Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m128i          ewitab;
97     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     real             *ewtab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
122
123     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156
157         /* Load parameters for i particles */
158         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_pd();
163         vvdwsum          = _mm_setzero_pd();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm_sub_pd(ix0,jx0);
181             dy00             = _mm_sub_pd(iy0,jy0);
182             dz00             = _mm_sub_pd(iz0,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
186
187             rinv00           = sse41_invsqrt_d(rsq00);
188
189             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
190
191             /* Load parameters for j particles */
192             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
193             vdwjidx0A        = 2*vdwtype[jnrA+0];
194             vdwjidx0B        = 2*vdwtype[jnrB+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             r00              = _mm_mul_pd(rsq00,rinv00);
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_pd(iq0,jq0);
204             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
206
207             /* Calculate table index by multiplying r with table scale and truncate to integer */
208             rt               = _mm_mul_pd(r00,vftabscale);
209             vfitab           = _mm_cvttpd_epi32(rt);
210             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
211             vfitab           = _mm_slli_epi32(vfitab,3);
212
213             /* EWALD ELECTROSTATICS */
214
215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
216             ewrt             = _mm_mul_pd(r00,ewtabscale);
217             ewitab           = _mm_cvttpd_epi32(ewrt);
218             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
219             ewitab           = _mm_slli_epi32(ewitab,2);
220             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
221             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
222             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
223             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
224             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
225             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
226             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
227             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
228             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
229             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
230
231             /* CUBIC SPLINE TABLE DISPERSION */
232             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
233             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
234             GMX_MM_TRANSPOSE2_PD(Y,F);
235             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
236             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(G,H);
238             Heps             = _mm_mul_pd(vfeps,H);
239             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
240             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
241             vvdw6            = _mm_mul_pd(c6_00,VV);
242             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
243             fvdw6            = _mm_mul_pd(c6_00,FF);
244
245             /* CUBIC SPLINE TABLE REPULSION */
246             vfitab           = _mm_add_epi32(vfitab,ifour);
247             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
248             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
249             GMX_MM_TRANSPOSE2_PD(Y,F);
250             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
251             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
252             GMX_MM_TRANSPOSE2_PD(G,H);
253             Heps             = _mm_mul_pd(vfeps,H);
254             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
255             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
256             vvdw12           = _mm_mul_pd(c12_00,VV);
257             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
258             fvdw12           = _mm_mul_pd(c12_00,FF);
259             vvdw             = _mm_add_pd(vvdw12,vvdw6);
260             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm_add_pd(velecsum,velec);
264             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
265
266             fscal            = _mm_add_pd(felec,fvdw);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm_mul_pd(fscal,dx00);
270             ty               = _mm_mul_pd(fscal,dy00);
271             tz               = _mm_mul_pd(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm_add_pd(fix0,tx);
275             fiy0             = _mm_add_pd(fiy0,ty);
276             fiz0             = _mm_add_pd(fiz0,tz);
277
278             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
279
280             /* Inner loop uses 75 flops */
281         }
282
283         if(jidx<j_index_end)
284         {
285
286             jnrA             = jjnr[jidx];
287             j_coord_offsetA  = DIM*jnrA;
288
289             /* load j atom coordinates */
290             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
291                                               &jx0,&jy0,&jz0);
292
293             /* Calculate displacement vector */
294             dx00             = _mm_sub_pd(ix0,jx0);
295             dy00             = _mm_sub_pd(iy0,jy0);
296             dz00             = _mm_sub_pd(iz0,jz0);
297
298             /* Calculate squared distance and things based on it */
299             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
300
