Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset1;
80     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
81     int              vdwioffset2;
82     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
83     int              vdwioffset3;
84     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
88     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114
115     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
123     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
124     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->ic->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->ic->rcoulomb_switch;
132     rswitch          = _mm_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_pd(d_scalar);
136     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
167                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
168
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175         fix3             = _mm_setzero_pd();
176         fiy3             = _mm_setzero_pd();
177         fiz3             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx10             = _mm_sub_pd(ix1,jx0);
198             dy10             = _mm_sub_pd(iy1,jy0);
199             dz10             = _mm_sub_pd(iz1,jz0);
200             dx20             = _mm_sub_pd(ix2,jx0);
201             dy20             = _mm_sub_pd(iy2,jy0);
202             dz20             = _mm_sub_pd(iz2,jz0);
203             dx30             = _mm_sub_pd(ix3,jx0);
204             dy30             = _mm_sub_pd(iy3,jy0);
205             dz30             = _mm_sub_pd(iz3,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
209             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
210             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
211
212             rinv10           = sse41_invsqrt_d(rsq10);
213             rinv20           = sse41_invsqrt_d(rsq20);
214             rinv30           = sse41_invsqrt_d(rsq30);
215
216             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
217             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
218             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq10,rcutoff2))
232             {
233
234             r10              = _mm_mul_pd(rsq10,rinv10);
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq10             = _mm_mul_pd(iq1,jq0);
238
239             /* EWALD ELECTROSTATICS */
240
241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
242             ewrt             = _mm_mul_pd(r10,ewtabscale);
243             ewitab           = _mm_cvttpd_epi32(ewrt);
244             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
245             ewitab           = _mm_slli_epi32(ewitab,2);
246             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
247             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
248             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
249             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
250             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
251             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
252             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
253             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
254             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
255             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
256
257             d                = _mm_sub_pd(r10,rswitch);
258             d                = _mm_max_pd(d,_mm_setzero_pd());
259             d2               = _mm_mul_pd(d,d);
260             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
261
262             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
263
264             /* Evaluate switch function */
265             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
266             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
267             velec            = _mm_mul_pd(velec,sw);
268             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velec            = _mm_and_pd(velec,cutoff_mask);
272             velecsum         = _mm_add_pd(velecsum,velec);
273
274             fscal            = felec;
275
276             fscal            = _mm_and_pd(fscal,cutoff_mask);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm_mul_pd(fscal,dx10);
280             ty               = _mm_mul_pd(fscal,dy10);
281             tz               = _mm_mul_pd(fscal,dz10);
282
283             /* Update vectorial force */
284             fix1             = _mm_add_pd(fix1,tx);
285             fiy1             = _mm_add_pd(fiy1,ty);
286             fiz1             = _mm_add_pd(fiz1,tz);
287
288             fjx0             = _mm_add_pd(fjx0,tx);
289             fjy0             = _mm_add_pd(fjy0,ty);
290             fjz0             = _mm_add_pd(fjz0,tz);
291
292             }
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq20,rcutoff2))
299             {
300
301             r20              = _mm_mul_pd(rsq20,rinv20);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq20             = _mm_mul_pd(iq2,jq0);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r20,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
312             ewitab           = _mm_slli_epi32(ewitab,2);
313             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
314             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
315             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
316             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
317             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
318             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
319             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
320             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
321             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
