5da2b298d274f5eec6e8b16709e77b35d708d7c9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          ewitab;
89     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92     real             rswitch_scalar,d_scalar;
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
117     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = _mm_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_pd(d_scalar);
136     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
168
169         fix0             = _mm_setzero_pd();
170         fiy0             = _mm_setzero_pd();
171         fiz0             = _mm_setzero_pd();
172         fix1             = _mm_setzero_pd();
173         fiy1             = _mm_setzero_pd();
174         fiz1             = _mm_setzero_pd();
175         fix2             = _mm_setzero_pd();
176         fiy2             = _mm_setzero_pd();
177         fiz2             = _mm_setzero_pd();
178         fix3             = _mm_setzero_pd();
179         fiy3             = _mm_setzero_pd();
180         fiz3             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184         vvdwsum          = _mm_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_pd(ix0,jx0);
202             dy00             = _mm_sub_pd(iy0,jy0);
203             dz00             = _mm_sub_pd(iz0,jz0);
204             dx10             = _mm_sub_pd(ix1,jx0);
205             dy10             = _mm_sub_pd(iy1,jy0);
206             dz10             = _mm_sub_pd(iz1,jz0);
207             dx20             = _mm_sub_pd(ix2,jx0);
208             dy20             = _mm_sub_pd(iy2,jy0);
209             dz20             = _mm_sub_pd(iz2,jz0);
210             dx30             = _mm_sub_pd(ix3,jx0);
211             dy30             = _mm_sub_pd(iy3,jy0);
212             dz30             = _mm_sub_pd(iz3,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
218             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
219
220             rinv00           = gmx_mm_invsqrt_pd(rsq00);
221             rinv10           = gmx_mm_invsqrt_pd(rsq10);
222             rinv20           = gmx_mm_invsqrt_pd(rsq20);
223             rinv30           = gmx_mm_invsqrt_pd(rsq30);
224
225             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
226             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
228             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234
235             fjx0             = _mm_setzero_pd();
236             fjy0             = _mm_setzero_pd();
237             fjz0             = _mm_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             if (gmx_mm_any_lt(rsq00,rcutoff2))
244             {
245
246             r00              = _mm_mul_pd(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
256             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
257             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
258             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
259
260             d                = _mm_sub_pd(r00,rswitch);
261             d                = _mm_max_pd(d,_mm_setzero_pd());
262             d2               = _mm_mul_pd(d,d);
263             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
264
265             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
266
267             /* Evaluate switch function */
268             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
269             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
270             vvdw             = _mm_mul_pd(vvdw,sw);
271             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = fvdw;
278
279             fscal            = _mm_and_pd(fscal,cutoff_mask);
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm_mul_pd(fscal,dx00);
283             ty               = _mm_mul_pd(fscal,dy00);
284             tz               = _mm_mul_pd(fscal,dz00);
285
286             /* Update vectorial force */
287             fix0             = _mm_add_pd(fix0,tx);
288             fiy0             = _mm_add_pd(fiy0,ty);
289             fiz0             = _mm_add_pd(fiz0,tz);
290
291             fjx0             = _mm_add_pd(fjx0,tx);
292             fjy0             = _mm_add_pd(fjy0,ty);
293             fjz0             = _mm_add_pd(fjz0,tz);
294
295             }
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             if (gmx_mm_any_lt(rsq10,rcutoff2))
302             {
303
304             r10              = _mm_mul_pd(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_pd(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r10,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
323             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
324             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
326
327             d                = _mm_sub_pd(r10,rswitch);
328             d                = _mm_max_pd(d,_mm_setzero_pd());
329             d2               = _mm_mul_pd(d,d);
330             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
331
332             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
333
334             /* Evaluate switch function */
335             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
336             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
337             velec            = _mm_mul_pd(velec,sw);
338             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm_and_pd(velec,cutoff_mask);
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm_and_pd(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx10);
350             ty               = _mm_mul_pd(fscal,dy10);
351             tz               = _mm_mul_pd(fscal,dz10);
352
353             /* Update vectorial force */
354             fix1             = _mm_add_pd(fix1,tx);
355             fiy1             = _mm_add_pd(fiy1,ty);
356             fiz1             = _mm_add_pd(fiz1,tz);
357
358             fjx0             = _mm_add_pd(fjx0,tx);
359             fjy0             = _mm_add_pd(fjy0,ty);
360             fjz0             = _mm_add_pd(fjz0,tz);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm_any_lt(rsq20,rcutoff2))
369             {
370
371             r20              = _mm_mul_pd(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_pd(iq2,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_pd(r20,ewtabscale);
380             ewitab           = _mm_cvttpd_epi32(ewrt);
381             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
386             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
387             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
388             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
389             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
390             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
391             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
392             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
393
394             d                = _mm_sub_pd(r20,rswitch);
395             d                = _mm_max_pd(d,_mm_setzero_pd());
396             d2               = _mm_mul_pd(d,d);
397             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
398
399             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
400
401             /* Evaluate switch function */
402             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
403             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
