7f3734d6da361011efbc2829682910db2afd11d2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128i          ewitab;
98     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm_invsqrt_pd(rsq00);
189
190             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             r00              = _mm_mul_pd(rsq00,rinv00);
202
203             /* Compute parameters for interactions between i and j atoms */
204             qq00             = _mm_mul_pd(iq0,jq0);
205             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
206                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
207
208             /* Calculate table index by multiplying r with table scale and truncate to integer */
209             rt               = _mm_mul_pd(r00,vftabscale);
210             vfitab           = _mm_cvttpd_epi32(rt);
211             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
212             vfitab           = _mm_slli_epi32(vfitab,3);
213
214             /* EWALD ELECTROSTATICS */
215
216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
217             ewrt             = _mm_mul_pd(r00,ewtabscale);
218             ewitab           = _mm_cvttpd_epi32(ewrt);
219             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
220             ewitab           = _mm_slli_epi32(ewitab,2);
221             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
222             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
223             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
224             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
225             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
226             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
227             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
228             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
229             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
230             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
231
232             /* CUBIC SPLINE TABLE DISPERSION */
233             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
234             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
235             GMX_MM_TRANSPOSE2_PD(Y,F);
236             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
237             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
238             GMX_MM_TRANSPOSE2_PD(G,H);
239             Heps             = _mm_mul_pd(vfeps,H);
240             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
241             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
242             vvdw6            = _mm_mul_pd(c6_00,VV);
243             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
244             fvdw6            = _mm_mul_pd(c6_00,FF);
245
246             /* CUBIC SPLINE TABLE REPULSION */
247             vfitab           = _mm_add_epi32(vfitab,ifour);
248             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Heps             = _mm_mul_pd(vfeps,H);
255             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
256             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
257             vvdw12           = _mm_mul_pd(c12_00,VV);
258             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
259             fvdw12           = _mm_mul_pd(c12_00,FF);
260             vvdw             = _mm_add_pd(vvdw12,vvdw6);
261             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm_add_pd(velecsum,velec);
265             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm_add_pd(felec,fvdw);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_pd(fscal,dx00);
271             ty               = _mm_mul_pd(fscal,dy00);
272             tz               = _mm_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_pd(fix0,tx);
276             fiy0             = _mm_add_pd(fiy0,ty);
277             fiz0             = _mm_add_pd(fiz0,tz);
278
279             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
280
281             /* Inner loop uses 75 flops */
282         }
283
284         if(jidx<j_index_end)
285         {
286
287             jnrA             = jjnr[jidx];
288             j_coord_offsetA  = DIM*jnrA;
289
290             /* load j atom coordinates */
291             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
292                                               &jx0,&jy0,&jz0);
293
294             /* Calculate displacement vector */
295             dx00             = _mm_sub_pd(ix0,jx0);
296             dy00             = _mm_sub_pd(iy0,jy0);
297             dz00             = _mm_sub_pd(iz0,jz0);
298
299             /* Calculate squared distance and things based on it */
300             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
301
302             rinv00           = gmx_mm_invsqrt_pd(rsq00);
303
304             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
305
306             /* Load parameters for j particles */
307             jq0              = _mm_load_sd(charge+jnrA+0);
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             r00              = _mm_mul_pd(rsq00,rinv00);
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq00             = _mm_mul_pd(iq0,jq0);
318             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
319
320             /* Calculate table index by multiplying r with table scale and truncate to integer */
321             rt               = _mm_mul_pd(r00,vftabscale);
322             vfitab           = _mm_cvttpd_epi32(rt);
323             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
324             vfitab           = _mm_slli_epi32(vfitab,3);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _mm_mul_pd(r00,ewtabscale);
330             ewitab           = _mm_cvttpd_epi32(ewrt);
331             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
332             ewitab           = _mm_slli_epi32(ewitab,2);
333             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
334             ewtabD           = _mm_setzero_pd();
335             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
336             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
337             ewtabFn          = _mm_setzero_pd();
338             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
339             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
340             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
341             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
342             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
343
344             /* CUBIC SPLINE TABLE DISPERSION */
345             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
346             F                = _mm_setzero_pd();
347             GMX_MM_TRANSPOSE2_PD(Y,F);
348             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
349             H                = _mm_setzero_pd();
350             GMX_MM_TRANSPOSE2_PD(G,H);
351             Heps             = _mm_mul_pd(vfeps,H);
352             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
353             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
354             vvdw6            = _mm_mul_pd(c6_00,VV);
355             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
356             fvdw6            = _mm_mul_pd(c6_00,FF);
357
358             /* CUBIC SPLINE TABLE REPULSION */
359             vfitab           = _mm_add_epi32(vfitab,ifour);
360             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
361             F                = _mm_setzero_pd();