322             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
323
324             d                = _mm_sub_pd(r20,rswitch);
325             d                = _mm_max_pd(d,_mm_setzero_pd());
326             d2               = _mm_mul_pd(d,d);
327             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
328
329             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
330
331             /* Evaluate switch function */
332             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
333             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
334             velec            = _mm_mul_pd(velec,sw);
335             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm_and_pd(velec,cutoff_mask);
339             velecsum         = _mm_add_pd(velecsum,velec);
340
341             fscal            = felec;
342
343             fscal            = _mm_and_pd(fscal,cutoff_mask);
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx20);
347             ty               = _mm_mul_pd(fscal,dy20);
348             tz               = _mm_mul_pd(fscal,dz20);
349
350             /* Update vectorial force */
351             fix2             = _mm_add_pd(fix2,tx);
352             fiy2             = _mm_add_pd(fiy2,ty);
353             fiz2             = _mm_add_pd(fiz2,tz);
354
355             fjx0             = _mm_add_pd(fjx0,tx);
356             fjy0             = _mm_add_pd(fjy0,ty);
357             fjz0             = _mm_add_pd(fjz0,tz);
358
359             }
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq30,rcutoff2))
366             {
367
368             r30              = _mm_mul_pd(rsq30,rinv30);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq30             = _mm_mul_pd(iq3,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_pd(r30,ewtabscale);
377             ewitab           = _mm_cvttpd_epi32(ewrt);
378             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
382             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
383             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
384             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
385             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
386             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
387             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
388             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
389             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
390
391             d                = _mm_sub_pd(r30,rswitch);
392             d                = _mm_max_pd(d,_mm_setzero_pd());
393             d2               = _mm_mul_pd(d,d);
394             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
395
396             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
397
398             /* Evaluate switch function */
399             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
400             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
401             velec            = _mm_mul_pd(velec,sw);
402             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_and_pd(velec,cutoff_mask);
406             velecsum         = _mm_add_pd(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm_and_pd(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_pd(fscal,dx30);
414             ty               = _mm_mul_pd(fscal,dy30);
415             tz               = _mm_mul_pd(fscal,dz30);
416
417             /* Update vectorial force */
418             fix3             = _mm_add_pd(fix3,tx);
419             fiy3             = _mm_add_pd(fiy3,ty);
420             fiz3             = _mm_add_pd(fiz3,tz);
421
422             fjx0             = _mm_add_pd(fjx0,tx);
423             fjy0             = _mm_add_pd(fjy0,ty);
424             fjz0             = _mm_add_pd(fjz0,tz);
425
426             }
427
428             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 198 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             jnrA             = jjnr[jidx];
437             j_coord_offsetA  = DIM*jnrA;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx10             = _mm_sub_pd(ix1,jx0);
445             dy10             = _mm_sub_pd(iy1,jy0);
446             dz10             = _mm_sub_pd(iz1,jz0);
447             dx20             = _mm_sub_pd(ix2,jx0);
448             dy20             = _mm_sub_pd(iy2,jy0);
449             dz20             = _mm_sub_pd(iz2,jz0);
450             dx30             = _mm_sub_pd(ix3,jx0);
451             dy30             = _mm_sub_pd(iy3,jy0);
452             dz30             = _mm_sub_pd(iz3,jz0);
453
454             /* Calculate squared distance and things based on it */
455             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
456             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
457             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
458
459             rinv10           = sse41_invsqrt_d(rsq10);
460             rinv20           = sse41_invsqrt_d(rsq20);
461             rinv30           = sse41_invsqrt_d(rsq30);
462
463             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
464             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
465             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
466
467             /* Load parameters for j particles */
468             jq0              = _mm_load_sd(charge+jnrA+0);
469
470             fjx0             = _mm_setzero_pd();
471             fjy0             = _mm_setzero_pd();
472             fjz0             = _mm_setzero_pd();
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             if (gmx_mm_any_lt(rsq10,rcutoff2))
479             {
480
481             r10              = _mm_mul_pd(rsq10,rinv10);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq10             = _mm_mul_pd(iq1,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