404             velec            = _mm_mul_pd(velec,sw);
405             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_pd(velec,cutoff_mask);
409             velecsum         = _mm_add_pd(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_pd(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_pd(fscal,dx20);
417             ty               = _mm_mul_pd(fscal,dy20);
418             tz               = _mm_mul_pd(fscal,dz20);
419
420             /* Update vectorial force */
421             fix2             = _mm_add_pd(fix2,tx);
422             fiy2             = _mm_add_pd(fiy2,ty);
423             fiz2             = _mm_add_pd(fiz2,tz);
424
425             fjx0             = _mm_add_pd(fjx0,tx);
426             fjy0             = _mm_add_pd(fjy0,ty);
427             fjz0             = _mm_add_pd(fjz0,tz);
428
429             }
430
431             /**************************
432              * CALCULATE INTERACTIONS *
433              **************************/
434
435             if (gmx_mm_any_lt(rsq30,rcutoff2))
436             {
437
438             r30              = _mm_mul_pd(rsq30,rinv30);
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq30             = _mm_mul_pd(iq3,jq0);
442
443             /* EWALD ELECTROSTATICS */
444
445             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
446             ewrt             = _mm_mul_pd(r30,ewtabscale);
447             ewitab           = _mm_cvttpd_epi32(ewrt);
448             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
449             ewitab           = _mm_slli_epi32(ewitab,2);
450             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
451             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
452             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
453             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
454             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
455             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
456             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
457             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
458             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
459             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
460
461             d                = _mm_sub_pd(r30,rswitch);
462             d                = _mm_max_pd(d,_mm_setzero_pd());
463             d2               = _mm_mul_pd(d,d);
464             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
465
466             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
467
468             /* Evaluate switch function */
469             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
470             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
471             velec            = _mm_mul_pd(velec,sw);
472             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velec            = _mm_and_pd(velec,cutoff_mask);
476             velecsum         = _mm_add_pd(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm_and_pd(fscal,cutoff_mask);
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm_mul_pd(fscal,dx30);
484             ty               = _mm_mul_pd(fscal,dy30);
485             tz               = _mm_mul_pd(fscal,dz30);
486
487             /* Update vectorial force */
488             fix3             = _mm_add_pd(fix3,tx);
489             fiy3             = _mm_add_pd(fiy3,ty);
490             fiz3             = _mm_add_pd(fiz3,tz);
491
492             fjx0             = _mm_add_pd(fjx0,tx);
493             fjy0             = _mm_add_pd(fjy0,ty);
494             fjz0             = _mm_add_pd(fjz0,tz);
495
496             }
497
498             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
499
500             /* Inner loop uses 257 flops */
501         }
502
503         if(jidx<j_index_end)
504         {
505
506             jnrA             = jjnr[jidx];
507             j_coord_offsetA  = DIM*jnrA;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm_sub_pd(ix0,jx0);
515             dy00             = _mm_sub_pd(iy0,jy0);
516             dz00             = _mm_sub_pd(iz0,jz0);
517             dx10             = _mm_sub_pd(ix1,jx0);
518             dy10             = _mm_sub_pd(iy1,jy0);
519             dz10             = _mm_sub_pd(iz1,jz0);
520             dx20             = _mm_sub_pd(ix2,jx0);
521             dy20             = _mm_sub_pd(iy2,jy0);
522             dz20             = _mm_sub_pd(iz2,jz0);
523             dx30             = _mm_sub_pd(ix3,jx0);
524             dy30             = _mm_sub_pd(iy3,jy0);
525             dz30             = _mm_sub_pd(iz3,jz0);
526
527             /* Calculate squared distance and things based on it */
528             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
529             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
530             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
531             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
532
533             rinv00           = gmx_mm_invsqrt_pd(rsq00);
534             rinv10           = gmx_mm_invsqrt_pd(rsq10);
535             rinv20           = gmx_mm_invsqrt_pd(rsq20);
536             rinv30           = gmx_mm_invsqrt_pd(rsq30);
537
538             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
539             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
540             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
541             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
542
543             /* Load parameters for j particles */
544             jq0              = _mm_load_sd(charge+jnrA+0);
545             vdwjidx0A        = 2*vdwtype[jnrA+0];
546
547             fjx0             = _mm_setzero_pd();
548             fjy0             = _mm_setzero_pd();
549             fjz0             = _mm_setzero_pd();
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             if (gmx_mm_any_lt(rsq00,rcutoff2))
556             {
557
558             r00              = _mm_mul_pd(rsq00,rinv00);
559
560             /* Compute parameters for interactions between i and j atoms */
561             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
562
563             /* LENNARD-JONES DISPERSION/REPULSION */
564
565             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
566             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
567             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
568             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
569             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
570
571             d                = _mm_sub_pd(r00,rswitch);
572             d                = _mm_max_pd(d,_mm_setzero_pd());
573             d2               = _mm_mul_pd(d,d);
574             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
575
576             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
577
578             /* Evaluate switch function */
579             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
580             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
581             vvdw             = _mm_mul_pd(vvdw,sw);
582             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
586             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
587             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