301             rinv00           = sse41_invsqrt_d(rsq00);
302
303             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
304
305             /* Load parameters for j particles */
306             jq0              = _mm_load_sd(charge+jnrA+0);
307             vdwjidx0A        = 2*vdwtype[jnrA+0];
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             r00              = _mm_mul_pd(rsq00,rinv00);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq00             = _mm_mul_pd(iq0,jq0);
317             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
318
319             /* Calculate table index by multiplying r with table scale and truncate to integer */
320             rt               = _mm_mul_pd(r00,vftabscale);
321             vfitab           = _mm_cvttpd_epi32(rt);
322             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
323             vfitab           = _mm_slli_epi32(vfitab,3);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_pd(r00,ewtabscale);
329             ewitab           = _mm_cvttpd_epi32(ewrt);
330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_setzero_pd();
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
339             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
340             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
342
343             /* CUBIC SPLINE TABLE DISPERSION */
344             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
345             F                = _mm_setzero_pd();
346             GMX_MM_TRANSPOSE2_PD(Y,F);
347             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
348             H                = _mm_setzero_pd();
349             GMX_MM_TRANSPOSE2_PD(G,H);
350             Heps             = _mm_mul_pd(vfeps,H);
351             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
352             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
353             vvdw6            = _mm_mul_pd(c6_00,VV);
354             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
355             fvdw6            = _mm_mul_pd(c6_00,FF);
356
357             /* CUBIC SPLINE TABLE REPULSION */
358             vfitab           = _mm_add_epi32(vfitab,ifour);
359             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
360             F                = _mm_setzero_pd();
361             GMX_MM_TRANSPOSE2_PD(Y,F);
362             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
363             H                = _mm_setzero_pd();
364             GMX_MM_TRANSPOSE2_PD(G,H);
365             Heps             = _mm_mul_pd(vfeps,H);
366             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
367             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
368             vvdw12           = _mm_mul_pd(c12_00,VV);
369             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
370             fvdw12           = _mm_mul_pd(c12_00,FF);
371             vvdw             = _mm_add_pd(vvdw12,vvdw6);
372             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
376             velecsum         = _mm_add_pd(velecsum,velec);
377             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
378             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
379
380             fscal            = _mm_add_pd(felec,fvdw);
381
382             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm_mul_pd(fscal,dx00);
386             ty               = _mm_mul_pd(fscal,dy00);
387             tz               = _mm_mul_pd(fscal,dz00);
388
389             /* Update vectorial force */
390             fix0             = _mm_add_pd(fix0,tx);
391             fiy0             = _mm_add_pd(fiy0,ty);
392             fiz0             = _mm_add_pd(fiz0,tz);
393
394             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
395
396             /* Inner loop uses 75 flops */
397         }
398
399         /* End of innermost loop */
400
401         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
402                                               f+i_coord_offset,fshift+i_shift_offset);
403
404         ggid                        = gid[iidx];
405         /* Update potential energies */
406         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
407         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
408
409         /* Increment number of inner iterations */
410         inneriter                  += j_index_end - j_index_start;
411
412         /* Outer loop uses 9 flops */
413     }
414
415     /* Increment number of outer iterations */
416     outeriter        += nri;
417
418     /* Update outer/inner flops */
419
420     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
421 }
422 /*
423  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
424  * Electrostatics interaction: Ewald
425  * VdW interaction:            CubicSplineTable
426  * Geometry:                   Particle-Particle
427  * Calculate force/pot:        Force
428  */
429 void
430 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
431                     (t_nblist                    * gmx_restrict       nlist,
432                      rvec                        * gmx_restrict          xx,
433                      rvec                        * gmx_restrict          ff,
434                      struct t_forcerec           * gmx_restrict          fr,
435                      t_mdatoms                   * gmx_restrict     mdatoms,
436                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437                      t_nrnb                      * gmx_restrict        nrnb)
438 {
439     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
440      * just 0 for non-waters.
441      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
442      * jnr indices corresponding to data put in the four positions in the SIMD register.