489             ewrt             = _mm_mul_pd(r10,ewtabscale);
490             ewitab           = _mm_cvttpd_epi32(ewrt);
491             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
492             ewitab           = _mm_slli_epi32(ewitab,2);
493             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
494             ewtabD           = _mm_setzero_pd();
495             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
496             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
497             ewtabFn          = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
499             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
500             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
501             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
502             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
503
504             d                = _mm_sub_pd(r10,rswitch);
505             d                = _mm_max_pd(d,_mm_setzero_pd());
506             d2               = _mm_mul_pd(d,d);
507             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
508
509             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
510
511             /* Evaluate switch function */
512             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
513             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
514             velec            = _mm_mul_pd(velec,sw);
515             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velec            = _mm_and_pd(velec,cutoff_mask);
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_and_pd(fscal,cutoff_mask);
525
526             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_pd(fscal,dx10);
530             ty               = _mm_mul_pd(fscal,dy10);
531             tz               = _mm_mul_pd(fscal,dz10);
532
533             /* Update vectorial force */
534             fix1             = _mm_add_pd(fix1,tx);
535             fiy1             = _mm_add_pd(fiy1,ty);
536             fiz1             = _mm_add_pd(fiz1,tz);
537
538             fjx0             = _mm_add_pd(fjx0,tx);
539             fjy0             = _mm_add_pd(fjy0,ty);
540             fjz0             = _mm_add_pd(fjz0,tz);
541
542             }
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             if (gmx_mm_any_lt(rsq20,rcutoff2))
549             {
550
551             r20              = _mm_mul_pd(rsq20,rinv20);
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq20             = _mm_mul_pd(iq2,jq0);
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
559             ewrt             = _mm_mul_pd(r20,ewtabscale);
560             ewitab           = _mm_cvttpd_epi32(ewrt);
561             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
562             ewitab           = _mm_slli_epi32(ewitab,2);
563             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
564             ewtabD           = _mm_setzero_pd();
565             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
566             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
567             ewtabFn          = _mm_setzero_pd();
568             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
569             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
570             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
571             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
572             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
573
574             d                = _mm_sub_pd(r20,rswitch);
575             d                = _mm_max_pd(d,_mm_setzero_pd());
576             d2               = _mm_mul_pd(d,d);
577             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
578
579             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
580
581             /* Evaluate switch function */
582             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
583             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
584             velec            = _mm_mul_pd(velec,sw);
585             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm_and_pd(velec,cutoff_mask);
589             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
590             velecsum         = _mm_add_pd(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm_and_pd(fscal,cutoff_mask);
595
596             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm_mul_pd(fscal,dx20);
600             ty               = _mm_mul_pd(fscal,dy20);
601             tz               = _mm_mul_pd(fscal,dz20);
602
603             /* Update vectorial force */
604             fix2             = _mm_add_pd(fix2,tx);
605             fiy2             = _mm_add_pd(fiy2,ty);
606             fiz2             = _mm_add_pd(fiz2,tz);
607
608             fjx0             = _mm_add_pd(fjx0,tx);
609             fjy0             = _mm_add_pd(fjy0,ty);
610             fjz0             = _mm_add_pd(fjz0,tz);
611
612             }
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             if (gmx_mm_any_lt(rsq30,rcutoff2))
619             {
620
621             r30              = _mm_mul_pd(rsq30,rinv30);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq30             = _mm_mul_pd(iq3,jq0);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_pd(r30,ewtabscale);
630             ewitab           = _mm_cvttpd_epi32(ewrt);
631             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
632             ewitab           = _mm_slli_epi32(ewitab,2);
633             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
634             ewtabD           = _mm_setzero_pd();
635             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
636             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
637             ewtabFn          = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