588
589             fscal            = fvdw;
590
591             fscal            = _mm_and_pd(fscal,cutoff_mask);
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_pd(fscal,dx00);
597             ty               = _mm_mul_pd(fscal,dy00);
598             tz               = _mm_mul_pd(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_pd(fix0,tx);
602             fiy0             = _mm_add_pd(fiy0,ty);
603             fiz0             = _mm_add_pd(fiz0,tz);
604
605             fjx0             = _mm_add_pd(fjx0,tx);
606             fjy0             = _mm_add_pd(fjy0,ty);
607             fjz0             = _mm_add_pd(fjz0,tz);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm_any_lt(rsq10,rcutoff2))
616             {
617
618             r10              = _mm_mul_pd(rsq10,rinv10);
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq10             = _mm_mul_pd(iq1,jq0);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_pd(r10,ewtabscale);
627             ewitab           = _mm_cvttpd_epi32(ewrt);
628             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
629             ewitab           = _mm_slli_epi32(ewitab,2);
630             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
631             ewtabD           = _mm_setzero_pd();
632             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
633             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
634             ewtabFn          = _mm_setzero_pd();
635             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
636             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
637             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
638             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
639             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
640
641             d                = _mm_sub_pd(r10,rswitch);
642             d                = _mm_max_pd(d,_mm_setzero_pd());
643             d2               = _mm_mul_pd(d,d);
644             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
645
646             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
647
648             /* Evaluate switch function */
649             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
650             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
651             velec            = _mm_mul_pd(velec,sw);
652             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm_and_pd(velec,cutoff_mask);
656             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
657             velecsum         = _mm_add_pd(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm_and_pd(fscal,cutoff_mask);
662
663             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
664
665             /* Calculate temporary vectorial force */
666             tx               = _mm_mul_pd(fscal,dx10);
667             ty               = _mm_mul_pd(fscal,dy10);
668             tz               = _mm_mul_pd(fscal,dz10);
669
670             /* Update vectorial force */
671             fix1             = _mm_add_pd(fix1,tx);
672             fiy1             = _mm_add_pd(fiy1,ty);
673             fiz1             = _mm_add_pd(fiz1,tz);
674
675             fjx0             = _mm_add_pd(fjx0,tx);
676             fjy0             = _mm_add_pd(fjy0,ty);
677             fjz0             = _mm_add_pd(fjz0,tz);
678
679             }
680
681             /**************************
682              * CALCULATE INTERACTIONS *
683              **************************/
684
685             if (gmx_mm_any_lt(rsq20,rcutoff2))
686             {
687
688             r20              = _mm_mul_pd(rsq20,rinv20);
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq20             = _mm_mul_pd(iq2,jq0);
692
693             /* EWALD ELECTROSTATICS */
694
695             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
696             ewrt             = _mm_mul_pd(r20,ewtabscale);
697             ewitab           = _mm_cvttpd_epi32(ewrt);
698             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
699             ewitab           = _mm_slli_epi32(ewitab,2);
700             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
701             ewtabD           = _mm_setzero_pd();
702             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
703             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
704             ewtabFn          = _mm_setzero_pd();
705             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
706             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
707             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
708             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
709             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
710
711             d                = _mm_sub_pd(r20,rswitch);
712             d                = _mm_max_pd(d,_mm_setzero_pd());
713             d2               = _mm_mul_pd(d,d);
714             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
715
716             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
717
718             /* Evaluate switch function */
719             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
720             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
721             velec            = _mm_mul_pd(velec,sw);
722             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
723
724             /* Update potential sum for this i atom from the interaction with this j atom. */
725             velec            = _mm_and_pd(velec,cutoff_mask);
726             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
727             velecsum         = _mm_add_pd(velecsum,velec);
728
729             fscal            = felec;
730
731             fscal            = _mm_and_pd(fscal,cutoff_mask);
732
733             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
734
735             /* Calculate temporary vectorial force */
736             tx               = _mm_mul_pd(fscal,dx20);
737             ty               = _mm_mul_pd(fscal,dy20);
738             tz               = _mm_mul_pd(fscal,dz20);
739
740             /* Update vectorial force */
741             fix2             = _mm_add_pd(fix2,tx);
742             fiy2             = _mm_add_pd(fiy2,ty);
743             fiz2             = _mm_add_pd(fiz2,tz);
744
745             fjx0             = _mm_add_pd(fjx0,tx);
746             fjy0             = _mm_add_pd(fjy0,ty);
747             fjz0             = _mm_add_pd(fjz0,tz);
748
749             }
750
751             /**************************
752              * CALCULATE INTERACTIONS *
753              **************************/
754
755             if (gmx_mm_any_lt(rsq30,rcutoff2))
756             {
757
758             r30              = _mm_mul_pd(rsq30,rinv30);
759
760             /* Compute parameters for interactions between i and j atoms */
761             qq30             = _mm_mul_pd(iq3,jq0);
762
763             /* EWALD ELECTROSTATICS */
764
765             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
766             ewrt             = _mm_mul_pd(r30,ewtabscale);
767             ewitab           = _mm_cvttpd_epi32(ewrt);
768             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
769             ewitab           = _mm_slli_epi32(ewitab,2);
770             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
