db96a7cab0a6da168e66e535c8dc10cb4558a50b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128i          ewitab;
84     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     real             *ewtab;
86     __m128d          dummy_mask,cutoff_mask;
87     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
88     __m128d          one     = _mm_set1_pd(1.0);
89     __m128d          two     = _mm_set1_pd(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_pd(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_pd();
141         fiy0             = _mm_setzero_pd();
142         fiz0             = _mm_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vvdwsum          = _mm_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_pd(ix0,jx0);
168             dy00             = _mm_sub_pd(iy0,jy0);
169             dz00             = _mm_sub_pd(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_pd(rsq00);
175
176             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
177
178             /* Load parameters for j particles */
179             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
180             vdwjidx0A        = 2*vdwtype[jnrA+0];
181             vdwjidx0B        = 2*vdwtype[jnrB+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             r00              = _mm_mul_pd(rsq00,rinv00);
188
189             /* Compute parameters for interactions between i and j atoms */
190             qq00             = _mm_mul_pd(iq0,jq0);
191             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
192                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
193
194             /* Calculate table index by multiplying r with table scale and truncate to integer */
195             rt               = _mm_mul_pd(r00,vftabscale);
196             vfitab           = _mm_cvttpd_epi32(rt);
197             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
198             vfitab           = _mm_slli_epi32(vfitab,3);
199
200             /* EWALD ELECTROSTATICS */
201
202             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
203             ewrt             = _mm_mul_pd(r00,ewtabscale);
204             ewitab           = _mm_cvttpd_epi32(ewrt);
205             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
206             ewitab           = _mm_slli_epi32(ewitab,2);
207             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
208             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
209             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
210             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
211             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
212             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
213             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
214             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
215             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
216             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
217
218             /* CUBIC SPLINE TABLE DISPERSION */
219             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
220             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
221             GMX_MM_TRANSPOSE2_PD(Y,F);
222             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
223             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(G,H);
225             Heps             = _mm_mul_pd(vfeps,H);
226             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
227             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
228             vvdw6            = _mm_mul_pd(c6_00,VV);
229             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
230             fvdw6            = _mm_mul_pd(c6_00,FF);
231
232             /* CUBIC SPLINE TABLE REPULSION */
233             vfitab           = _mm_add_epi32(vfitab,ifour);
234             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
235             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
236             GMX_MM_TRANSPOSE2_PD(Y,F);
237             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
238             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
239             GMX_MM_TRANSPOSE2_PD(G,H);
240             Heps             = _mm_mul_pd(vfeps,H);
241             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
242             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
243             vvdw12           = _mm_mul_pd(c12_00,VV);
244             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
245             fvdw12           = _mm_mul_pd(c12_00,FF);
246             vvdw             = _mm_add_pd(vvdw12,vvdw6);
247             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm_add_pd(velecsum,velec);
251             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
252
253             fscal            = _mm_add_pd(felec,fvdw);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_pd(fscal,dx00);
257             ty               = _mm_mul_pd(fscal,dy00);
258             tz               = _mm_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm_add_pd(fix0,tx);
262             fiy0             = _mm_add_pd(fiy0,ty);
263             fiz0             = _mm_add_pd(fiz0,tz);
264
265             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
266
267             /* Inner loop uses 75 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             jnrA             = jjnr[jidx];
274             j_coord_offsetA  = DIM*jnrA;
275
276             /* load j atom coordinates */
277             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
278                                               &jx0,&jy0,&jz0);
279
280             /* Calculate displacement vector */
281             dx00             = _mm_sub_pd(ix0,jx0);
282             dy00             = _mm_sub_pd(iy0,jy0);
283             dz00             = _mm_sub_pd(iz0,jz0);
284
285             /* Calculate squared distance and things based on it */
286             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
287