639             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
640             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
641             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
642             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
643
644             d                = _mm_sub_pd(r30,rswitch);
645             d                = _mm_max_pd(d,_mm_setzero_pd());
646             d2               = _mm_mul_pd(d,d);
647             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
648
649             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
650
651             /* Evaluate switch function */
652             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
653             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
654             velec            = _mm_mul_pd(velec,sw);
655             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velec            = _mm_and_pd(velec,cutoff_mask);
659             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
660             velecsum         = _mm_add_pd(velecsum,velec);
661
662             fscal            = felec;
663
664             fscal            = _mm_and_pd(fscal,cutoff_mask);
665
666             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm_mul_pd(fscal,dx30);
670             ty               = _mm_mul_pd(fscal,dy30);
671             tz               = _mm_mul_pd(fscal,dz30);
672
673             /* Update vectorial force */
674             fix3             = _mm_add_pd(fix3,tx);
675             fiy3             = _mm_add_pd(fiy3,ty);
676             fiz3             = _mm_add_pd(fiz3,tz);
677
678             fjx0             = _mm_add_pd(fjx0,tx);
679             fjy0             = _mm_add_pd(fjy0,ty);
680             fjz0             = _mm_add_pd(fjz0,tz);
681
682             }
683
684             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
685
686             /* Inner loop uses 198 flops */
687         }
688
689         /* End of innermost loop */
690
691         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
692                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
693
694         ggid                        = gid[iidx];
695         /* Update potential energies */
696         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
697
698         /* Increment number of inner iterations */
699         inneriter                  += j_index_end - j_index_start;
700
701         /* Outer loop uses 19 flops */
702     }
703
704     /* Increment number of outer iterations */
705     outeriter        += nri;
706
707     /* Update outer/inner flops */
708
709     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*198);
710 }
711 /*
712  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse4_1_double
713  * Electrostatics interaction: Ewald
714  * VdW interaction:            None
715  * Geometry:                   Water4-Particle
716  * Calculate force/pot:        Force
717  */
718 void
719 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse4_1_double
720                     (t_nblist                    * gmx_restrict       nlist,
721                      rvec                        * gmx_restrict          xx,
722                      rvec                        * gmx_restrict          ff,
723                      struct t_forcerec           * gmx_restrict          fr,
724                      t_mdatoms                   * gmx_restrict     mdatoms,
725                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
726                      t_nrnb                      * gmx_restrict        nrnb)
727 {
728     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
729      * just 0 for non-waters.
730      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
731      * jnr indices corresponding to data put in the four positions in the SIMD register.
732      */
733     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
734     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
735     int              jnrA,jnrB;
736     int              j_coord_offsetA,j_coord_offsetB;
737     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
738     real             rcutoff_scalar;
739     real             *shiftvec,*fshift,*x,*f;
740     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
741     int              vdwioffset1;
742     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
743     int              vdwioffset2;
744     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
745     int              vdwioffset3;
746     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
747     int              vdwjidx0A,vdwjidx0B;
748     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
749     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
750     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
751     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
752     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
753     real             *charge;
754     __m128i          ewitab;
755     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
756     real             *ewtab;
757     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
758     real             rswitch_scalar,d_scalar;
759     __m128d          dummy_mask,cutoff_mask;
760     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
761     __m128d          one     = _mm_set1_pd(1.0);
762     __m128d          two     = _mm_set1_pd(2.0);
763     x                = xx[0];
764     f                = ff[0];
765
766     nri              = nlist->nri;
767     iinr             = nlist->iinr;
768     jindex           = nlist->jindex;
769     jjnr             = nlist->jjnr;
770     shiftidx         = nlist->shift;
771     gid              = nlist->gid;
772     shiftvec         = fr->shift_vec[0];
773     fshift           = fr->fshift[0];
774     facel            = _mm_set1_pd(fr->ic->epsfac);
775     charge           = mdatoms->chargeA;