771             ewtabD           = _mm_setzero_pd();
772             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
773             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
774             ewtabFn          = _mm_setzero_pd();
775             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
776             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
777             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
778             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
779             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
780
781             d                = _mm_sub_pd(r30,rswitch);
782             d                = _mm_max_pd(d,_mm_setzero_pd());
783             d2               = _mm_mul_pd(d,d);
784             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
785
786             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
787
788             /* Evaluate switch function */
789             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
790             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
791             velec            = _mm_mul_pd(velec,sw);
792             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
793
794             /* Update potential sum for this i atom from the interaction with this j atom. */
795             velec            = _mm_and_pd(velec,cutoff_mask);
796             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
797             velecsum         = _mm_add_pd(velecsum,velec);
798
799             fscal            = felec;
800
801             fscal            = _mm_and_pd(fscal,cutoff_mask);
802
803             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
804
805             /* Calculate temporary vectorial force */
806             tx               = _mm_mul_pd(fscal,dx30);
807             ty               = _mm_mul_pd(fscal,dy30);
808             tz               = _mm_mul_pd(fscal,dz30);
809
810             /* Update vectorial force */
811             fix3             = _mm_add_pd(fix3,tx);
812             fiy3             = _mm_add_pd(fiy3,ty);
813             fiz3             = _mm_add_pd(fiz3,tz);
814
815             fjx0             = _mm_add_pd(fjx0,tx);
816             fjy0             = _mm_add_pd(fjy0,ty);
817             fjz0             = _mm_add_pd(fjz0,tz);
818
819             }
820
821             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
822
823             /* Inner loop uses 257 flops */
824         }
825
826         /* End of innermost loop */
827
828         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
829                                               f+i_coord_offset,fshift+i_shift_offset);
830
831         ggid                        = gid[iidx];
832         /* Update potential energies */
833         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
834         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
835
836         /* Increment number of inner iterations */
837         inneriter                  += j_index_end - j_index_start;
838
839         /* Outer loop uses 26 flops */
840     }
841
842     /* Increment number of outer iterations */
843     outeriter        += nri;
844
845     /* Update outer/inner flops */
846
847     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*257);
848 }
849 /*
850  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse4_1_double
851  * Electrostatics interaction: Ewald
852  * VdW interaction:            LennardJones
853  * Geometry:                   Water4-Particle
854  * Calculate force/pot:        Force
855  */
856 void
857 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse4_1_double
858                     (t_nblist * gmx_restrict                nlist,
859                      rvec * gmx_restrict                    xx,
860                      rvec * gmx_restrict                    ff,
861                      t_forcerec * gmx_restrict              fr,
862                      t_mdatoms * gmx_restrict               mdatoms,
863                      nb_kernel_data_t * gmx_restrict        kernel_data,
864                      t_nrnb * gmx_restrict                  nrnb)
865 {
866     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
867      * just 0 for non-waters.
868      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
869      * jnr indices corresponding to data put in the four positions in the SIMD register.
870      */
871     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
872     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
873     int              jnrA,jnrB;
874     int              j_coord_offsetA,j_coord_offsetB;
875     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
876     real             rcutoff_scalar;
877     real             *shiftvec,*fshift,*x,*f;
878     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
879     int              vdwioffset0;
880     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
881     int              vdwioffset1;
882     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
883     int              vdwioffset2;
884     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
885     int              vdwioffset3;
886     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
887     int              vdwjidx0A,vdwjidx0B;
888     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
889     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
890     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
891     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
892     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
893     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
894     real             *charge;
895     int              nvdwtype;
896     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
897     int              *vdwtype;
898     real             *vdwparam;
899     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
900     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
901     __m128i          ewitab;
902     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
903     real             *ewtab;
904     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
905     real             rswitch_scalar,d_scalar;
906     __m128d          dummy_mask,cutoff_mask;
907     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
908     __m128d          one     = _mm_set1_pd(1.0);
909     __m128d          two     = _mm_set1_pd(2.0);
910     x                = xx[0];
911     f                = ff[0];
912
913     nri              = nlist->nri;
914     iinr             = nlist->iinr;
915     jindex           = nlist->jindex;
916     jjnr             = nlist->jjnr;
917     shiftidx         = nlist->shift;
918     gid              = nlist->gid;
919     shiftvec         = fr->shift_vec[0];
920     fshift           = fr->fshift[0];
921     facel            = _mm_set1_pd(fr->epsfac);
922     charge           = mdatoms->chargeA;
923     nvdwtype         = fr->ntype;
924     vdwparam         = fr->nbfp;
925     vdwtype          = mdatoms->typeA;
926
927     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
928     ewtab            = fr->ic->tabq_coul_FDV0;
929     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
930     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
931
932     /* Setup water-specific parameters */
933     inr              = nlist->iinr[0];
