Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
119     ewtab            = fr->ic->tabq_coul_FDV0;
120     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
121     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
126     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
127     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_pd(rcutoff_scalar);
132     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
133
134     rswitch_scalar   = fr->rcoulomb_switch;
135     rswitch          = _mm_set1_pd(rswitch_scalar);
136     /* Setup switch parameters */
137     d_scalar         = rcutoff_scalar-rswitch_scalar;
138     d                = _mm_set1_pd(d_scalar);
139     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
140     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
143     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_pd();
173         fiy0             = _mm_setzero_pd();
174         fiz0             = _mm_setzero_pd();
175         fix1             = _mm_setzero_pd();
176         fiy1             = _mm_setzero_pd();
177         fiz1             = _mm_setzero_pd();
178         fix2             = _mm_setzero_pd();
179         fiy2             = _mm_setzero_pd();
180         fiz2             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_pd(ix0,jx0);
201             dy00             = _mm_sub_pd(iy0,jy0);
202             dz00             = _mm_sub_pd(iz0,jz0);
203             dx10             = _mm_sub_pd(ix1,jx0);
204             dy10             = _mm_sub_pd(iy1,jy0);
205             dz10             = _mm_sub_pd(iz1,jz0);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214
215             rinv00           = gmx_mm_invsqrt_pd(rsq00);
216             rinv10           = gmx_mm_invsqrt_pd(rsq10);
217             rinv20           = gmx_mm_invsqrt_pd(rsq20);
218
219             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225
226             fjx0             = _mm_setzero_pd();
227             fjy0             = _mm_setzero_pd();
228             fjz0             = _mm_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_mm_any_lt(rsq00,rcutoff2))
235             {
236
237             r00              = _mm_mul_pd(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_pd(iq0,jq0);
241
242             /* EWALD ELECTROSTATICS */
243
244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
245             ewrt             = _mm_mul_pd(r00,ewtabscale);
246             ewitab           = _mm_cvttpd_epi32(ewrt);
247             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
248             ewitab           = _mm_slli_epi32(ewitab,2);
249             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
250             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
251             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
252             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
253             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
254             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
255             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
256             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
257             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
258             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
259
260             d                = _mm_sub_pd(r00,rswitch);
261             d                = _mm_max_pd(d,_mm_setzero_pd());
262             d2               = _mm_mul_pd(d,d);
263             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
264
265             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
266
267             /* Evaluate switch function */
268             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
269             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
270             velec            = _mm_mul_pd(velec,sw);
271             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velec            = _mm_and_pd(velec,cutoff_mask);
275             velecsum         = _mm_add_pd(velecsum,velec);
276
277             fscal            = felec;
278
279             fscal            = _mm_and_pd(fscal,cutoff_mask);
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm_mul_pd(fscal,dx00);
283             ty               = _mm_mul_pd(fscal,dy00);
284             tz               = _mm_mul_pd(fscal,dz00);
285
286             /* Update vectorial force */
287             fix0             = _mm_add_pd(fix0,tx);
288             fiy0             = _mm_add_pd(fiy0,ty);
289             fiz0             = _mm_add_pd(fiz0,tz);
290
291             fjx0             = _mm_add_pd(fjx0,tx);
292             fjy0             = _mm_add_pd(fjy0,ty);
293             fjz0             = _mm_add_pd(fjz0,tz);
294
295             }
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             if (gmx_mm_any_lt(rsq10,rcutoff2))
302             {
303
304             r10              = _mm_mul_pd(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_pd(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r10,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
323             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
324             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
326
327             d                = _mm_sub_pd(r10,rswitch);
328             d                = _mm_max_pd(d,_mm_setzero_pd());
329             d2               = _mm_mul_pd(d,d);
330             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
331
332             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
333
334             /* Evaluate switch function */
335             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
336             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
337             velec            = _mm_mul_pd(velec,sw);
338             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm_and_pd(velec,cutoff_mask);
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm_and_pd(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx10);
350             ty               = _mm_mul_pd(fscal,dy10);
351             tz               = _mm_mul_pd(fscal,dz10);
352
353             /* Update vectorial force */
354             fix1             = _mm_add_pd(fix1,tx);
355             fiy1             = _mm_add_pd(fiy1,ty);
356             fiz1             = _mm_add_pd(fiz1,tz);
357
358             fjx0             = _mm_add_pd(fjx0,tx);
359             fjy0             = _mm_add_pd(fjy0,ty);
360             fjz0             = _mm_add_pd(fjz0,tz);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm_any_lt(rsq20,rcutoff2))