443      */
444     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
445     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446     int              jnrA,jnrB;
447     int              j_coord_offsetA,j_coord_offsetB;
448     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
449     real             rcutoff_scalar;
450     real             *shiftvec,*fshift,*x,*f;
451     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
452     int              vdwioffset0;
453     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
454     int              vdwjidx0A,vdwjidx0B;
455     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
456     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
457     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
458     real             *charge;
459     int              nvdwtype;
460     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
461     int              *vdwtype;
462     real             *vdwparam;
463     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
464     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
465     __m128i          vfitab;
466     __m128i          ifour       = _mm_set1_epi32(4);
467     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
468     real             *vftab;
469     __m128i          ewitab;
470     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
471     real             *ewtab;
472     __m128d          dummy_mask,cutoff_mask;
473     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
474     __m128d          one     = _mm_set1_pd(1.0);
475     __m128d          two     = _mm_set1_pd(2.0);
476     x                = xx[0];
477     f                = ff[0];
478
479     nri              = nlist->nri;
480     iinr             = nlist->iinr;
481     jindex           = nlist->jindex;
482     jjnr             = nlist->jjnr;
483     shiftidx         = nlist->shift;
484     gid              = nlist->gid;
485     shiftvec         = fr->shift_vec[0];
486     fshift           = fr->fshift[0];
487     facel            = _mm_set1_pd(fr->ic->epsfac);
488     charge           = mdatoms->chargeA;
489     nvdwtype         = fr->ntype;
490     vdwparam         = fr->nbfp;
491     vdwtype          = mdatoms->typeA;
492
493     vftab            = kernel_data->table_vdw->data;
494     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
495
496     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
497     ewtab            = fr->ic->tabq_coul_F;
498     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
499     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
500
501     /* Avoid stupid compiler warnings */
502     jnrA = jnrB = 0;
503     j_coord_offsetA = 0;
504     j_coord_offsetB = 0;
505
506     outeriter        = 0;
507     inneriter        = 0;
508
509     /* Start outer loop over neighborlists */
510     for(iidx=0; iidx<nri; iidx++)
511     {
512         /* Load shift vector for this list */
513         i_shift_offset   = DIM*shiftidx[iidx];
514
515         /* Load limits for loop over neighbors */
516         j_index_start    = jindex[iidx];
517         j_index_end      = jindex[iidx+1];
518
519         /* Get outer coordinate index */
520         inr              = iinr[iidx];
521         i_coord_offset   = DIM*inr;
522
523         /* Load i particle coords and add shift vector */
524         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
525
526         fix0             = _mm_setzero_pd();
527         fiy0             = _mm_setzero_pd();
528         fiz0             = _mm_setzero_pd();
529
530         /* Load parameters for i particles */
531         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
532         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
533
534         /* Start inner kernel loop */
535         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
536         {
537
538             /* Get j neighbor index, and coordinate index */
539             jnrA             = jjnr[jidx];
540             jnrB             = jjnr[jidx+1];
541             j_coord_offsetA  = DIM*jnrA;
542             j_coord_offsetB  = DIM*jnrB;
543
544             /* load j atom coordinates */
545             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
546                                               &jx0,&jy0,&jz0);
547
548             /* Calculate displacement vector */
549             dx00             = _mm_sub_pd(ix0,jx0);
550             dy00             = _mm_sub_pd(iy0,jy0);
551             dz00             = _mm_sub_pd(iz0,jz0);
552
553             /* Calculate squared distance and things based on it */
554             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
555
556             rinv00           = sse41_invsqrt_d(rsq00);
557
558             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
559
560             /* Load parameters for j particles */
561             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
562             vdwjidx0A        = 2*vdwtype[jnrA+0];
563             vdwjidx0B        = 2*vdwtype[jnrB+0];
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             r00              = _mm_mul_pd(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq00             = _mm_mul_pd(iq0,jq0);
573             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
574                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm_mul_pd(r00,vftabscale);
578             vfitab           = _mm_cvttpd_epi32(rt);
579             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
580             vfitab           = _mm_slli_epi32(vfitab,3);
581
582             /* EWALD ELECTROSTATICS */
583
584             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585             ewrt             = _mm_mul_pd(r00,ewtabscale);
586             ewitab           = _mm_cvttpd_epi32(ewrt);
587             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
588             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
589                                          &ewtabF,&ewtabFn);
590             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
591             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
592
593             /* CUBIC SPLINE TABLE DISPERSION */
594             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
595             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
596             GMX_MM_TRANSPOSE2_PD(Y,F);
597             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
598             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