776
777     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
778     ewtab            = fr->ic->tabq_coul_FDV0;
779     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
780     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
781
782     /* Setup water-specific parameters */
783     inr              = nlist->iinr[0];
784     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
785     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
786     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
787
788     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
789     rcutoff_scalar   = fr->ic->rcoulomb;
790     rcutoff          = _mm_set1_pd(rcutoff_scalar);
791     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
792
793     rswitch_scalar   = fr->ic->rcoulomb_switch;
794     rswitch          = _mm_set1_pd(rswitch_scalar);
795     /* Setup switch parameters */
796     d_scalar         = rcutoff_scalar-rswitch_scalar;
797     d                = _mm_set1_pd(d_scalar);
798     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
799     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
800     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
801     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
802     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
803     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
804
805     /* Avoid stupid compiler warnings */
806     jnrA = jnrB = 0;
807     j_coord_offsetA = 0;
808     j_coord_offsetB = 0;
809
810     outeriter        = 0;
811     inneriter        = 0;
812
813     /* Start outer loop over neighborlists */
814     for(iidx=0; iidx<nri; iidx++)
815     {
816         /* Load shift vector for this list */
817         i_shift_offset   = DIM*shiftidx[iidx];
818
819         /* Load limits for loop over neighbors */
820         j_index_start    = jindex[iidx];
821         j_index_end      = jindex[iidx+1];
822
823         /* Get outer coordinate index */
824         inr              = iinr[iidx];
825         i_coord_offset   = DIM*inr;
826
827         /* Load i particle coords and add shift vector */
828         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
829                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
830
831         fix1             = _mm_setzero_pd();
832         fiy1             = _mm_setzero_pd();
833         fiz1             = _mm_setzero_pd();
834         fix2             = _mm_setzero_pd();
835         fiy2             = _mm_setzero_pd();
836         fiz2             = _mm_setzero_pd();
837         fix3             = _mm_setzero_pd();
838         fiy3             = _mm_setzero_pd();
839         fiz3             = _mm_setzero_pd();
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
843         {
844
845             /* Get j neighbor index, and coordinate index */
846             jnrA             = jjnr[jidx];
847             jnrB             = jjnr[jidx+1];
848             j_coord_offsetA  = DIM*jnrA;
849             j_coord_offsetB  = DIM*jnrB;
850
851             /* load j atom coordinates */
852             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
853                                               &jx0,&jy0,&jz0);
854
855             /* Calculate displacement vector */
856             dx10             = _mm_sub_pd(ix1,jx0);
857             dy10             = _mm_sub_pd(iy1,jy0);
858             dz10             = _mm_sub_pd(iz1,jz0);
859             dx20             = _mm_sub_pd(ix2,jx0);
860             dy20             = _mm_sub_pd(iy2,jy0);
861             dz20             = _mm_sub_pd(iz2,jz0);
862             dx30             = _mm_sub_pd(ix3,jx0);
863             dy30             = _mm_sub_pd(iy3,jy0);
864             dz30             = _mm_sub_pd(iz3,jz0);
865
866             /* Calculate squared distance and things based on it */
867             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
868             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
869             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
870
871             rinv10           = sse41_invsqrt_d(rsq10);
872             rinv20           = sse41_invsqrt_d(rsq20);
873             rinv30           = sse41_invsqrt_d(rsq30);
874
875             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
876             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
877             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
878
879             /* Load parameters for j particles */
880             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
881
882             fjx0             = _mm_setzero_pd();
883             fjy0             = _mm_setzero_pd();
884             fjz0             = _mm_setzero_pd();
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             if (gmx_mm_any_lt(rsq10,rcutoff2))
891             {
892
893             r10              = _mm_mul_pd(rsq10,rinv10);
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq10             = _mm_mul_pd(iq1,jq0);
897
898             /* EWALD ELECTROSTATICS */
899
900             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
901             ewrt             = _mm_mul_pd(r10,ewtabscale);
902             ewitab           = _mm_cvttpd_epi32(ewrt);
903             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
904             ewitab           = _mm_slli_epi32(ewitab,2);
905             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
906             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
907             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
908             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
909             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
910             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
911             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