369             {
370
371             r20              = _mm_mul_pd(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_pd(iq2,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_pd(r20,ewtabscale);
380             ewitab           = _mm_cvttpd_epi32(ewrt);
381             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
386             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
387             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
388             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
389             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
390             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
391             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
392             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
393
394             d                = _mm_sub_pd(r20,rswitch);
395             d                = _mm_max_pd(d,_mm_setzero_pd());
396             d2               = _mm_mul_pd(d,d);
397             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
398
399             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
400
401             /* Evaluate switch function */
402             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
403             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
404             velec            = _mm_mul_pd(velec,sw);
405             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_pd(velec,cutoff_mask);
409             velecsum         = _mm_add_pd(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_pd(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_pd(fscal,dx20);
417             ty               = _mm_mul_pd(fscal,dy20);
418             tz               = _mm_mul_pd(fscal,dz20);
419
420             /* Update vectorial force */
421             fix2             = _mm_add_pd(fix2,tx);
422             fiy2             = _mm_add_pd(fiy2,ty);
423             fiz2             = _mm_add_pd(fiz2,tz);
424
425             fjx0             = _mm_add_pd(fjx0,tx);
426             fjy0             = _mm_add_pd(fjy0,ty);
427             fjz0             = _mm_add_pd(fjz0,tz);
428
429             }
430
431             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
432
433             /* Inner loop uses 198 flops */
434         }
435
436         if(jidx<j_index_end)
437         {
438
439             jnrA             = jjnr[jidx];
440             j_coord_offsetA  = DIM*jnrA;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_pd(ix0,jx0);
448             dy00             = _mm_sub_pd(iy0,jy0);
449             dz00             = _mm_sub_pd(iz0,jz0);
450             dx10             = _mm_sub_pd(ix1,jx0);
451             dy10             = _mm_sub_pd(iy1,jy0);
452             dz10             = _mm_sub_pd(iz1,jz0);
453             dx20             = _mm_sub_pd(ix2,jx0);
454             dy20             = _mm_sub_pd(iy2,jy0);
455             dz20             = _mm_sub_pd(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
461
462             rinv00           = gmx_mm_invsqrt_pd(rsq00);
463             rinv10           = gmx_mm_invsqrt_pd(rsq10);
464             rinv20           = gmx_mm_invsqrt_pd(rsq20);
465
466             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
467             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
468             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
469
470             /* Load parameters for j particles */
471             jq0              = _mm_load_sd(charge+jnrA+0);
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm_any_lt(rsq00,rcutoff2))
482             {
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq00             = _mm_mul_pd(iq0,jq0);
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = _mm_mul_pd(r00,ewtabscale);
493             ewitab           = _mm_cvttpd_epi32(ewrt);
494             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
495             ewitab           = _mm_slli_epi32(ewitab,2);
496             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
497             ewtabD           = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
499             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
500             ewtabFn          = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
502             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
503             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
504             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
505             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
506
507             d                = _mm_sub_pd(r00,rswitch);
508             d                = _mm_max_pd(d,_mm_setzero_pd());
509             d2               = _mm_mul_pd(d,d);
510             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
511
512             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
513
514             /* Evaluate switch function */
515             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
516             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
517             velec            = _mm_mul_pd(velec,sw);
518             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_and_pd(velec,cutoff_mask);
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_and_pd(fscal,cutoff_mask);
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx00);
533             ty               = _mm_mul_pd(fscal,dy00);
534             tz               = _mm_mul_pd(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_pd(fix0,tx);
538             fiy0             = _mm_add_pd(fiy0,ty);
539             fiz0             = _mm_add_pd(fiz0,tz);
540
541             fjx0             = _mm_add_pd(fjx0,tx);
542             fjy0             = _mm_add_pd(fjy0,ty);
543             fjz0             = _mm_add_pd(fjz0,tz);
544
545             }
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (gmx_mm_any_lt(rsq10,rcutoff2))
552             {
553
554             r10              = _mm_mul_pd(rsq10,rinv10);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq10             = _mm_mul_pd(iq1,jq0);
558
559             /* EWALD ELECTROSTATICS */
560
561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
562             ewrt             = _mm_mul_pd(r10,ewtabscale);
563             ewitab           = _mm_cvttpd_epi32(ewrt);
564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
565             ewitab           = _mm_slli_epi32(ewitab,2);
566             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
567             ewtabD           = _mm_setzero_pd();