934     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
935     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
936     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
937     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
938
939     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
940     rcutoff_scalar   = fr->rcoulomb;
941     rcutoff          = _mm_set1_pd(rcutoff_scalar);
942     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
943
944     rswitch_scalar   = fr->rcoulomb_switch;
945     rswitch          = _mm_set1_pd(rswitch_scalar);
946     /* Setup switch parameters */
947     d_scalar         = rcutoff_scalar-rswitch_scalar;
948     d                = _mm_set1_pd(d_scalar);
949     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
950     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
951     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
952     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
953     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
954     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
955
956     /* Avoid stupid compiler warnings */
957     jnrA = jnrB = 0;
958     j_coord_offsetA = 0;
959     j_coord_offsetB = 0;
960
961     outeriter        = 0;
962     inneriter        = 0;
963
964     /* Start outer loop over neighborlists */
965     for(iidx=0; iidx<nri; iidx++)
966     {
967         /* Load shift vector for this list */
968         i_shift_offset   = DIM*shiftidx[iidx];
969
970         /* Load limits for loop over neighbors */
971         j_index_start    = jindex[iidx];
972         j_index_end      = jindex[iidx+1];
973
974         /* Get outer coordinate index */
975         inr              = iinr[iidx];
976         i_coord_offset   = DIM*inr;
977
978         /* Load i particle coords and add shift vector */
979         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
980                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
981
982         fix0             = _mm_setzero_pd();
983         fiy0             = _mm_setzero_pd();
984         fiz0             = _mm_setzero_pd();
985         fix1             = _mm_setzero_pd();
986         fiy1             = _mm_setzero_pd();
987         fiz1             = _mm_setzero_pd();
988         fix2             = _mm_setzero_pd();
989         fiy2             = _mm_setzero_pd();
990         fiz2             = _mm_setzero_pd();
991         fix3             = _mm_setzero_pd();
992         fiy3             = _mm_setzero_pd();
993         fiz3             = _mm_setzero_pd();
994
995         /* Start inner kernel loop */
996         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
997         {
998
999             /* Get j neighbor index, and coordinate index */
1000             jnrA             = jjnr[jidx];
1001             jnrB             = jjnr[jidx+1];
1002             j_coord_offsetA  = DIM*jnrA;
1003             j_coord_offsetB  = DIM*jnrB;
1004
1005             /* load j atom coordinates */
1006             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1007                                               &jx0,&jy0,&jz0);
1008
1009             /* Calculate displacement vector */
1010             dx00             = _mm_sub_pd(ix0,jx0);
1011             dy00             = _mm_sub_pd(iy0,jy0);
1012             dz00             = _mm_sub_pd(iz0,jz0);
1013             dx10             = _mm_sub_pd(ix1,jx0);
1014             dy10             = _mm_sub_pd(iy1,jy0);
1015             dz10             = _mm_sub_pd(iz1,jz0);
1016             dx20             = _mm_sub_pd(ix2,jx0);
1017             dy20             = _mm_sub_pd(iy2,jy0);
1018             dz20             = _mm_sub_pd(iz2,jz0);
1019             dx30             = _mm_sub_pd(ix3,jx0);
1020             dy30             = _mm_sub_pd(iy3,jy0);
1021             dz30             = _mm_sub_pd(iz3,jz0);
1022
1023             /* Calculate squared distance and things based on it */
1024             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1025             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1026             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1027             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1028
1029             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1030             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1031             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1032             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1033
1034             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1035             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1036             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1037             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1038
1039             /* Load parameters for j particles */
1040             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1041             vdwjidx0A        = 2*vdwtype[jnrA+0];
1042             vdwjidx0B        = 2*vdwtype[jnrB+0];
1043
1044             fjx0             = _mm_setzero_pd();
1045             fjy0             = _mm_setzero_pd();
1046             fjz0             = _mm_setzero_pd();
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             if (gmx_mm_any_lt(rsq00,rcutoff2))
1053             {
1054
1055             r00              = _mm_mul_pd(rsq00,rinv00);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1059                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1060
1061             /* LENNARD-JONES DISPERSION/REPULSION */
1062
1063             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1064             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1065             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1066             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1067             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1068
1069             d                = _mm_sub_pd(r00,rswitch);
1070             d                = _mm_max_pd(d,_mm_setzero_pd());
1071             d2               = _mm_mul_pd(d,d);
1072             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1073
1074             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1075
1076             /* Evaluate switch function */
1077             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1078             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1079             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1080
1081             fscal            = fvdw;
1082
1083             fscal            = _mm_and_pd(fscal,cutoff_mask);
1084
1085             /* Calculate temporary vectorial force */
1086             tx               = _mm_mul_pd(fscal,dx00);
1087             ty               = _mm_mul_pd(fscal,dy00);
1088             tz               = _mm_mul_pd(fscal,dz00);
1089
1090             /* Update vectorial force */
1091             fix0             = _mm_add_pd(fix0,tx);
1092             fiy0             = _mm_add_pd(fiy0,ty);
1093             fiz0             = _mm_add_pd(fiz0,tz);
1094
1095             fjx0             = _mm_add_pd(fjx0,tx);
1096             fjy0             = _mm_add_pd(fjy0,ty);
1097             fjz0             = _mm_add_pd(fjz0,tz);
1098
1099             }
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             if (gmx_mm_any_lt(rsq10,rcutoff2))
1106             {
1107
