
535             fix0             = _mm_add_pd(fix0,tx);
536             fiy0             = _mm_add_pd(fiy0,ty);
537             fiz0             = _mm_add_pd(fiz0,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r10              = _mm_mul_pd(rsq10,rinv10);
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq10             = _mm_mul_pd(iq1,jq0);
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = _mm_mul_pd(r10,ewtabscale);
556             ewitab           = _mm_cvttpd_epi32(ewrt);
557             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
558             ewitab           = _mm_slli_epi32(ewitab,2);
559             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
560             ewtabD           = _mm_setzero_pd();
561             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
562             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
563             ewtabFn          = _mm_setzero_pd();
564             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
565             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
566             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
567             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
568             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
572             velecsum         = _mm_add_pd(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_pd(fscal,dx10);
580             ty               = _mm_mul_pd(fscal,dy10);
581             tz               = _mm_mul_pd(fscal,dz10);
582
583             /* Update vectorial force */
584             fix1             = _mm_add_pd(fix1,tx);
585             fiy1             = _mm_add_pd(fiy1,ty);
586             fiz1             = _mm_add_pd(fiz1,tz);
587
588             fjx0             = _mm_add_pd(fjx0,tx);
589             fjy0             = _mm_add_pd(fjy0,ty);
590             fjz0             = _mm_add_pd(fjz0,tz);
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             r20              = _mm_mul_pd(rsq20,rinv20);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq20             = _mm_mul_pd(iq2,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r20,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
607             ewitab           = _mm_slli_epi32(ewitab,2);
608             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609             ewtabD           = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
611             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
612             ewtabFn          = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
614             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
615             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
616             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
617             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
621             velecsum         = _mm_add_pd(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm_mul_pd(fscal,dx20);
629             ty               = _mm_mul_pd(fscal,dy20);
630             tz               = _mm_mul_pd(fscal,dz20);
631
632             /* Update vectorial force */
633             fix2             = _mm_add_pd(fix2,tx);
634             fiy2             = _mm_add_pd(fiy2,ty);
635             fiz2             = _mm_add_pd(fiz2,tz);
636
637             fjx0             = _mm_add_pd(fjx0,tx);
638             fjy0             = _mm_add_pd(fjy0,ty);
639             fjz0             = _mm_add_pd(fjz0,tz);
640
641             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
642
643             /* Inner loop uses 160 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
649                                               f+i_coord_offset,fshift+i_shift_offset);
650
651         ggid                        = gid[iidx];
652         /* Update potential energies */
653         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
654         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 20 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
668 }
669 /*
670  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_double
671  * Electrostatics interaction: Ewald
672  * VdW interaction:            CubicSplineTable
673  * Geometry:                   Water3-Particle
674  * Calculate force/pot:        Force
675  */
676 void
677 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse4_1_double
678                     (t_nblist                    * gmx_restrict       nlist,
679                      rvec                        * gmx_restrict          xx,
680                      rvec                        * gmx_restrict          ff,
681                      t_forcerec                  * gmx_restrict          fr,
682                      t_mdatoms                   * gmx_restrict     mdatoms,
683                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
684                      t_nrnb                      * gmx_restrict        nrnb)
685 {
686     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
687      * just 0 for non-waters.
688      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
689      * jnr indices corresponding to data put in the four positions in the SIMD register.