568             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
569             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
570             ewtabFn          = _mm_setzero_pd();
571             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
572             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
573             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
574             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
575             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
576
577             d                = _mm_sub_pd(r10,rswitch);
578             d                = _mm_max_pd(d,_mm_setzero_pd());
579             d2               = _mm_mul_pd(d,d);
580             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
581
582             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
583
584             /* Evaluate switch function */
585             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
586             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
587             velec            = _mm_mul_pd(velec,sw);
588             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_and_pd(velec,cutoff_mask);
592             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
593             velecsum         = _mm_add_pd(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm_and_pd(fscal,cutoff_mask);
598
599             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx10);
603             ty               = _mm_mul_pd(fscal,dy10);
604             tz               = _mm_mul_pd(fscal,dz10);
605
606             /* Update vectorial force */
607             fix1             = _mm_add_pd(fix1,tx);
608             fiy1             = _mm_add_pd(fiy1,ty);
609             fiz1             = _mm_add_pd(fiz1,tz);
610
611             fjx0             = _mm_add_pd(fjx0,tx);
612             fjy0             = _mm_add_pd(fjy0,ty);
613             fjz0             = _mm_add_pd(fjz0,tz);
614
615             }
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm_any_lt(rsq20,rcutoff2))
622             {
623
624             r20              = _mm_mul_pd(rsq20,rinv20);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq20             = _mm_mul_pd(iq2,jq0);
628
629             /* EWALD ELECTROSTATICS */
630
631             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632             ewrt             = _mm_mul_pd(r20,ewtabscale);
633             ewitab           = _mm_cvttpd_epi32(ewrt);
634             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
635             ewitab           = _mm_slli_epi32(ewitab,2);
636             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
637             ewtabD           = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
639             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
640             ewtabFn          = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
642             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
643             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
644             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
645             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
646
647             d                = _mm_sub_pd(r20,rswitch);
648             d                = _mm_max_pd(d,_mm_setzero_pd());
649             d2               = _mm_mul_pd(d,d);
650             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
651
652             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
653
654             /* Evaluate switch function */
655             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
656             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
657             velec            = _mm_mul_pd(velec,sw);
658             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _mm_and_pd(velec,cutoff_mask);
662             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
663             velecsum         = _mm_add_pd(velecsum,velec);
664
665             fscal            = felec;
666
667             fscal            = _mm_and_pd(fscal,cutoff_mask);
668
669             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm_mul_pd(fscal,dx20);
673             ty               = _mm_mul_pd(fscal,dy20);
674             tz               = _mm_mul_pd(fscal,dz20);
675
676             /* Update vectorial force */
677             fix2             = _mm_add_pd(fix2,tx);
678             fiy2             = _mm_add_pd(fiy2,ty);
679             fiz2             = _mm_add_pd(fiz2,tz);
680
681             fjx0             = _mm_add_pd(fjx0,tx);
682             fjy0             = _mm_add_pd(fjy0,ty);
683             fjz0             = _mm_add_pd(fjz0,tz);
684
685             }
686
687             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
688
689             /* Inner loop uses 198 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
695                                               f+i_coord_offset,fshift+i_shift_offset);
696
697         ggid                        = gid[iidx];
698         /* Update potential energies */
699         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
700
701         /* Increment number of inner iterations */
702         inneriter                  += j_index_end - j_index_start;
703
704         /* Outer loop uses 19 flops */
705     }
706
707     /* Increment number of outer iterations */
708     outeriter        += nri;
709
710     /* Update outer/inner flops */
711
712     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*198);
713 }
714 /*
715  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sse4_1_double
716  * Electrostatics interaction: Ewald
717  * VdW interaction:            None
718  * Geometry:                   Water3-Particle
719  * Calculate force/pot:        Force
720  */
721 void
722 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_sse4_1_double
723                     (t_nblist                    * gmx_restrict       nlist,
724                      rvec                        * gmx_restrict          xx,
725                      rvec                        * gmx_restrict          ff,
726                      t_forcerec                  * gmx_restrict          fr,
727                      t_mdatoms                   * gmx_restrict     mdatoms,
728                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
729                      t_nrnb                      * gmx_restrict        nrnb)
730 {
731     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
732      * just 0 for non-waters.