912             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
913             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
914             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
915
916             d                = _mm_sub_pd(r10,rswitch);
917             d                = _mm_max_pd(d,_mm_setzero_pd());
918             d2               = _mm_mul_pd(d,d);
919             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
920
921             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
922
923             /* Evaluate switch function */
924             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
925             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
926             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
927
928             fscal            = felec;
929
930             fscal            = _mm_and_pd(fscal,cutoff_mask);
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_pd(fscal,dx10);
934             ty               = _mm_mul_pd(fscal,dy10);
935             tz               = _mm_mul_pd(fscal,dz10);
936
937             /* Update vectorial force */
938             fix1             = _mm_add_pd(fix1,tx);
939             fiy1             = _mm_add_pd(fiy1,ty);
940             fiz1             = _mm_add_pd(fiz1,tz);
941
942             fjx0             = _mm_add_pd(fjx0,tx);
943             fjy0             = _mm_add_pd(fjy0,ty);
944             fjz0             = _mm_add_pd(fjz0,tz);
945
946             }
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             if (gmx_mm_any_lt(rsq20,rcutoff2))
953             {
954
955             r20              = _mm_mul_pd(rsq20,rinv20);
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq20             = _mm_mul_pd(iq2,jq0);
959
960             /* EWALD ELECTROSTATICS */
961
962             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
963             ewrt             = _mm_mul_pd(r20,ewtabscale);
964             ewitab           = _mm_cvttpd_epi32(ewrt);
965             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
966             ewitab           = _mm_slli_epi32(ewitab,2);
967             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
968             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
969             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
970             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
971             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
972             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
973             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
974             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
975             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
976             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
977
978             d                = _mm_sub_pd(r20,rswitch);
979             d                = _mm_max_pd(d,_mm_setzero_pd());
980             d2               = _mm_mul_pd(d,d);
981             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
982
983             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
984
985             /* Evaluate switch function */
986             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
987             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
988             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
989
990             fscal            = felec;
991
992             fscal            = _mm_and_pd(fscal,cutoff_mask);
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx20);
996             ty               = _mm_mul_pd(fscal,dy20);
997             tz               = _mm_mul_pd(fscal,dz20);
998
999             /* Update vectorial force */
1000             fix2             = _mm_add_pd(fix2,tx);
1001             fiy2             = _mm_add_pd(fiy2,ty);
1002             fiz2             = _mm_add_pd(fiz2,tz);
1003
1004             fjx0             = _mm_add_pd(fjx0,tx);
1005             fjy0             = _mm_add_pd(fjy0,ty);
1006             fjz0             = _mm_add_pd(fjz0,tz);
1007
1008             }
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             if (gmx_mm_any_lt(rsq30,rcutoff2))
1015             {
1016
1017             r30              = _mm_mul_pd(rsq30,rinv30);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq30             = _mm_mul_pd(iq3,jq0);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _mm_mul_pd(r30,ewtabscale);
1026             ewitab           = _mm_cvttpd_epi32(ewrt);
1027             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1028             ewitab           = _mm_slli_epi32(ewitab,2);
1029             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1030             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1031             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1032             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1033             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1034             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1035             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1036             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1037             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1038             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1039
1040             d                = _mm_sub_pd(r30,rswitch);
1041             d                = _mm_max_pd(d,_mm_setzero_pd());
1042             d2               = _mm_mul_pd(d,d);
1043             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1044
1045             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1046
1047             /* Evaluate switch function */
1048             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1049             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1050             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1051