1108             r10              = _mm_mul_pd(rsq10,rinv10);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq10             = _mm_mul_pd(iq1,jq0);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _mm_mul_pd(r10,ewtabscale);
1117             ewitab           = _mm_cvttpd_epi32(ewrt);
1118             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1119             ewitab           = _mm_slli_epi32(ewitab,2);
1120             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1121             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1122             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1123             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1124             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1125             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1126             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1127             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1128             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1129             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1130
1131             d                = _mm_sub_pd(r10,rswitch);
1132             d                = _mm_max_pd(d,_mm_setzero_pd());
1133             d2               = _mm_mul_pd(d,d);
1134             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1135
1136             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1137
1138             /* Evaluate switch function */
1139             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1140             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1141             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1142
1143             fscal            = felec;
1144
1145             fscal            = _mm_and_pd(fscal,cutoff_mask);
1146
1147             /* Calculate temporary vectorial force */
1148             tx               = _mm_mul_pd(fscal,dx10);
1149             ty               = _mm_mul_pd(fscal,dy10);
1150             tz               = _mm_mul_pd(fscal,dz10);
1151
1152             /* Update vectorial force */
1153             fix1             = _mm_add_pd(fix1,tx);
1154             fiy1             = _mm_add_pd(fiy1,ty);
1155             fiz1             = _mm_add_pd(fiz1,tz);
1156
1157             fjx0             = _mm_add_pd(fjx0,tx);
1158             fjy0             = _mm_add_pd(fjy0,ty);
1159             fjz0             = _mm_add_pd(fjz0,tz);
1160
1161             }
1162
1163             /**************************
1164              * CALCULATE INTERACTIONS *
1165              **************************/
1166
1167             if (gmx_mm_any_lt(rsq20,rcutoff2))
1168             {
1169
1170             r20              = _mm_mul_pd(rsq20,rinv20);
1171
1172             /* Compute parameters for interactions between i and j atoms */
1173             qq20             = _mm_mul_pd(iq2,jq0);
1174
1175             /* EWALD ELECTROSTATICS */
1176
1177             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1178             ewrt             = _mm_mul_pd(r20,ewtabscale);
1179             ewitab           = _mm_cvttpd_epi32(ewrt);
1180             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1181             ewitab           = _mm_slli_epi32(ewitab,2);
1182             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1183             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1184             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1185             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1186             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1187             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1188             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1189             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1190             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1191             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1192
1193             d                = _mm_sub_pd(r20,rswitch);
1194             d                = _mm_max_pd(d,_mm_setzero_pd());
1195             d2               = _mm_mul_pd(d,d);
1196             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1197
1198             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1199
1200             /* Evaluate switch function */
1201             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1202             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1203             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1204
1205             fscal            = felec;
1206
1207             fscal            = _mm_and_pd(fscal,cutoff_mask);
1208
1209             /* Calculate temporary vectorial force */
1210             tx               = _mm_mul_pd(fscal,dx20);
1211             ty               = _mm_mul_pd(fscal,dy20);
1212             tz               = _mm_mul_pd(fscal,dz20);
1213
1214             /* Update vectorial force */
1215             fix2             = _mm_add_pd(fix2,tx);
1216             fiy2             = _mm_add_pd(fiy2,ty);
1217             fiz2             = _mm_add_pd(fiz2,tz);
1218
1219             fjx0             = _mm_add_pd(fjx0,tx);
1220             fjy0             = _mm_add_pd(fjy0,ty);
1221             fjz0             = _mm_add_pd(fjz0,tz);
1222
1223             }
1224
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             if (gmx_mm_any_lt(rsq30,rcutoff2))
1230             {
1231
1232             r30              = _mm_mul_pd(rsq30,rinv30);
1233
1234             /* Compute parameters for interactions between i and j atoms */
1235             qq30             = _mm_mul_pd(iq3,jq0);
1236
1237             /* EWALD ELECTROSTATICS */
1238
1239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1240             ewrt             = _mm_mul_pd(r30,ewtabscale);
1241             ewitab           = _mm_cvttpd_epi32(ewrt);
1242             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1243             ewitab           = _mm_slli_epi32(ewitab,2);
1244             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1245             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1246             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1247             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1248             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1249             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1250             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1251             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1252             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1253             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1254
1255             d                = _mm_sub_pd(r30,rswitch);
1256             d                = _mm_max_pd(d,_mm_setzero_pd());
1257             d2               = _mm_mul_pd(d,d);
1258             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1259
1260             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1261
1262             /* Evaluate switch function */
1263             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1264             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1265             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1266
1267             fscal            = felec;
1268
1269             fscal            = _mm_and_pd(fscal,cutoff_mask);