733      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
734      * jnr indices corresponding to data put in the four positions in the SIMD register.
735      */
736     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
737     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
738     int              jnrA,jnrB;
739     int              j_coord_offsetA,j_coord_offsetB;
740     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
741     real             rcutoff_scalar;
742     real             *shiftvec,*fshift,*x,*f;
743     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
744     int              vdwioffset0;
745     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
746     int              vdwioffset1;
747     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
748     int              vdwioffset2;
749     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
750     int              vdwjidx0A,vdwjidx0B;
751     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
752     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
753     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
754     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
755     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
756     real             *charge;
757     __m128i          ewitab;
758     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
759     real             *ewtab;
760     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
761     real             rswitch_scalar,d_scalar;
762     __m128d          dummy_mask,cutoff_mask;
763     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
764     __m128d          one     = _mm_set1_pd(1.0);
765     __m128d          two     = _mm_set1_pd(2.0);
766     x                = xx[0];
767     f                = ff[0];
768
769     nri              = nlist->nri;
770     iinr             = nlist->iinr;
771     jindex           = nlist->jindex;
772     jjnr             = nlist->jjnr;
773     shiftidx         = nlist->shift;
774     gid              = nlist->gid;
775     shiftvec         = fr->shift_vec[0];
776     fshift           = fr->fshift[0];
777     facel            = _mm_set1_pd(fr->epsfac);
778     charge           = mdatoms->chargeA;
779
780     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
781     ewtab            = fr->ic->tabq_coul_FDV0;
782     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
783     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
784
785     /* Setup water-specific parameters */
786     inr              = nlist->iinr[0];
787     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
788     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
789     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
790
791     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
792     rcutoff_scalar   = fr->rcoulomb;
793     rcutoff          = _mm_set1_pd(rcutoff_scalar);
794     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
795
796     rswitch_scalar   = fr->rcoulomb_switch;
797     rswitch          = _mm_set1_pd(rswitch_scalar);
798     /* Setup switch parameters */
799     d_scalar         = rcutoff_scalar-rswitch_scalar;
800     d                = _mm_set1_pd(d_scalar);
801     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
802     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
803     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
804     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
805     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
806     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
807
808     /* Avoid stupid compiler warnings */
809     jnrA = jnrB = 0;
810     j_coord_offsetA = 0;
811     j_coord_offsetB = 0;
812
813     outeriter        = 0;
814     inneriter        = 0;
815
816     /* Start outer loop over neighborlists */
817     for(iidx=0; iidx<nri; iidx++)
818     {
819         /* Load shift vector for this list */
820         i_shift_offset   = DIM*shiftidx[iidx];
821
822         /* Load limits for loop over neighbors */
823         j_index_start    = jindex[iidx];
824         j_index_end      = jindex[iidx+1];
825
826         /* Get outer coordinate index */
827         inr              = iinr[iidx];
828         i_coord_offset   = DIM*inr;
829
830         /* Load i particle coords and add shift vector */
831         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
832                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
833
834         fix0             = _mm_setzero_pd();
835         fiy0             = _mm_setzero_pd();
836         fiz0             = _mm_setzero_pd();
837         fix1             = _mm_setzero_pd();
838         fiy1             = _mm_setzero_pd();
839         fiz1             = _mm_setzero_pd();
840         fix2             = _mm_setzero_pd();
841         fiy2             = _mm_setzero_pd();
842         fiz2             = _mm_setzero_pd();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx00             = _mm_sub_pd(ix0,jx0);
860             dy00             = _mm_sub_pd(iy0,jy0);
861             dz00             = _mm_sub_pd(iz0,jz0);
862             dx10             = _mm_sub_pd(ix1,jx0);
863             dy10             = _mm_sub_pd(iy1,jy0);
864             dz10             = _mm_sub_pd(iz1,jz0);
865             dx20             = _mm_sub_pd(ix2,jx0);
866             dy20             = _mm_sub_pd(iy2,jy0);
867             dz20             = _mm_sub_pd(iz2,jz0);
868
869             /* Calculate squared distance and things based on it */
870             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
871             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
872             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
873
874             rinv00           = gmx_mm_invsqrt_pd(rsq00);
875             rinv10           = gmx_mm_invsqrt_pd(rsq10);
876             rinv20           = gmx_mm_invsqrt_pd(rsq20);
877
878             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
879             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
880             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
884
885             fjx0             = _mm_setzero_pd();
886             fjy0             = _mm_setzero_pd();
887             fjz0             = _mm_setzero_pd();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             if (gmx_mm_any_lt(rsq00,rcutoff2))