599             GMX_MM_TRANSPOSE2_PD(G,H);
600             Heps             = _mm_mul_pd(vfeps,H);
601             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
602             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
603             fvdw6            = _mm_mul_pd(c6_00,FF);
604
605             /* CUBIC SPLINE TABLE REPULSION */
606             vfitab           = _mm_add_epi32(vfitab,ifour);
607             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
608             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
609             GMX_MM_TRANSPOSE2_PD(Y,F);
610             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
611             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
612             GMX_MM_TRANSPOSE2_PD(G,H);
613             Heps             = _mm_mul_pd(vfeps,H);
614             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
615             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
616             fvdw12           = _mm_mul_pd(c12_00,FF);
617             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
618
619             fscal            = _mm_add_pd(felec,fvdw);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_pd(fscal,dx00);
623             ty               = _mm_mul_pd(fscal,dy00);
624             tz               = _mm_mul_pd(fscal,dz00);
625
626             /* Update vectorial force */
627             fix0             = _mm_add_pd(fix0,tx);
628             fiy0             = _mm_add_pd(fiy0,ty);
629             fiz0             = _mm_add_pd(fiz0,tz);
630
631             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
632
633             /* Inner loop uses 62 flops */
634         }
635
636         if(jidx<j_index_end)
637         {
638
639             jnrA             = jjnr[jidx];
640             j_coord_offsetA  = DIM*jnrA;
641
642             /* load j atom coordinates */
643             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
644                                               &jx0,&jy0,&jz0);
645
646             /* Calculate displacement vector */
647             dx00             = _mm_sub_pd(ix0,jx0);
648             dy00             = _mm_sub_pd(iy0,jy0);
649             dz00             = _mm_sub_pd(iz0,jz0);
650
651             /* Calculate squared distance and things based on it */
652             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
653
654             rinv00           = sse41_invsqrt_d(rsq00);
655
656             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
657
658             /* Load parameters for j particles */
659             jq0              = _mm_load_sd(charge+jnrA+0);
660             vdwjidx0A        = 2*vdwtype[jnrA+0];
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r00              = _mm_mul_pd(rsq00,rinv00);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq00             = _mm_mul_pd(iq0,jq0);
670             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
671
672             /* Calculate table index by multiplying r with table scale and truncate to integer */
673             rt               = _mm_mul_pd(r00,vftabscale);
674             vfitab           = _mm_cvttpd_epi32(rt);
675             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
676             vfitab           = _mm_slli_epi32(vfitab,3);
677
678             /* EWALD ELECTROSTATICS */
679
680             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
681             ewrt             = _mm_mul_pd(r00,ewtabscale);
682             ewitab           = _mm_cvttpd_epi32(ewrt);
683             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
684             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
685             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
686             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
687
688             /* CUBIC SPLINE TABLE DISPERSION */
689             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
690             F                = _mm_setzero_pd();
691             GMX_MM_TRANSPOSE2_PD(Y,F);
692             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
693             H                = _mm_setzero_pd();
694             GMX_MM_TRANSPOSE2_PD(G,H);
695             Heps             = _mm_mul_pd(vfeps,H);
696             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
697             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
698             fvdw6            = _mm_mul_pd(c6_00,FF);
699
700             /* CUBIC SPLINE TABLE REPULSION */
701             vfitab           = _mm_add_epi32(vfitab,ifour);
702             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
703             F                = _mm_setzero_pd();
704             GMX_MM_TRANSPOSE2_PD(Y,F);
705             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
706             H                = _mm_setzero_pd();
707             GMX_MM_TRANSPOSE2_PD(G,H);
708             Heps             = _mm_mul_pd(vfeps,H);
709             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
710             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
711             fvdw12           = _mm_mul_pd(c12_00,FF);
712             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
713
714             fscal            = _mm_add_pd(felec,fvdw);
715
716             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
717
718             /* Calculate temporary vectorial force */
719             tx               = _mm_mul_pd(fscal,dx00);
720             ty               = _mm_mul_pd(fscal,dy00);
721             tz               = _mm_mul_pd(fscal,dz00);
722
723             /* Update vectorial force */
724             fix0             = _mm_add_pd(fix0,tx);
725             fiy0             = _mm_add_pd(fiy0,ty);
726             fiz0             = _mm_add_pd(fiz0,tz);
727
728             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
729
730             /* Inner loop uses 62 flops */
731         }
732
733         /* End of innermost loop */
734
735         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
736                                               f+i_coord_offset,fshift+i_shift_offset);
737
738         /* Increment number of inner iterations */
739         inneriter                  += j_index_end - j_index_start;
740
741         /* Outer loop uses 7 flops */
742     }
743
744     /* Increment number of outer iterations */
745     outeriter        += nri;
746
747     /* Update outer/inner flops */
748
749     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
750 }