362             GMX_MM_TRANSPOSE2_PD(Y,F);
363             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
364             H                = _mm_setzero_pd();
365             GMX_MM_TRANSPOSE2_PD(G,H);
366             Heps             = _mm_mul_pd(vfeps,H);
367             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
368             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
369             vvdw12           = _mm_mul_pd(c12_00,VV);
370             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
371             fvdw12           = _mm_mul_pd(c12_00,FF);
372             vvdw             = _mm_add_pd(vvdw12,vvdw6);
373             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
377             velecsum         = _mm_add_pd(velecsum,velec);
378             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
379             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
380
381             fscal            = _mm_add_pd(felec,fvdw);
382
383             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_pd(fscal,dx00);
387             ty               = _mm_mul_pd(fscal,dy00);
388             tz               = _mm_mul_pd(fscal,dz00);
389
390             /* Update vectorial force */
391             fix0             = _mm_add_pd(fix0,tx);
392             fiy0             = _mm_add_pd(fiy0,ty);
393             fiz0             = _mm_add_pd(fiz0,tz);
394
395             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
396
397             /* Inner loop uses 75 flops */
398         }
399
400         /* End of innermost loop */
401
402         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
403                                               f+i_coord_offset,fshift+i_shift_offset);
404
405         ggid                        = gid[iidx];
406         /* Update potential energies */
407         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
408         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
409
410         /* Increment number of inner iterations */
411         inneriter                  += j_index_end - j_index_start;
412
413         /* Outer loop uses 9 flops */
414     }
415
416     /* Increment number of outer iterations */
417     outeriter        += nri;
418
419     /* Update outer/inner flops */
420
421     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
422 }
423 /*
424  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
425  * Electrostatics interaction: Ewald
426  * VdW interaction:            CubicSplineTable
427  * Geometry:                   Particle-Particle
428  * Calculate force/pot:        Force
429  */
430 void
431 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse4_1_double
432                     (t_nblist                    * gmx_restrict       nlist,
433                      rvec                        * gmx_restrict          xx,
434                      rvec                        * gmx_restrict          ff,
435                      t_forcerec                  * gmx_restrict          fr,
436                      t_mdatoms                   * gmx_restrict     mdatoms,
437                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
438                      t_nrnb                      * gmx_restrict        nrnb)
439 {
440     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
441      * just 0 for non-waters.
442      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
443      * jnr indices corresponding to data put in the four positions in the SIMD register.
444      */
445     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
446     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
447     int              jnrA,jnrB;
448     int              j_coord_offsetA,j_coord_offsetB;
449     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
450     real             rcutoff_scalar;
451     real             *shiftvec,*fshift,*x,*f;
452     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
453     int              vdwioffset0;
454     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
455     int              vdwjidx0A,vdwjidx0B;
456     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
457     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
458     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
459     real             *charge;
460     int              nvdwtype;
461     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
462     int              *vdwtype;
463     real             *vdwparam;
464     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
465     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
466     __m128i          vfitab;
467     __m128i          ifour       = _mm_set1_epi32(4);
468     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
469     real             *vftab;
470     __m128i          ewitab;
471     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
472     real             *ewtab;
473     __m128d          dummy_mask,cutoff_mask;
474     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
475     __m128d          one     = _mm_set1_pd(1.0);
476     __m128d          two     = _mm_set1_pd(2.0);
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = _mm_set1_pd(fr->epsfac);
489     charge           = mdatoms->chargeA;
490     nvdwtype         = fr->ntype;
491     vdwparam         = fr->nbfp;
492     vdwtype          = mdatoms->typeA;
493
494     vftab            = kernel_data->table_vdw->data;
495     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
496
497     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
498     ewtab            = fr->ic->tabq_coul_F;
499     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
500     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
501
502     /* Avoid stupid compiler warnings */
503     jnrA = jnrB = 0;
504     j_coord_offsetA = 0;
505     j_coord_offsetB = 0;
506
507     outeriter        = 0;
508     inneriter        = 0;
509
510     /* Start outer loop over neighborlists */
511     for(iidx=0; iidx<nri; iidx++)
512     {
513         /* Load shift vector for this list */
514         i_shift_offset   = DIM*shiftidx[iidx];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
526
527         fix0             = _mm_setzero_pd();
528         fiy0             = _mm_setzero_pd();
529         fiz0             = _mm_setzero_pd();
530
531         /* Load parameters for i particles */
532         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
533         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
534
535         /* Start inner kernel loop */
536         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
537         {
538
539             /* Get j neighbor index, and coordinate index */
540             jnrA             = jjnr[jidx];
541             jnrB             = jjnr[jidx+1];
542             j_coord_offsetA  = DIM*jnrA;
543             j_coord_offsetB  = DIM*jnrB;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               &jx0,&jy0,&jz0);
548
549             /* Calculate displacement vector */
550             dx00             = _mm_sub_pd(ix0,jx0);
551             dy00             = _mm_sub_pd(iy0,jy0);
552             dz00             = _mm_sub_pd(iz0,jz0);
553
554             /* Calculate squared distance and things based on it */
555             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
556
557             rinv00           = gmx_mm_invsqrt_pd(rsq00);
558
559             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564             vdwjidx0B        = 2*vdwtype[jnrB+0];