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_pd(fscal,dx30);
1273             ty               = _mm_mul_pd(fscal,dy30);
1274             tz               = _mm_mul_pd(fscal,dz30);
1275
1276             /* Update vectorial force */
1277             fix3             = _mm_add_pd(fix3,tx);
1278             fiy3             = _mm_add_pd(fiy3,ty);
1279             fiz3             = _mm_add_pd(fiz3,tz);
1280
1281             fjx0             = _mm_add_pd(fjx0,tx);
1282             fjy0             = _mm_add_pd(fjy0,ty);
1283             fjz0             = _mm_add_pd(fjz0,tz);
1284
1285             }
1286
1287             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1288
1289             /* Inner loop uses 245 flops */
1290         }
1291
1292         if(jidx<j_index_end)
1293         {
1294
1295             jnrA             = jjnr[jidx];
1296             j_coord_offsetA  = DIM*jnrA;
1297
1298             /* load j atom coordinates */
1299             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1300                                               &jx0,&jy0,&jz0);
1301
1302             /* Calculate displacement vector */
1303             dx00             = _mm_sub_pd(ix0,jx0);
1304             dy00             = _mm_sub_pd(iy0,jy0);
1305             dz00             = _mm_sub_pd(iz0,jz0);
1306             dx10             = _mm_sub_pd(ix1,jx0);
1307             dy10             = _mm_sub_pd(iy1,jy0);
1308             dz10             = _mm_sub_pd(iz1,jz0);
1309             dx20             = _mm_sub_pd(ix2,jx0);
1310             dy20             = _mm_sub_pd(iy2,jy0);
1311             dz20             = _mm_sub_pd(iz2,jz0);
1312             dx30             = _mm_sub_pd(ix3,jx0);
1313             dy30             = _mm_sub_pd(iy3,jy0);
1314             dz30             = _mm_sub_pd(iz3,jz0);
1315
1316             /* Calculate squared distance and things based on it */
1317             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1318             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1319             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1320             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1321
1322             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1323             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1324             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1325             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1326
1327             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1328             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1329             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1330             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1331
1332             /* Load parameters for j particles */
1333             jq0              = _mm_load_sd(charge+jnrA+0);
1334             vdwjidx0A        = 2*vdwtype[jnrA+0];
1335
1336             fjx0             = _mm_setzero_pd();
1337             fjy0             = _mm_setzero_pd();
1338             fjz0             = _mm_setzero_pd();
1339
1340             /**************************
1341              * CALCULATE INTERACTIONS *
1342              **************************/
1343
1344             if (gmx_mm_any_lt(rsq00,rcutoff2))
1345             {
1346
1347             r00              = _mm_mul_pd(rsq00,rinv00);
1348
1349             /* Compute parameters for interactions between i and j atoms */
1350             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1351
1352             /* LENNARD-JONES DISPERSION/REPULSION */
1353
1354             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1355             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1356             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1357             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1358             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1359
1360             d                = _mm_sub_pd(r00,rswitch);
1361             d                = _mm_max_pd(d,_mm_setzero_pd());
1362             d2               = _mm_mul_pd(d,d);
1363             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1364
1365             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1366
1367             /* Evaluate switch function */
1368             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1369             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1370             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1371
1372             fscal            = fvdw;
1373
1374             fscal            = _mm_and_pd(fscal,cutoff_mask);
1375
1376             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1377
1378             /* Calculate temporary vectorial force */
1379             tx               = _mm_mul_pd(fscal,dx00);
1380             ty               = _mm_mul_pd(fscal,dy00);
1381             tz               = _mm_mul_pd(fscal,dz00);
1382
1383             /* Update vectorial force */
1384             fix0             = _mm_add_pd(fix0,tx);
1385             fiy0             = _mm_add_pd(fiy0,ty);
1386             fiz0             = _mm_add_pd(fiz0,tz);
1387
1388             fjx0             = _mm_add_pd(fjx0,tx);
1389             fjy0             = _mm_add_pd(fjy0,ty);
1390             fjz0             = _mm_add_pd(fjz0,tz);
1391
1392             }
1393
1394             /**************************
1395              * CALCULATE INTERACTIONS *
1396              **************************/
1397
1398             if (gmx_mm_any_lt(rsq10,rcutoff2))
1399             {
1400
1401             r10              = _mm_mul_pd(rsq10,rinv10);
1402
1403             /* Compute parameters for interactions between i and j atoms */
1404             qq10             = _mm_mul_pd(iq1,jq0);
1405
1406             /* EWALD ELECTROSTATICS */
1407
1408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1409             ewrt             = _mm_mul_pd(r10,ewtabscale);
1410             ewitab           = _mm_cvttpd_epi32(ewrt);
1411             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1412             ewitab           = _mm_slli_epi32(ewitab,2);
1413             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1414             ewtabD           = _mm_setzero_pd();
1415             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1416             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1417             ewtabFn          = _mm_setzero_pd();
1418             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1419             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1420             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1421             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1422             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1423
1424             d                = _mm_sub_pd(r10,rswitch);
1425             d                = _mm_max_pd(d,_mm_setzero_pd());
1426             d2               = _mm_mul_pd(d,d);
1427             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1428
1429             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1430
1431             /* Evaluate switch function */
1432             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1433             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1434             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1435
