Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          ewitab;
105     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108     real             rswitch_scalar,d_scalar;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm_set1_pd(rcutoff_scalar);
145     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
146
147     rswitch_scalar   = fr->rcoulomb_switch;
148     rswitch          = _mm_set1_pd(rswitch_scalar);
149     /* Setup switch parameters */
150     d_scalar         = rcutoff_scalar-rswitch_scalar;
151     d                = _mm_set1_pd(d_scalar);
152     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
153     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
156     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
157     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
184
185         fix0             = _mm_setzero_pd();
186         fiy0             = _mm_setzero_pd();
187         fiz0             = _mm_setzero_pd();
188         fix1             = _mm_setzero_pd();
189         fiy1             = _mm_setzero_pd();
190         fiz1             = _mm_setzero_pd();
191         fix2             = _mm_setzero_pd();
192         fiy2             = _mm_setzero_pd();
193         fiz2             = _mm_setzero_pd();
194         fix3             = _mm_setzero_pd();
195         fiy3             = _mm_setzero_pd();
196         fiz3             = _mm_setzero_pd();
197
198         /* Reset potential sums */
199         velecsum         = _mm_setzero_pd();
200         vvdwsum          = _mm_setzero_pd();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm_sub_pd(ix0,jx0);
218             dy00             = _mm_sub_pd(iy0,jy0);
219             dz00             = _mm_sub_pd(iz0,jz0);
220             dx10             = _mm_sub_pd(ix1,jx0);
221             dy10             = _mm_sub_pd(iy1,jy0);
222             dz10             = _mm_sub_pd(iz1,jz0);
223             dx20             = _mm_sub_pd(ix2,jx0);
224             dy20             = _mm_sub_pd(iy2,jy0);
225             dz20             = _mm_sub_pd(iz2,jz0);
226             dx30             = _mm_sub_pd(ix3,jx0);
227             dy30             = _mm_sub_pd(iy3,jy0);
228             dz30             = _mm_sub_pd(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
232             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
233             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
234             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
235
236             rinv00           = gmx_mm_invsqrt_pd(rsq00);
237             rinv10           = gmx_mm_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm_invsqrt_pd(rsq20);
239             rinv30           = gmx_mm_invsqrt_pd(rsq30);
240
241             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
242             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
243             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
244             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250
251             fjx0             = _mm_setzero_pd();
252             fjy0             = _mm_setzero_pd();
253             fjz0             = _mm_setzero_pd();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm_mul_pd(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
272             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
273             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
274             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
275
276             d                = _mm_sub_pd(r00,rswitch);
277             d                = _mm_max_pd(d,_mm_setzero_pd());
278             d2               = _mm_mul_pd(d,d);
279             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
280
281             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
282
283             /* Evaluate switch function */
284             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
285             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
286             vvdw             = _mm_mul_pd(vvdw,sw);
287             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             fscal            = _mm_and_pd(fscal,cutoff_mask);
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_pd(fscal,dx00);
299             ty               = _mm_mul_pd(fscal,dy00);
300             tz               = _mm_mul_pd(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_pd(fix0,tx);
304             fiy0             = _mm_add_pd(fiy0,ty);
305             fiz0             = _mm_add_pd(fiz0,tz);
306
307             fjx0             = _mm_add_pd(fjx0,tx);
308             fjy0             = _mm_add_pd(fjy0,ty);
309             fjz0             = _mm_add_pd(fjz0,tz);
310
311             }
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm_any_lt(rsq10,rcutoff2))
318             {
319
320             r10              = _mm_mul_pd(rsq10,rinv10);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_pd(iq1,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_pd(r10,ewtabscale);
329             ewitab           = _mm_cvttpd_epi32(ewrt);
330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
339             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
340             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
342
343             d                = _mm_sub_pd(r10,rswitch);
344             d                = _mm_max_pd(d,_mm_setzero_pd());
345             d2               = _mm_mul_pd(d,d);
346             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
347
348             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
349
350             /* Evaluate switch function */
351             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
352             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
353             velec            = _mm_mul_pd(velec,sw);
354             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm_and_pd(velec,cutoff_mask);
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm_and_pd(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_pd(fscal,dx10);
366             ty               = _mm_mul_pd(fscal,dy10);
367             tz               = _mm_mul_pd(fscal,dz10);
368
369             /* Update vectorial force */
370             fix1             = _mm_add_pd(fix1,tx);
371             fiy1             = _mm_add_pd(fiy1,ty);
372             fiz1             = _mm_add_pd(fiz1,tz);
373
374             fjx0             = _mm_add_pd(fjx0,tx);
375             fjy0             = _mm_add_pd(fjy0,ty);
376             fjz0             = _mm_add_pd(fjz0,tz);
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm_any_lt(rsq20,rcutoff2))