894             {
895
896             r00              = _mm_mul_pd(rsq00,rinv00);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq00             = _mm_mul_pd(iq0,jq0);
900
901             /* EWALD ELECTROSTATICS */
902
903             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
904             ewrt             = _mm_mul_pd(r00,ewtabscale);
905             ewitab           = _mm_cvttpd_epi32(ewrt);
906             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
907             ewitab           = _mm_slli_epi32(ewitab,2);
908             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
909             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
910             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
911             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
912             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
913             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
914             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
915             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
916             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
917             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
918
919             d                = _mm_sub_pd(r00,rswitch);
920             d                = _mm_max_pd(d,_mm_setzero_pd());
921             d2               = _mm_mul_pd(d,d);
922             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
923
924             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
925
926             /* Evaluate switch function */
927             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
928             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
929             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
930
931             fscal            = felec;
932
933             fscal            = _mm_and_pd(fscal,cutoff_mask);
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm_mul_pd(fscal,dx00);
937             ty               = _mm_mul_pd(fscal,dy00);
938             tz               = _mm_mul_pd(fscal,dz00);
939
940             /* Update vectorial force */
941             fix0             = _mm_add_pd(fix0,tx);
942             fiy0             = _mm_add_pd(fiy0,ty);
943             fiz0             = _mm_add_pd(fiz0,tz);
944
945             fjx0             = _mm_add_pd(fjx0,tx);
946             fjy0             = _mm_add_pd(fjy0,ty);
947             fjz0             = _mm_add_pd(fjz0,tz);
948
949             }
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (gmx_mm_any_lt(rsq10,rcutoff2))
956             {
957
958             r10              = _mm_mul_pd(rsq10,rinv10);
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq10             = _mm_mul_pd(iq1,jq0);
962
963             /* EWALD ELECTROSTATICS */
964
965             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966             ewrt             = _mm_mul_pd(r10,ewtabscale);
967             ewitab           = _mm_cvttpd_epi32(ewrt);
968             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
969             ewitab           = _mm_slli_epi32(ewitab,2);
970             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
971             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
972             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
973             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
974             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
975             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
976             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
977             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
978             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
979             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
980
981             d                = _mm_sub_pd(r10,rswitch);
982             d                = _mm_max_pd(d,_mm_setzero_pd());
983             d2               = _mm_mul_pd(d,d);
984             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
985
986             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
987
988             /* Evaluate switch function */
989             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
990             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
991             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
992
993             fscal            = felec;
994
995             fscal            = _mm_and_pd(fscal,cutoff_mask);
996
997             /* Calculate temporary vectorial force */
998             tx               = _mm_mul_pd(fscal,dx10);
999             ty               = _mm_mul_pd(fscal,dy10);
1000             tz               = _mm_mul_pd(fscal,dz10);
1001
1002             /* Update vectorial force */
1003             fix1             = _mm_add_pd(fix1,tx);
1004             fiy1             = _mm_add_pd(fiy1,ty);
1005             fiz1             = _mm_add_pd(fiz1,tz);
1006
1007             fjx0             = _mm_add_pd(fjx0,tx);
1008             fjy0             = _mm_add_pd(fjy0,ty);
1009             fjz0             = _mm_add_pd(fjz0,tz);
1010
1011             }
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_mm_any_lt(rsq20,rcutoff2))
1018             {
1019
1020             r20              = _mm_mul_pd(rsq20,rinv20);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq20             = _mm_mul_pd(iq2,jq0);
1024
1025             /* EWALD ELECTROSTATICS */
1026
1027             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028             ewrt             = _mm_mul_pd(r20,ewtabscale);
1029             ewitab           = _mm_cvttpd_epi32(ewrt);
1030             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1031             ewitab           = _mm_slli_epi32(ewitab,2);
1032             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1033             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1034             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1035             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1036             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1037             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1038             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1039             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1040             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1041             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1042