288             rinv00           = gmx_mm_invsqrt_pd(rsq00);
289
290             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
291
292             /* Load parameters for j particles */
293             jq0              = _mm_load_sd(charge+jnrA+0);
294             vdwjidx0A        = 2*vdwtype[jnrA+0];
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r00              = _mm_mul_pd(rsq00,rinv00);
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq00             = _mm_mul_pd(iq0,jq0);
304             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm_mul_pd(r00,vftabscale);
308             vfitab           = _mm_cvttpd_epi32(rt);
309             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
310             vfitab           = _mm_slli_epi32(vfitab,3);
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = _mm_mul_pd(r00,ewtabscale);
316             ewitab           = _mm_cvttpd_epi32(ewrt);
317             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
318             ewitab           = _mm_slli_epi32(ewitab,2);
319             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
320             ewtabD           = _mm_setzero_pd();
321             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
322             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
323             ewtabFn          = _mm_setzero_pd();
324             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
325             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
326             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
327             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
328             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
329
330             /* CUBIC SPLINE TABLE DISPERSION */
331             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
332             F                = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(Y,F);
334             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
335             H                = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(G,H);
337             Heps             = _mm_mul_pd(vfeps,H);
338             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
339             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
340             vvdw6            = _mm_mul_pd(c6_00,VV);
341             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
342             fvdw6            = _mm_mul_pd(c6_00,FF);
343
344             /* CUBIC SPLINE TABLE REPULSION */
345             vfitab           = _mm_add_epi32(vfitab,ifour);
346             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
347             F                = _mm_setzero_pd();
348             GMX_MM_TRANSPOSE2_PD(Y,F);
349             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
350             H                = _mm_setzero_pd();
351             GMX_MM_TRANSPOSE2_PD(G,H);
352             Heps             = _mm_mul_pd(vfeps,H);
353             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
354             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
355             vvdw12           = _mm_mul_pd(c12_00,VV);
356             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
357             fvdw12           = _mm_mul_pd(c12_00,FF);
358             vvdw             = _mm_add_pd(vvdw12,vvdw6);
359             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
363             velecsum         = _mm_add_pd(velecsum,velec);
364             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
365             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
366
367             fscal            = _mm_add_pd(felec,fvdw);
368
369             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm_mul_pd(fscal,dx00);
373             ty               = _mm_mul_pd(fscal,dy00);
374             tz               = _mm_mul_pd(fscal,dz00);
375
376             /* Update vectorial force */
377             fix0             = _mm_add_pd(fix0,tx);
378             fiy0             = _mm_add_pd(fiy0,ty);
379             fiz0             = _mm_add_pd(fiz0,tz);
380
381             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
382
383             /* Inner loop uses 75 flops */
384         }
385
386         /* End of innermost loop */
387
388         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
389                                               f+i_coord_offset,fshift+i_shift_offset);
390
391         ggid                        = gid[iidx];
392         /* Update potential energies */
393         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
394         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
395
396         /* Increment number of inner iterations */
397         inneriter                  += j_index_end - j_index_start;
398
399         /* Outer loop uses 9 flops */
400     }
401
402     /* Increment number of outer iterations */
403     outeriter        += nri;
404
405     /* Update outer/inner flops */
406
407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
408 }
409 /*
410  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
411  * Electrostatics interaction: Ewald
412  * VdW interaction:            CubicSplineTable
413  * Geometry:                   Particle-Particle
414  * Calculate force/pot:        Force
415  */
416 void
417 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
418                     (t_nblist * gmx_restrict                nlist,
419                      rvec * gmx_restrict                    xx,
420                      rvec * gmx_restrict                    ff,
421                      t_forcerec * gmx_restrict              fr,
422                      t_mdatoms * gmx_restrict               mdatoms,
423                      nb_kernel_data_t * gmx_restrict        kernel_data,
424                      t_nrnb * gmx_restrict                  nrnb)
425 {
426     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
427      * just 0 for non-waters.
428      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
429      * jnr indices corresponding to data put in the four positions in the SIMD register.