385             {
386
387             r20              = _mm_mul_pd(rsq20,rinv20);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq20             = _mm_mul_pd(iq2,jq0);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm_mul_pd(r20,ewtabscale);
396             ewitab           = _mm_cvttpd_epi32(ewrt);
397             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
406             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
407             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
409
410             d                = _mm_sub_pd(r20,rswitch);
411             d                = _mm_max_pd(d,_mm_setzero_pd());
412             d2               = _mm_mul_pd(d,d);
413             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
414
415             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
416
417             /* Evaluate switch function */
418             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
419             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
420             velec            = _mm_mul_pd(velec,sw);
421             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm_and_pd(velec,cutoff_mask);
425             velecsum         = _mm_add_pd(velecsum,velec);
426
427             fscal            = felec;
428
429             fscal            = _mm_and_pd(fscal,cutoff_mask);
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_pd(fscal,dx20);
433             ty               = _mm_mul_pd(fscal,dy20);
434             tz               = _mm_mul_pd(fscal,dz20);
435
436             /* Update vectorial force */
437             fix2             = _mm_add_pd(fix2,tx);
438             fiy2             = _mm_add_pd(fiy2,ty);
439             fiz2             = _mm_add_pd(fiz2,tz);
440
441             fjx0             = _mm_add_pd(fjx0,tx);
442             fjy0             = _mm_add_pd(fjy0,ty);
443             fjz0             = _mm_add_pd(fjz0,tz);
444
445             }
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             if (gmx_mm_any_lt(rsq30,rcutoff2))
452             {
453
454             r30              = _mm_mul_pd(rsq30,rinv30);
455
456             /* Compute parameters for interactions between i and j atoms */
457             qq30             = _mm_mul_pd(iq3,jq0);
458
459             /* EWALD ELECTROSTATICS */
460
461             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
462             ewrt             = _mm_mul_pd(r30,ewtabscale);
463             ewitab           = _mm_cvttpd_epi32(ewrt);
464             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
465             ewitab           = _mm_slli_epi32(ewitab,2);
466             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
467             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
468             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
469             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
470             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
471             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
472             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
473             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
474             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
475             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
476
477             d                = _mm_sub_pd(r30,rswitch);
478             d                = _mm_max_pd(d,_mm_setzero_pd());
479             d2               = _mm_mul_pd(d,d);
480             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
481
482             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
483
484             /* Evaluate switch function */
485             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
486             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
487             velec            = _mm_mul_pd(velec,sw);
488             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
489
490             /* Update potential sum for this i atom from the interaction with this j atom. */
491             velec            = _mm_and_pd(velec,cutoff_mask);
492             velecsum         = _mm_add_pd(velecsum,velec);
493
494             fscal            = felec;
495
496             fscal            = _mm_and_pd(fscal,cutoff_mask);
497
498             /* Calculate temporary vectorial force */
499             tx               = _mm_mul_pd(fscal,dx30);
500             ty               = _mm_mul_pd(fscal,dy30);
501             tz               = _mm_mul_pd(fscal,dz30);
502
503             /* Update vectorial force */
504             fix3             = _mm_add_pd(fix3,tx);
505             fiy3             = _mm_add_pd(fiy3,ty);
506             fiz3             = _mm_add_pd(fiz3,tz);
507
508             fjx0             = _mm_add_pd(fjx0,tx);
509             fjy0             = _mm_add_pd(fjy0,ty);
510             fjz0             = _mm_add_pd(fjz0,tz);
511
512             }
513
514             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
515
516             /* Inner loop uses 257 flops */
517         }
518
519         if(jidx<j_index_end)
520         {
521
522             jnrA             = jjnr[jidx];
523             j_coord_offsetA  = DIM*jnrA;
524
525             /* load j atom coordinates */
526             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
527                                               &jx0,&jy0,&jz0);
528
529             /* Calculate displacement vector */
530             dx00             = _mm_sub_pd(ix0,jx0);
531             dy00             = _mm_sub_pd(iy0,jy0);
532             dz00             = _mm_sub_pd(iz0,jz0);
533             dx10             = _mm_sub_pd(ix1,jx0);
534             dy10             = _mm_sub_pd(iy1,jy0);
535             dz10             = _mm_sub_pd(iz1,jz0);
536             dx20             = _mm_sub_pd(ix2,jx0);
537             dy20             = _mm_sub_pd(iy2,jy0);
538             dz20             = _mm_sub_pd(iz2,jz0);
539             dx30             = _mm_sub_pd(ix3,jx0);
540             dy30             = _mm_sub_pd(iy3,jy0);
541             dz30             = _mm_sub_pd(iz3,jz0);
542
543             /* Calculate squared distance and things based on it */
544             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
545             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
546             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
547             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
548
549             rinv00           = gmx_mm_invsqrt_pd(rsq00);