1043             d                = _mm_sub_pd(r20,rswitch);
1044             d                = _mm_max_pd(d,_mm_setzero_pd());
1045             d2               = _mm_mul_pd(d,d);
1046             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1047
1048             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1049
1050             /* Evaluate switch function */
1051             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1052             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1053             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm_and_pd(fscal,cutoff_mask);
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm_mul_pd(fscal,dx20);
1061             ty               = _mm_mul_pd(fscal,dy20);
1062             tz               = _mm_mul_pd(fscal,dz20);
1063
1064             /* Update vectorial force */
1065             fix2             = _mm_add_pd(fix2,tx);
1066             fiy2             = _mm_add_pd(fiy2,ty);
1067             fiz2             = _mm_add_pd(fiz2,tz);
1068
1069             fjx0             = _mm_add_pd(fjx0,tx);
1070             fjy0             = _mm_add_pd(fjy0,ty);
1071             fjz0             = _mm_add_pd(fjz0,tz);
1072
1073             }
1074
1075             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1076
1077             /* Inner loop uses 189 flops */
1078         }
1079
1080         if(jidx<j_index_end)
1081         {
1082
1083             jnrA             = jjnr[jidx];
1084             j_coord_offsetA  = DIM*jnrA;
1085
1086             /* load j atom coordinates */
1087             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1088                                               &jx0,&jy0,&jz0);
1089
1090             /* Calculate displacement vector */
1091             dx00             = _mm_sub_pd(ix0,jx0);
1092             dy00             = _mm_sub_pd(iy0,jy0);
1093             dz00             = _mm_sub_pd(iz0,jz0);
1094             dx10             = _mm_sub_pd(ix1,jx0);
1095             dy10             = _mm_sub_pd(iy1,jy0);
1096             dz10             = _mm_sub_pd(iz1,jz0);
1097             dx20             = _mm_sub_pd(ix2,jx0);
1098             dy20             = _mm_sub_pd(iy2,jy0);
1099             dz20             = _mm_sub_pd(iz2,jz0);
1100
1101             /* Calculate squared distance and things based on it */
1102             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1103             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1104             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1105
1106             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1107             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1108             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1109
1110             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1111             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1112             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1113
1114             /* Load parameters for j particles */
1115             jq0              = _mm_load_sd(charge+jnrA+0);
1116
1117             fjx0             = _mm_setzero_pd();
1118             fjy0             = _mm_setzero_pd();
1119             fjz0             = _mm_setzero_pd();
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm_any_lt(rsq00,rcutoff2))
1126             {
1127
1128             r00              = _mm_mul_pd(rsq00,rinv00);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq00             = _mm_mul_pd(iq0,jq0);
1132
1133             /* EWALD ELECTROSTATICS */
1134
1135             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1136             ewrt             = _mm_mul_pd(r00,ewtabscale);
1137             ewitab           = _mm_cvttpd_epi32(ewrt);
1138             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1139             ewitab           = _mm_slli_epi32(ewitab,2);
1140             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1141             ewtabD           = _mm_setzero_pd();
1142             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1143             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1144             ewtabFn          = _mm_setzero_pd();
1145             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1146             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1147             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1148             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1149             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1150
1151             d                = _mm_sub_pd(r00,rswitch);
1152             d                = _mm_max_pd(d,_mm_setzero_pd());
1153             d2               = _mm_mul_pd(d,d);
1154             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1155
1156             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1157
1158             /* Evaluate switch function */
1159             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1160             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1161             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm_and_pd(fscal,cutoff_mask);
1166
1167             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1168
1169             /* Calculate temporary vectorial force */
1170             tx               = _mm_mul_pd(fscal,dx00);
1171             ty               = _mm_mul_pd(fscal,dy00);
1172             tz               = _mm_mul_pd(fscal,dz00);
1173
1174             /* Update vectorial force */
1175             fix0             = _mm_add_pd(fix0,tx);
1176             fiy0             = _mm_add_pd(fiy0,ty);
1177             fiz0             = _mm_add_pd(fiz0,tz);
1178
1179             fjx0             = _mm_add_pd(fjx0,tx);
1180             fjy0             = _mm_add_pd(fjy0,ty);
1181             fjz0             = _mm_add_pd(fjz0,tz);
1182
1183             }
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             if (gmx_mm_any_lt(rsq10,rcutoff2))