430      */
431     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
432     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433     int              jnrA,jnrB;
434     int              j_coord_offsetA,j_coord_offsetB;
435     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
436     real             rcutoff_scalar;
437     real             *shiftvec,*fshift,*x,*f;
438     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
439     int              vdwioffset0;
440     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
441     int              vdwjidx0A,vdwjidx0B;
442     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
443     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
444     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
445     real             *charge;
446     int              nvdwtype;
447     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
448     int              *vdwtype;
449     real             *vdwparam;
450     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
451     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
452     __m128i          vfitab;
453     __m128i          ifour       = _mm_set1_epi32(4);
454     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
455     real             *vftab;
456     __m128i          ewitab;
457     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
458     real             *ewtab;
459     __m128d          dummy_mask,cutoff_mask;
460     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
461     __m128d          one     = _mm_set1_pd(1.0);
462     __m128d          two     = _mm_set1_pd(2.0);
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     facel            = _mm_set1_pd(fr->epsfac);
475     charge           = mdatoms->chargeA;
476     nvdwtype         = fr->ntype;
477     vdwparam         = fr->nbfp;
478     vdwtype          = mdatoms->typeA;
479
480     vftab            = kernel_data->table_vdw->data;
481     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
482
483     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
484     ewtab            = fr->ic->tabq_coul_F;
485     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
486     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
487
488     /* Avoid stupid compiler warnings */
489     jnrA = jnrB = 0;
490     j_coord_offsetA = 0;
491     j_coord_offsetB = 0;
492
493     outeriter        = 0;
494     inneriter        = 0;
495
496     /* Start outer loop over neighborlists */
497     for(iidx=0; iidx<nri; iidx++)
498     {
499         /* Load shift vector for this list */
500         i_shift_offset   = DIM*shiftidx[iidx];
501
502         /* Load limits for loop over neighbors */
503         j_index_start    = jindex[iidx];
504         j_index_end      = jindex[iidx+1];
505
506         /* Get outer coordinate index */
507         inr              = iinr[iidx];
508         i_coord_offset   = DIM*inr;
509
510         /* Load i particle coords and add shift vector */
511         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
512
513         fix0             = _mm_setzero_pd();
514         fiy0             = _mm_setzero_pd();
515         fiz0             = _mm_setzero_pd();
516
517         /* Load parameters for i particles */
518         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
519         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
520
521         /* Start inner kernel loop */
522         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
523         {
524
525             /* Get j neighbor index, and coordinate index */
526             jnrA             = jjnr[jidx];
527             jnrB             = jjnr[jidx+1];
528             j_coord_offsetA  = DIM*jnrA;
529             j_coord_offsetB  = DIM*jnrB;
530
531             /* load j atom coordinates */
532             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
533                                               &jx0,&jy0,&jz0);
534
535             /* Calculate displacement vector */
536             dx00             = _mm_sub_pd(ix0,jx0);
537             dy00             = _mm_sub_pd(iy0,jy0);
538             dz00             = _mm_sub_pd(iz0,jz0);
539
540             /* Calculate squared distance and things based on it */
541             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
542
543             rinv00           = gmx_mm_invsqrt_pd(rsq00);
544
545             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
546
547             /* Load parameters for j particles */
548             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
549             vdwjidx0A        = 2*vdwtype[jnrA+0];
550             vdwjidx0B        = 2*vdwtype[jnrB+0];
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             r00              = _mm_mul_pd(rsq00,rinv00);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq00             = _mm_mul_pd(iq0,jq0);
560             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
561                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
562
563             /* Calculate table index by multiplying r with table scale and truncate to integer */
564             rt               = _mm_mul_pd(r00,vftabscale);
565             vfitab           = _mm_cvttpd_epi32(rt);
566             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
567             vfitab           = _mm_slli_epi32(vfitab,3);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_pd(r00,ewtabscale);
573             ewitab           = _mm_cvttpd_epi32(ewrt);
574             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
575             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
576                                          &ewtabF,&ewtabFn);
577             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
578             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
579
580             /* CUBIC SPLINE TABLE DISPERSION */
581             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
582             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
583             GMX_MM_TRANSPOSE2_PD(Y,F);
584             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
585             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
586             GMX_MM_TRANSPOSE2_PD(G,H);
587             Heps             = _mm_mul_pd(vfeps,H);