690      */
691     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
692     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
693     int              jnrA,jnrB;
694     int              j_coord_offsetA,j_coord_offsetB;
695     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
696     real             rcutoff_scalar;
697     real             *shiftvec,*fshift,*x,*f;
698     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
699     int              vdwioffset0;
700     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
701     int              vdwioffset1;
702     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
703     int              vdwioffset2;
704     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
705     int              vdwjidx0A,vdwjidx0B;
706     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
707     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
708     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
709     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
710     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
711     real             *charge;
712     int              nvdwtype;
713     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
714     int              *vdwtype;
715     real             *vdwparam;
716     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
717     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
718     __m128i          vfitab;
719     __m128i          ifour       = _mm_set1_epi32(4);
720     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
721     real             *vftab;
722     __m128i          ewitab;
723     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
724     real             *ewtab;
725     __m128d          dummy_mask,cutoff_mask;
726     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
727     __m128d          one     = _mm_set1_pd(1.0);
728     __m128d          two     = _mm_set1_pd(2.0);
729     x                = xx[0];
730     f                = ff[0];
731
732     nri              = nlist->nri;
733     iinr             = nlist->iinr;
734     jindex           = nlist->jindex;
735     jjnr             = nlist->jjnr;
736     shiftidx         = nlist->shift;
737     gid              = nlist->gid;
738     shiftvec         = fr->shift_vec[0];
739     fshift           = fr->fshift[0];
740     facel            = _mm_set1_pd(fr->epsfac);
741     charge           = mdatoms->chargeA;
742     nvdwtype         = fr->ntype;
743     vdwparam         = fr->nbfp;
744     vdwtype          = mdatoms->typeA;
745
746     vftab            = kernel_data->table_vdw->data;
747     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
748
749     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
750     ewtab            = fr->ic->tabq_coul_F;
751     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
752     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
753
754     /* Setup water-specific parameters */
755     inr              = nlist->iinr[0];
756     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
757     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
758     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
759     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
760
761     /* Avoid stupid compiler warnings */
762     jnrA = jnrB = 0;
763     j_coord_offsetA = 0;
764     j_coord_offsetB = 0;
765
766     outeriter        = 0;
767     inneriter        = 0;
768
769     /* Start outer loop over neighborlists */
770     for(iidx=0; iidx<nri; iidx++)
771     {
772         /* Load shift vector for this list */
773         i_shift_offset   = DIM*shiftidx[iidx];
774
775         /* Load limits for loop over neighbors */
776         j_index_start    = jindex[iidx];
777         j_index_end      = jindex[iidx+1];
778
779         /* Get outer coordinate index */
780         inr              = iinr[iidx];
781         i_coord_offset   = DIM*inr;
782
783         /* Load i particle coords and add shift vector */
784         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
785                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
786
787         fix0             = _mm_setzero_pd();
788         fiy0             = _mm_setzero_pd();
789         fiz0             = _mm_setzero_pd();
790         fix1             = _mm_setzero_pd();
791         fiy1             = _mm_setzero_pd();
792         fiz1             = _mm_setzero_pd();
793         fix2             = _mm_setzero_pd();
794         fiy2             = _mm_setzero_pd();
795         fiz2             = _mm_setzero_pd();
796
797         /* Start inner kernel loop */
798         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
799         {
800
801             /* Get j neighbor index, and coordinate index */
802             jnrA             = jjnr[jidx];
803             jnrB             = jjnr[jidx+1];
804             j_coord_offsetA  = DIM*jnrA;
805             j_coord_offsetB  = DIM*jnrB;
806
807             /* load j atom coordinates */
808             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
809                                               &jx0,&jy0,&jz0);
810
811             /* Calculate displacement vector */
812             dx00             = _mm_sub_pd(ix0,jx0);
813             dy00             = _mm_sub_pd(iy0,jy0);
814             dz00             = _mm_sub_pd(iz0,jz0);
815             dx10             = _mm_sub_pd(ix1,jx0);
816             dy10             = _mm_sub_pd(iy1,jy0);