1190             {
1191
1192             r10              = _mm_mul_pd(rsq10,rinv10);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq10             = _mm_mul_pd(iq1,jq0);
1196
1197             /* EWALD ELECTROSTATICS */
1198
1199             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1200             ewrt             = _mm_mul_pd(r10,ewtabscale);
1201             ewitab           = _mm_cvttpd_epi32(ewrt);
1202             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1203             ewitab           = _mm_slli_epi32(ewitab,2);
1204             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1205             ewtabD           = _mm_setzero_pd();
1206             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1207             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1208             ewtabFn          = _mm_setzero_pd();
1209             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1210             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1211             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1212             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1213             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1214
1215             d                = _mm_sub_pd(r10,rswitch);
1216             d                = _mm_max_pd(d,_mm_setzero_pd());
1217             d2               = _mm_mul_pd(d,d);
1218             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1219
1220             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1221
1222             /* Evaluate switch function */
1223             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1224             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1225             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1226
1227             fscal            = felec;
1228
1229             fscal            = _mm_and_pd(fscal,cutoff_mask);
1230
1231             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1232
1233             /* Calculate temporary vectorial force */
1234             tx               = _mm_mul_pd(fscal,dx10);
1235             ty               = _mm_mul_pd(fscal,dy10);
1236             tz               = _mm_mul_pd(fscal,dz10);
1237
1238             /* Update vectorial force */
1239             fix1             = _mm_add_pd(fix1,tx);
1240             fiy1             = _mm_add_pd(fiy1,ty);
1241             fiz1             = _mm_add_pd(fiz1,tz);
1242
1243             fjx0             = _mm_add_pd(fjx0,tx);
1244             fjy0             = _mm_add_pd(fjy0,ty);
1245             fjz0             = _mm_add_pd(fjz0,tz);
1246
1247             }
1248
1249             /**************************
1250              * CALCULATE INTERACTIONS *
1251              **************************/
1252
1253             if (gmx_mm_any_lt(rsq20,rcutoff2))
1254             {
1255
1256             r20              = _mm_mul_pd(rsq20,rinv20);
1257
1258             /* Compute parameters for interactions between i and j atoms */
1259             qq20             = _mm_mul_pd(iq2,jq0);
1260
1261             /* EWALD ELECTROSTATICS */
1262
1263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1264             ewrt             = _mm_mul_pd(r20,ewtabscale);
1265             ewitab           = _mm_cvttpd_epi32(ewrt);
1266             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1267             ewitab           = _mm_slli_epi32(ewitab,2);
1268             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1269             ewtabD           = _mm_setzero_pd();
1270             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1271             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1272             ewtabFn          = _mm_setzero_pd();
1273             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1274             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1275             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1276             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1277             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1278
1279             d                = _mm_sub_pd(r20,rswitch);
1280             d                = _mm_max_pd(d,_mm_setzero_pd());
1281             d2               = _mm_mul_pd(d,d);
1282             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1283
1284             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1285
1286             /* Evaluate switch function */
1287             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1288             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1289             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1290
1291             fscal            = felec;
1292
1293             fscal            = _mm_and_pd(fscal,cutoff_mask);
1294
1295             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1296
1297             /* Calculate temporary vectorial force */
1298             tx               = _mm_mul_pd(fscal,dx20);
1299             ty               = _mm_mul_pd(fscal,dy20);
1300             tz               = _mm_mul_pd(fscal,dz20);
1301
1302             /* Update vectorial force */
1303             fix2             = _mm_add_pd(fix2,tx);
1304             fiy2             = _mm_add_pd(fiy2,ty);
1305             fiz2             = _mm_add_pd(fiz2,tz);
1306
1307             fjx0             = _mm_add_pd(fjx0,tx);
1308             fjy0             = _mm_add_pd(fjy0,ty);
1309             fjz0             = _mm_add_pd(fjz0,tz);
1310
1311             }
1312
1313             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1314
1315             /* Inner loop uses 189 flops */
1316         }
1317
1318         /* End of innermost loop */
1319
1320         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1321                                               f+i_coord_offset,fshift+i_shift_offset);
1322
1323         /* Increment number of inner iterations */
1324         inneriter                  += j_index_end - j_index_start;
1325
1326         /* Outer loop uses 18 flops */
1327     }
1328
1329     /* Increment number of outer iterations */
1330     outeriter        += nri;
1331
1332     /* Update outer/inner flops */
1333
1334     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*189);
1335 }