588             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
589             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
590             fvdw6            = _mm_mul_pd(c6_00,FF);
591
592             /* CUBIC SPLINE TABLE REPULSION */
593             vfitab           = _mm_add_epi32(vfitab,ifour);
594             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
595             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
596             GMX_MM_TRANSPOSE2_PD(Y,F);
597             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
598             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
599             GMX_MM_TRANSPOSE2_PD(G,H);
600             Heps             = _mm_mul_pd(vfeps,H);
601             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
602             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
603             fvdw12           = _mm_mul_pd(c12_00,FF);
604             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
605
606             fscal            = _mm_add_pd(felec,fvdw);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm_mul_pd(fscal,dx00);
610             ty               = _mm_mul_pd(fscal,dy00);
611             tz               = _mm_mul_pd(fscal,dz00);
612
613             /* Update vectorial force */
614             fix0             = _mm_add_pd(fix0,tx);
615             fiy0             = _mm_add_pd(fiy0,ty);
616             fiz0             = _mm_add_pd(fiz0,tz);
617
618             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
619
620             /* Inner loop uses 62 flops */
621         }
622
623         if(jidx<j_index_end)
624         {
625
626             jnrA             = jjnr[jidx];
627             j_coord_offsetA  = DIM*jnrA;
628
629             /* load j atom coordinates */
630             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
631                                               &jx0,&jy0,&jz0);
632
633             /* Calculate displacement vector */
634             dx00             = _mm_sub_pd(ix0,jx0);
635             dy00             = _mm_sub_pd(iy0,jy0);
636             dz00             = _mm_sub_pd(iz0,jz0);
637
638             /* Calculate squared distance and things based on it */
639             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
640
641             rinv00           = gmx_mm_invsqrt_pd(rsq00);
642
643             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
644
645             /* Load parameters for j particles */
646             jq0              = _mm_load_sd(charge+jnrA+0);
647             vdwjidx0A        = 2*vdwtype[jnrA+0];
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             r00              = _mm_mul_pd(rsq00,rinv00);
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq00             = _mm_mul_pd(iq0,jq0);
657             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
658
659             /* Calculate table index by multiplying r with table scale and truncate to integer */
660             rt               = _mm_mul_pd(r00,vftabscale);
661             vfitab           = _mm_cvttpd_epi32(rt);
662             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
663             vfitab           = _mm_slli_epi32(vfitab,3);
664
665             /* EWALD ELECTROSTATICS */
666
667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668             ewrt             = _mm_mul_pd(r00,ewtabscale);
669             ewitab           = _mm_cvttpd_epi32(ewrt);
670             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
671             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
672             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
673             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
674
675             /* CUBIC SPLINE TABLE DISPERSION */
676             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
677             F                = _mm_setzero_pd();
678             GMX_MM_TRANSPOSE2_PD(Y,F);
679             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
680             H                = _mm_setzero_pd();
681             GMX_MM_TRANSPOSE2_PD(G,H);
682             Heps             = _mm_mul_pd(vfeps,H);
683             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
684             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
685             fvdw6            = _mm_mul_pd(c6_00,FF);
686
687             /* CUBIC SPLINE TABLE REPULSION */
688             vfitab           = _mm_add_epi32(vfitab,ifour);
689             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
690             F                = _mm_setzero_pd();
691             GMX_MM_TRANSPOSE2_PD(Y,F);
692             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
693             H                = _mm_setzero_pd();
694             GMX_MM_TRANSPOSE2_PD(G,H);
695             Heps             = _mm_mul_pd(vfeps,H);
696             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
697             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
698             fvdw12           = _mm_mul_pd(c12_00,FF);
699             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
700
701             fscal            = _mm_add_pd(felec,fvdw);
702
703             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm_mul_pd(fscal,dx00);
707             ty               = _mm_mul_pd(fscal,dy00);
708             tz               = _mm_mul_pd(fscal,dz00);
709
710             /* Update vectorial force */
711             fix0             = _mm_add_pd(fix0,tx);
712             fiy0             = _mm_add_pd(fiy0,ty);
713             fiz0             = _mm_add_pd(fiz0,tz);
714
715             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
716
717             /* Inner loop uses 62 flops */
718         }
719
720         /* End of innermost loop */
721
722         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
723                                               f+i_coord_offset,fshift+i_shift_offset);
724
725         /* Increment number of inner iterations */
726         inneriter                  += j_index_end - j_index_start;
727
728         /* Outer loop uses 7 flops */
729     }
730
731     /* Increment number of outer iterations */
732     outeriter        += nri;
733
734     /* Update outer/inner flops */
735
736     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
737 }