817             dz10             = _mm_sub_pd(iz1,jz0);
818             dx20             = _mm_sub_pd(ix2,jx0);
819             dy20             = _mm_sub_pd(iy2,jy0);
820             dz20             = _mm_sub_pd(iz2,jz0);
821
822             /* Calculate squared distance and things based on it */
823             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
824             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
825             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
826
827             rinv00           = gmx_mm_invsqrt_pd(rsq00);
828             rinv10           = gmx_mm_invsqrt_pd(rsq10);
829             rinv20           = gmx_mm_invsqrt_pd(rsq20);
830
831             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
832             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
833             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
834
835             /* Load parameters for j particles */
836             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
837             vdwjidx0A        = 2*vdwtype[jnrA+0];
838             vdwjidx0B        = 2*vdwtype[jnrB+0];
839
840             fjx0             = _mm_setzero_pd();
841             fjy0             = _mm_setzero_pd();
842             fjz0             = _mm_setzero_pd();
843
844             /**************************
845              * CALCULATE INTERACTIONS *
846              **************************/
847
848             r00              = _mm_mul_pd(rsq00,rinv00);
849
850             /* Compute parameters for interactions between i and j atoms */
851             qq00             = _mm_mul_pd(iq0,jq0);
852             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
853                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
854
855             /* Calculate table index by multiplying r with table scale and truncate to integer */
856             rt               = _mm_mul_pd(r00,vftabscale);
857             vfitab           = _mm_cvttpd_epi32(rt);
858             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
859             vfitab           = _mm_slli_epi32(vfitab,3);
860
861             /* EWALD ELECTROSTATICS */
862
863             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
864             ewrt             = _mm_mul_pd(r00,ewtabscale);
865             ewitab           = _mm_cvttpd_epi32(ewrt);
866             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
867             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
868                                          &ewtabF,&ewtabFn);
869             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
870             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
871
872             /* CUBIC SPLINE TABLE DISPERSION */
873             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
874             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
875             GMX_MM_TRANSPOSE2_PD(Y,F);
876             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
877             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
878             GMX_MM_TRANSPOSE2_PD(G,H);
879             Heps             = _mm_mul_pd(vfeps,H);
880             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
881             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
882             fvdw6            = _mm_mul_pd(c6_00,FF);
883
884             /* CUBIC SPLINE TABLE REPULSION */
885             vfitab           = _mm_add_epi32(vfitab,ifour);
886             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
887             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
888             GMX_MM_TRANSPOSE2_PD(Y,F);
889             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
890             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
891             GMX_MM_TRANSPOSE2_PD(G,H);
892             Heps             = _mm_mul_pd(vfeps,H);
893             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
894             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
895             fvdw12           = _mm_mul_pd(c12_00,FF);
896             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
897
898             fscal            = _mm_add_pd(felec,fvdw);
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_pd(fscal,dx00);
902             ty               = _mm_mul_pd(fscal,dy00);
903             tz               = _mm_mul_pd(fscal,dz00);
904
905             /* Update vectorial force */
906             fix0             = _mm_add_pd(fix0,tx);
907             fiy0             = _mm_add_pd(fiy0,ty);
908             fiz0             = _mm_add_pd(fiz0,tz);
909
910             fjx0             = _mm_add_pd(fjx0,tx);
911             fjy0             = _mm_add_pd(fjy0,ty);
912             fjz0             = _mm_add_pd(fjz0,tz);
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             r10              = _mm_mul_pd(rsq10,rinv10);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq10             = _mm_mul_pd(iq1,jq0);
922
923             /* EWALD ELECTROSTATICS */
924
925             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
926             ewrt             = _mm_mul_pd(r10,ewtabscale);
927             ewitab           = _mm_cvttpd_epi32(ewrt);
928             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
929             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
930                                          &ewtabF,&ewtabFn);