1436             fscal            = felec;
1437
1438             fscal            = _mm_and_pd(fscal,cutoff_mask);
1439
1440             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1441
1442             /* Calculate temporary vectorial force */
1443             tx               = _mm_mul_pd(fscal,dx10);
1444             ty               = _mm_mul_pd(fscal,dy10);
1445             tz               = _mm_mul_pd(fscal,dz10);
1446
1447             /* Update vectorial force */
1448             fix1             = _mm_add_pd(fix1,tx);
1449             fiy1             = _mm_add_pd(fiy1,ty);
1450             fiz1             = _mm_add_pd(fiz1,tz);
1451
1452             fjx0             = _mm_add_pd(fjx0,tx);
1453             fjy0             = _mm_add_pd(fjy0,ty);
1454             fjz0             = _mm_add_pd(fjz0,tz);
1455
1456             }
1457
1458             /**************************
1459              * CALCULATE INTERACTIONS *
1460              **************************/
1461
1462             if (gmx_mm_any_lt(rsq20,rcutoff2))
1463             {
1464
1465             r20              = _mm_mul_pd(rsq20,rinv20);
1466
1467             /* Compute parameters for interactions between i and j atoms */
1468             qq20             = _mm_mul_pd(iq2,jq0);
1469
1470             /* EWALD ELECTROSTATICS */
1471
1472             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1473             ewrt             = _mm_mul_pd(r20,ewtabscale);
1474             ewitab           = _mm_cvttpd_epi32(ewrt);
1475             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1476             ewitab           = _mm_slli_epi32(ewitab,2);
1477             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1478             ewtabD           = _mm_setzero_pd();
1479             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1480             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1481             ewtabFn          = _mm_setzero_pd();
1482             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1483             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1484             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1485             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1486             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1487
1488             d                = _mm_sub_pd(r20,rswitch);
1489             d                = _mm_max_pd(d,_mm_setzero_pd());
1490             d2               = _mm_mul_pd(d,d);
1491             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1492
1493             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1494
1495             /* Evaluate switch function */
1496             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1497             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1498             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1499
1500             fscal            = felec;
1501
1502             fscal            = _mm_and_pd(fscal,cutoff_mask);
1503
1504             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1505
1506             /* Calculate temporary vectorial force */
1507             tx               = _mm_mul_pd(fscal,dx20);
1508             ty               = _mm_mul_pd(fscal,dy20);
1509             tz               = _mm_mul_pd(fscal,dz20);
1510
1511             /* Update vectorial force */
1512             fix2             = _mm_add_pd(fix2,tx);
1513             fiy2             = _mm_add_pd(fiy2,ty);
1514             fiz2             = _mm_add_pd(fiz2,tz);
1515
1516             fjx0             = _mm_add_pd(fjx0,tx);
1517             fjy0             = _mm_add_pd(fjy0,ty);
1518             fjz0             = _mm_add_pd(fjz0,tz);
1519
1520             }
1521
1522             /**************************
1523              * CALCULATE INTERACTIONS *
1524              **************************/
1525
1526             if (gmx_mm_any_lt(rsq30,rcutoff2))
1527             {
1528
1529             r30              = _mm_mul_pd(rsq30,rinv30);
1530
1531             /* Compute parameters for interactions between i and j atoms */
1532             qq30             = _mm_mul_pd(iq3,jq0);
1533
1534             /* EWALD ELECTROSTATICS */
1535
1536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1537             ewrt             = _mm_mul_pd(r30,ewtabscale);
1538             ewitab           = _mm_cvttpd_epi32(ewrt);
1539             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1540             ewitab           = _mm_slli_epi32(ewitab,2);
1541             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1542             ewtabD           = _mm_setzero_pd();
1543             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1544             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1545             ewtabFn          = _mm_setzero_pd();
1546             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1547             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1548             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1549             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1550             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1551
1552             d                = _mm_sub_pd(r30,rswitch);
1553             d                = _mm_max_pd(d,_mm_setzero_pd());
1554             d2               = _mm_mul_pd(d,d);
1555             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1556
1557             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1558
1559             /* Evaluate switch function */
1560             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1561             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1562             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1563
1564             fscal            = felec;
1565
1566             fscal            = _mm_and_pd(fscal,cutoff_mask);
1567
1568             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1569
1570             /* Calculate temporary vectorial force */
1571             tx               = _mm_mul_pd(fscal,dx30);
1572             ty               = _mm_mul_pd(fscal,dy30);
1573             tz               = _mm_mul_pd(fscal,dz30);
1574
1575             /* Update vectorial force */
1576             fix3             = _mm_add_pd(fix3,tx);
1577             fiy3             = _mm_add_pd(fiy3,ty);
1578             fiz3             = _mm_add_pd(fiz3,tz);
1579
1580             fjx0             = _mm_add_pd(fjx0,tx);
1581             fjy0             = _mm_add_pd(fjy0,ty);
1582             fjz0             = _mm_add_pd(fjz0,tz);
1583
1584             }
1585
1586             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1587
1588             /* Inner loop uses 245 flops */
1589         }
1590
1591         /* End of innermost loop */
1592
1593         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1594                                               f+i_coord_offset,fshift+i_shift_offset);
1595
1596         /* Increment number of inner iterations */
1597         inneriter                  += j_index_end - j_index_start;
1598
1599         /* Outer loop uses 24 flops */
1600     }
1601
1602     /* Increment number of outer iterations */
1603     outeriter        += nri;
1604
1605     /* Update outer/inner flops */
1606
1607     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*245);
1608 }