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r00              = _mm_mul_pd(rsq00,rinv00);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq00             = _mm_mul_pd(iq0,jq0);
574             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
575                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
576
577             /* Calculate table index by multiplying r with table scale and truncate to integer */
578             rt               = _mm_mul_pd(r00,vftabscale);
579             vfitab           = _mm_cvttpd_epi32(rt);
580             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
581             vfitab           = _mm_slli_epi32(vfitab,3);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_pd(r00,ewtabscale);
587             ewitab           = _mm_cvttpd_epi32(ewrt);
588             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
589             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
590                                          &ewtabF,&ewtabFn);
591             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
592             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
593
594             /* CUBIC SPLINE TABLE DISPERSION */
595             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
596             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
597             GMX_MM_TRANSPOSE2_PD(Y,F);
598             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
599             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
600             GMX_MM_TRANSPOSE2_PD(G,H);
601             Heps             = _mm_mul_pd(vfeps,H);
602             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
603             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
604             fvdw6            = _mm_mul_pd(c6_00,FF);
605
606             /* CUBIC SPLINE TABLE REPULSION */
607             vfitab           = _mm_add_epi32(vfitab,ifour);
608             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
609             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
610             GMX_MM_TRANSPOSE2_PD(Y,F);
611             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
612             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
613             GMX_MM_TRANSPOSE2_PD(G,H);
614             Heps             = _mm_mul_pd(vfeps,H);
615             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
616             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
617             fvdw12           = _mm_mul_pd(c12_00,FF);
618             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
619
620             fscal            = _mm_add_pd(felec,fvdw);
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm_mul_pd(fscal,dx00);
624             ty               = _mm_mul_pd(fscal,dy00);
625             tz               = _mm_mul_pd(fscal,dz00);
626
627             /* Update vectorial force */
628             fix0             = _mm_add_pd(fix0,tx);
629             fiy0             = _mm_add_pd(fiy0,ty);
630             fiz0             = _mm_add_pd(fiz0,tz);
631
632             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
633
634             /* Inner loop uses 62 flops */
635         }
636
637         if(jidx<j_index_end)
638         {
639
640             jnrA             = jjnr[jidx];
641             j_coord_offsetA  = DIM*jnrA;
642
643             /* load j atom coordinates */
644             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
645                                               &jx0,&jy0,&jz0);
646
647             /* Calculate displacement vector */
648             dx00             = _mm_sub_pd(ix0,jx0);
649             dy00             = _mm_sub_pd(iy0,jy0);
650             dz00             = _mm_sub_pd(iz0,jz0);
651
652             /* Calculate squared distance and things based on it */
653             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
654
655             rinv00           = gmx_mm_invsqrt_pd(rsq00);
656
657             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
658
659             /* Load parameters for j particles */
660             jq0              = _mm_load_sd(charge+jnrA+0);
661             vdwjidx0A        = 2*vdwtype[jnrA+0];
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             r00              = _mm_mul_pd(rsq00,rinv00);
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq00             = _mm_mul_pd(iq0,jq0);
671             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
672
673             /* Calculate table index by multiplying r with table scale and truncate to integer */
674             rt               = _mm_mul_pd(r00,vftabscale);
675             vfitab           = _mm_cvttpd_epi32(rt);
676             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
677             vfitab           = _mm_slli_epi32(vfitab,3);
678
679             /* EWALD ELECTROSTATICS */
680
681             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
682             ewrt             = _mm_mul_pd(r00,ewtabscale);
683             ewitab           = _mm_cvttpd_epi32(ewrt);
684             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
685             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
686             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
687             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
688
689             /* CUBIC SPLINE TABLE DISPERSION */
690             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
691             F                = _mm_setzero_pd();
692             GMX_MM_TRANSPOSE2_PD(Y,F);
693             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
694             H                = _mm_setzero_pd();
695             GMX_MM_TRANSPOSE2_PD(G,H);
696             Heps             = _mm_mul_pd(vfeps,H);
697             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
698             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
699             fvdw6            = _mm_mul_pd(c6_00,FF);
700
701             /* CUBIC SPLINE TABLE REPULSION */
702             vfitab           = _mm_add_epi32(vfitab,ifour);
703             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
704             F                = _mm_setzero_pd();
705             GMX_MM_TRANSPOSE2_PD(Y,F);
706             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
707             H                = _mm_setzero_pd();
708             GMX_MM_TRANSPOSE2_PD(G,H);
709             Heps             = _mm_mul_pd(vfeps,H);
710             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
711             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
712             fvdw12           = _mm_mul_pd(c12_00,FF);
713             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
714
715             fscal            = _mm_add_pd(felec,fvdw);
716
717             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm_mul_pd(fscal,dx00);
721             ty               = _mm_mul_pd(fscal,dy00);
722             tz               = _mm_mul_pd(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm_add_pd(fix0,tx);
726             fiy0             = _mm_add_pd(fiy0,ty);
727             fiz0             = _mm_add_pd(fiz0,tz);
728
729             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
730
731             /* Inner loop uses 62 flops */
732         }
733
734         /* End of innermost loop */
735
736         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
737                                               f+i_coord_offset,fshift+i_shift_offset);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 7 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
751 }