931             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
932             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
933
934             fscal            = felec;
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm_mul_pd(fscal,dx10);
938             ty               = _mm_mul_pd(fscal,dy10);
939             tz               = _mm_mul_pd(fscal,dz10);
940
941             /* Update vectorial force */
942             fix1             = _mm_add_pd(fix1,tx);
943             fiy1             = _mm_add_pd(fiy1,ty);
944             fiz1             = _mm_add_pd(fiz1,tz);
945
946             fjx0             = _mm_add_pd(fjx0,tx);
947             fjy0             = _mm_add_pd(fjy0,ty);
948             fjz0             = _mm_add_pd(fjz0,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r20              = _mm_mul_pd(rsq20,rinv20);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq20             = _mm_mul_pd(iq2,jq0);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_pd(r20,ewtabscale);
963             ewitab           = _mm_cvttpd_epi32(ewrt);
964             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
965             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
966                                          &ewtabF,&ewtabFn);
967             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
968             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
969
970             fscal            = felec;
971
972             /* Calculate temporary vectorial force */
973             tx               = _mm_mul_pd(fscal,dx20);
974             ty               = _mm_mul_pd(fscal,dy20);
975             tz               = _mm_mul_pd(fscal,dz20);
976
977             /* Update vectorial force */
978             fix2             = _mm_add_pd(fix2,tx);
979             fiy2             = _mm_add_pd(fiy2,ty);
980             fiz2             = _mm_add_pd(fiz2,tz);
981
982             fjx0             = _mm_add_pd(fjx0,tx);
983             fjy0             = _mm_add_pd(fjy0,ty);
984             fjz0             = _mm_add_pd(fjz0,tz);
985
986             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
987
988             /* Inner loop uses 137 flops */
989         }
990
991         if(jidx<j_index_end)
992         {
993
994             jnrA             = jjnr[jidx];
995             j_coord_offsetA  = DIM*jnrA;
996
997             /* load j atom coordinates */
998             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
999                                               &jx0,&jy0,&jz0);
1000
1001             /* Calculate displacement vector */
1002             dx00             = _mm_sub_pd(ix0,jx0);
1003             dy00             = _mm_sub_pd(iy0,jy0);
1004             dz00             = _mm_sub_pd(iz0,jz0);
1005             dx10             = _mm_sub_pd(ix1,jx0);
1006             dy10             = _mm_sub_pd(iy1,jy0);
1007             dz10             = _mm_sub_pd(iz1,jz0);
1008             dx20             = _mm_sub_pd(ix2,jx0);
1009             dy20             = _mm_sub_pd(iy2,jy0);
1010             dz20             = _mm_sub_pd(iz2,jz0);
1011
1012             /* Calculate squared distance and things based on it */
1013             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1014             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1015             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1016
1017             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1018             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1019             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1020
1021             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1022             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1023             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1024
1025             /* Load parameters for j particles */
1026             jq0              = _mm_load_sd(charge+jnrA+0);
1027             vdwjidx0A        = 2*vdwtype[jnrA+0];
1028
1029             fjx0             = _mm_setzero_pd();
1030             fjy0             = _mm_setzero_pd();
1031             fjz0             = _mm_setzero_pd();
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             r00              = _mm_mul_pd(rsq00,rinv00);
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             qq00             = _mm_mul_pd(iq0,jq0);
1041             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1042
1043             /* Calculate table index by multiplying r with table scale and truncate to integer */
1044             rt               = _mm_mul_pd(r00,vftabscale);
1045             vfitab           = _mm_cvttpd_epi32(rt);
1046             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1047             vfitab           = _mm_slli_epi32(vfitab,3);
1048
1049             /* EWALD ELECTROSTATICS */
1050
1051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1052             ewrt             = _mm_mul_pd(r00,ewtabscale);
1053             ewitab           = _mm_cvttpd_epi32(ewrt);
1054             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1055             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1056             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1057             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1058
1059             /* CUBIC SPLINE TABLE DISPERSION */
1060             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1061             F                = _mm_setzero_pd();