1052             fscal            = felec;
1053
1054             fscal            = _mm_and_pd(fscal,cutoff_mask);
1055
1056             /* Calculate temporary vectorial force */
1057             tx               = _mm_mul_pd(fscal,dx30);
1058             ty               = _mm_mul_pd(fscal,dy30);
1059             tz               = _mm_mul_pd(fscal,dz30);
1060
1061             /* Update vectorial force */
1062             fix3             = _mm_add_pd(fix3,tx);
1063             fiy3             = _mm_add_pd(fiy3,ty);
1064             fiz3             = _mm_add_pd(fiz3,tz);
1065
1066             fjx0             = _mm_add_pd(fjx0,tx);
1067             fjy0             = _mm_add_pd(fjy0,ty);
1068             fjz0             = _mm_add_pd(fjz0,tz);
1069
1070             }
1071
1072             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1073
1074             /* Inner loop uses 189 flops */
1075         }
1076
1077         if(jidx<j_index_end)
1078         {
1079
1080             jnrA             = jjnr[jidx];
1081             j_coord_offsetA  = DIM*jnrA;
1082
1083             /* load j atom coordinates */
1084             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1085                                               &jx0,&jy0,&jz0);
1086
1087             /* Calculate displacement vector */
1088             dx10             = _mm_sub_pd(ix1,jx0);
1089             dy10             = _mm_sub_pd(iy1,jy0);
1090             dz10             = _mm_sub_pd(iz1,jz0);
1091             dx20             = _mm_sub_pd(ix2,jx0);
1092             dy20             = _mm_sub_pd(iy2,jy0);
1093             dz20             = _mm_sub_pd(iz2,jz0);
1094             dx30             = _mm_sub_pd(ix3,jx0);
1095             dy30             = _mm_sub_pd(iy3,jy0);
1096             dz30             = _mm_sub_pd(iz3,jz0);
1097
1098             /* Calculate squared distance and things based on it */
1099             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1100             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1101             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1102
1103             rinv10           = sse41_invsqrt_d(rsq10);
1104             rinv20           = sse41_invsqrt_d(rsq20);
1105             rinv30           = sse41_invsqrt_d(rsq30);
1106
1107             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1108             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1109             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1110
1111             /* Load parameters for j particles */
1112             jq0              = _mm_load_sd(charge+jnrA+0);
1113
1114             fjx0             = _mm_setzero_pd();
1115             fjy0             = _mm_setzero_pd();
1116             fjz0             = _mm_setzero_pd();
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             if (gmx_mm_any_lt(rsq10,rcutoff2))
1123             {
1124
1125             r10              = _mm_mul_pd(rsq10,rinv10);
1126
1127             /* Compute parameters for interactions between i and j atoms */
1128             qq10             = _mm_mul_pd(iq1,jq0);
1129
1130             /* EWALD ELECTROSTATICS */
1131
1132             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1133             ewrt             = _mm_mul_pd(r10,ewtabscale);
1134             ewitab           = _mm_cvttpd_epi32(ewrt);
1135             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1136             ewitab           = _mm_slli_epi32(ewitab,2);
1137             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1138             ewtabD           = _mm_setzero_pd();
1139             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1140             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1141             ewtabFn          = _mm_setzero_pd();
1142             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1143             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1144             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1145             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1146             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1147
1148             d                = _mm_sub_pd(r10,rswitch);
1149             d                = _mm_max_pd(d,_mm_setzero_pd());
1150             d2               = _mm_mul_pd(d,d);
1151             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1152
1153             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1154
1155             /* Evaluate switch function */
1156             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1157             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1158             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1159
1160             fscal            = felec;
1161
1162             fscal            = _mm_and_pd(fscal,cutoff_mask);
1163
1164             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm_mul_pd(fscal,dx10);
1168             ty               = _mm_mul_pd(fscal,dy10);
1169             tz               = _mm_mul_pd(fscal,dz10);
1170
1171             /* Update vectorial force */
1172             fix1             = _mm_add_pd(fix1,tx);
1173             fiy1             = _mm_add_pd(fiy1,ty);
1174             fiz1             = _mm_add_pd(fiz1,tz);
1175
1176             fjx0             = _mm_add_pd(fjx0,tx);
1177             fjy0             = _mm_add_pd(fjy0,ty);
1178             fjz0             = _mm_add_pd(fjz0,tz);
1179
1180             }
1181
1182             /**************************
1183              * CALCULATE INTERACTIONS *
1184              **************************/
1185
1186             if (gmx_mm_any_lt(rsq20,rcutoff2))
1187             {
1188
1189             r20              = _mm_mul_pd(rsq20,rinv20);
1190
1191             /* Compute parameters for interactions between i and j atoms */