1062             GMX_MM_TRANSPOSE2_PD(Y,F);
1063             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1064             H                = _mm_setzero_pd();
1065             GMX_MM_TRANSPOSE2_PD(G,H);
1066             Heps             = _mm_mul_pd(vfeps,H);
1067             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1068             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1069             fvdw6            = _mm_mul_pd(c6_00,FF);
1070
1071             /* CUBIC SPLINE TABLE REPULSION */
1072             vfitab           = _mm_add_epi32(vfitab,ifour);
1073             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1074             F                = _mm_setzero_pd();
1075             GMX_MM_TRANSPOSE2_PD(Y,F);
1076             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1077             H                = _mm_setzero_pd();
1078             GMX_MM_TRANSPOSE2_PD(G,H);
1079             Heps             = _mm_mul_pd(vfeps,H);
1080             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1081             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1082             fvdw12           = _mm_mul_pd(c12_00,FF);
1083             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1084
1085             fscal            = _mm_add_pd(felec,fvdw);
1086
1087             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1088
1089             /* Calculate temporary vectorial force */
1090             tx               = _mm_mul_pd(fscal,dx00);
1091             ty               = _mm_mul_pd(fscal,dy00);
1092             tz               = _mm_mul_pd(fscal,dz00);
1093
1094             /* Update vectorial force */
1095             fix0             = _mm_add_pd(fix0,tx);
1096             fiy0             = _mm_add_pd(fiy0,ty);
1097             fiz0             = _mm_add_pd(fiz0,tz);
1098
1099             fjx0             = _mm_add_pd(fjx0,tx);
1100             fjy0             = _mm_add_pd(fjy0,ty);
1101             fjz0             = _mm_add_pd(fjz0,tz);
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             r10              = _mm_mul_pd(rsq10,rinv10);
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             qq10             = _mm_mul_pd(iq1,jq0);
1111
1112             /* EWALD ELECTROSTATICS */
1113
1114             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1115             ewrt             = _mm_mul_pd(r10,ewtabscale);
1116             ewitab           = _mm_cvttpd_epi32(ewrt);
1117             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1118             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1119             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1120             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1121
1122             fscal            = felec;
1123
1124             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm_mul_pd(fscal,dx10);
1128             ty               = _mm_mul_pd(fscal,dy10);
1129             tz               = _mm_mul_pd(fscal,dz10);
1130
1131             /* Update vectorial force */
1132             fix1             = _mm_add_pd(fix1,tx);
1133             fiy1             = _mm_add_pd(fiy1,ty);
1134             fiz1             = _mm_add_pd(fiz1,tz);
1135
1136             fjx0             = _mm_add_pd(fjx0,tx);
1137             fjy0             = _mm_add_pd(fjy0,ty);
1138             fjz0             = _mm_add_pd(fjz0,tz);
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r20              = _mm_mul_pd(rsq20,rinv20);
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq20             = _mm_mul_pd(iq2,jq0);
1148
1149             /* EWALD ELECTROSTATICS */
1150
1151             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1152             ewrt             = _mm_mul_pd(r20,ewtabscale);
1153             ewitab           = _mm_cvttpd_epi32(ewrt);
1154             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1155             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1156             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1157             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm_mul_pd(fscal,dx20);
1165             ty               = _mm_mul_pd(fscal,dy20);
1166             tz               = _mm_mul_pd(fscal,dz20);
1167
1168             /* Update vectorial force */
1169             fix2             = _mm_add_pd(fix2,tx);
1170             fiy2             = _mm_add_pd(fiy2,ty);
1171             fiz2             = _mm_add_pd(fiz2,tz);
1172
1173             fjx0             = _mm_add_pd(fjx0,tx);
1174             fjy0             = _mm_add_pd(fjy0,ty);
1175             fjz0             = _mm_add_pd(fjz0,tz);
1176
1177             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1178
1179             /* Inner loop uses 137 flops */
1180         }
1181
1182         /* End of innermost loop */
1183
1184         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1185                                               f+i_coord_offset,fshift+i_shift_offset);
1186
1187         /* Increment number of inner iterations */
1188         inneriter                  += j_index_end - j_index_start;
1189
1190         /* Outer loop uses 18 flops */
1191     }
1192
1193     /* Increment number of outer iterations */
1194     outeriter        += nri;
1195
1196     /* Update outer/inner flops */
1197
1198     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1199 }