1192             qq20             = _mm_mul_pd(iq2,jq0);
1193
1194             /* EWALD ELECTROSTATICS */
1195
1196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1197             ewrt             = _mm_mul_pd(r20,ewtabscale);
1198             ewitab           = _mm_cvttpd_epi32(ewrt);
1199             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1200             ewitab           = _mm_slli_epi32(ewitab,2);
1201             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1202             ewtabD           = _mm_setzero_pd();
1203             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1204             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1205             ewtabFn          = _mm_setzero_pd();
1206             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1207             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1208             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1209             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1210             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1211
1212             d                = _mm_sub_pd(r20,rswitch);
1213             d                = _mm_max_pd(d,_mm_setzero_pd());
1214             d2               = _mm_mul_pd(d,d);
1215             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1216
1217             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1218
1219             /* Evaluate switch function */
1220             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1221             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1222             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm_and_pd(fscal,cutoff_mask);
1227
1228             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm_mul_pd(fscal,dx20);
1232             ty               = _mm_mul_pd(fscal,dy20);
1233             tz               = _mm_mul_pd(fscal,dz20);
1234
1235             /* Update vectorial force */
1236             fix2             = _mm_add_pd(fix2,tx);
1237             fiy2             = _mm_add_pd(fiy2,ty);
1238             fiz2             = _mm_add_pd(fiz2,tz);
1239
1240             fjx0             = _mm_add_pd(fjx0,tx);
1241             fjy0             = _mm_add_pd(fjy0,ty);
1242             fjz0             = _mm_add_pd(fjz0,tz);
1243
1244             }
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             if (gmx_mm_any_lt(rsq30,rcutoff2))
1251             {
1252
1253             r30              = _mm_mul_pd(rsq30,rinv30);
1254
1255             /* Compute parameters for interactions between i and j atoms */
1256             qq30             = _mm_mul_pd(iq3,jq0);
1257
1258             /* EWALD ELECTROSTATICS */
1259
1260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1261             ewrt             = _mm_mul_pd(r30,ewtabscale);
1262             ewitab           = _mm_cvttpd_epi32(ewrt);
1263             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1264             ewitab           = _mm_slli_epi32(ewitab,2);
1265             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1266             ewtabD           = _mm_setzero_pd();
1267             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1268             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1269             ewtabFn          = _mm_setzero_pd();
1270             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1271             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1272             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1273             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1274             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1275
1276             d                = _mm_sub_pd(r30,rswitch);
1277             d                = _mm_max_pd(d,_mm_setzero_pd());
1278             d2               = _mm_mul_pd(d,d);
1279             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1280
1281             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1282
1283             /* Evaluate switch function */
1284             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1285             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1286             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1287
1288             fscal            = felec;
1289
1290             fscal            = _mm_and_pd(fscal,cutoff_mask);
1291
1292             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1293
1294             /* Calculate temporary vectorial force */
1295             tx               = _mm_mul_pd(fscal,dx30);
1296             ty               = _mm_mul_pd(fscal,dy30);
1297             tz               = _mm_mul_pd(fscal,dz30);
1298
1299             /* Update vectorial force */
1300             fix3             = _mm_add_pd(fix3,tx);
1301             fiy3             = _mm_add_pd(fiy3,ty);
1302             fiz3             = _mm_add_pd(fiz3,tz);
1303
1304             fjx0             = _mm_add_pd(fjx0,tx);
1305             fjy0             = _mm_add_pd(fjy0,ty);
1306             fjz0             = _mm_add_pd(fjz0,tz);
1307
1308             }
1309
1310             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1311
1312             /* Inner loop uses 189 flops */
1313         }
1314
1315         /* End of innermost loop */
1316
1317         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1318                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1319
1320         /* Increment number of inner iterations */
1321         inneriter                  += j_index_end - j_index_start;
1322
1323         /* Outer loop uses 18 flops */
1324     }
1325
1326     /* Increment number of outer iterations */
1327     outeriter        += nri;
1328
1329     /* Update outer/inner flops */
1330
1331     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*189);
1332 }