550             rinv10           = gmx_mm_invsqrt_pd(rsq10);
551             rinv20           = gmx_mm_invsqrt_pd(rsq20);
552             rinv30           = gmx_mm_invsqrt_pd(rsq30);
553
554             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
555             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
556             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
557             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
558
559             /* Load parameters for j particles */
560             jq0              = _mm_load_sd(charge+jnrA+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562
563             fjx0             = _mm_setzero_pd();
564             fjy0             = _mm_setzero_pd();
565             fjz0             = _mm_setzero_pd();
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             if (gmx_mm_any_lt(rsq00,rcutoff2))
572             {
573
574             r00              = _mm_mul_pd(rsq00,rinv00);
575
576             /* Compute parameters for interactions between i and j atoms */
577             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
578
579             /* LENNARD-JONES DISPERSION/REPULSION */
580
581             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
582             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
583             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
584             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
585             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
586
587             d                = _mm_sub_pd(r00,rswitch);
588             d                = _mm_max_pd(d,_mm_setzero_pd());
589             d2               = _mm_mul_pd(d,d);
590             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
591
592             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
593
594             /* Evaluate switch function */
595             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
596             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
597             vvdw             = _mm_mul_pd(vvdw,sw);
598             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
602             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
603             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
604
605             fscal            = fvdw;
606
607             fscal            = _mm_and_pd(fscal,cutoff_mask);
608
609             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm_mul_pd(fscal,dx00);
613             ty               = _mm_mul_pd(fscal,dy00);
614             tz               = _mm_mul_pd(fscal,dz00);
615
616             /* Update vectorial force */
617             fix0             = _mm_add_pd(fix0,tx);
618             fiy0             = _mm_add_pd(fiy0,ty);
619             fiz0             = _mm_add_pd(fiz0,tz);
620
621             fjx0             = _mm_add_pd(fjx0,tx);
622             fjy0             = _mm_add_pd(fjy0,ty);
623             fjz0             = _mm_add_pd(fjz0,tz);
624
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_mm_any_lt(rsq10,rcutoff2))
632             {
633
634             r10              = _mm_mul_pd(rsq10,rinv10);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq10             = _mm_mul_pd(iq1,jq0);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = _mm_mul_pd(r10,ewtabscale);
643             ewitab           = _mm_cvttpd_epi32(ewrt);
644             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
645             ewitab           = _mm_slli_epi32(ewitab,2);
646             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
647             ewtabD           = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
649             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
650             ewtabFn          = _mm_setzero_pd();
651             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
652             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
653             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
654             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
655             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
656
657             d                = _mm_sub_pd(r10,rswitch);
658             d                = _mm_max_pd(d,_mm_setzero_pd());
659             d2               = _mm_mul_pd(d,d);
660             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
661
662             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
663
664             /* Evaluate switch function */
665             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
666             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
667             velec            = _mm_mul_pd(velec,sw);
668             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
669
670             /* Update potential sum for this i atom from the interaction with this j atom. */
671             velec            = _mm_and_pd(velec,cutoff_mask);
672             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
673             velecsum         = _mm_add_pd(velecsum,velec);
674
675             fscal            = felec;
676
677             fscal            = _mm_and_pd(fscal,cutoff_mask);
678
679             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
680
681             /* Calculate temporary vectorial force */
682             tx               = _mm_mul_pd(fscal,dx10);
683             ty               = _mm_mul_pd(fscal,dy10);
684             tz               = _mm_mul_pd(fscal,dz10);
685
686             /* Update vectorial force */
687             fix1             = _mm_add_pd(fix1,tx);
688             fiy1             = _mm_add_pd(fiy1,ty);
689             fiz1             = _mm_add_pd(fiz1,tz);
690
691             fjx0             = _mm_add_pd(fjx0,tx);
692             fjy0             = _mm_add_pd(fjy0,ty);
693             fjz0             = _mm_add_pd(fjz0,tz);
694
695             }
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             if (gmx_mm_any_lt(rsq20,rcutoff2))
702             {
703
704             r20              = _mm_mul_pd(rsq20,rinv20);
705
706             /* Compute parameters for interactions between i and j atoms */
707             qq20             = _mm_mul_pd(iq2,jq0);
708
709             /* EWALD ELECTROSTATICS */
710
711             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
712             ewrt             = _mm_mul_pd(r20,ewtabscale);
713             ewitab           = _mm_cvttpd_epi32(ewrt);
714             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
715             ewitab           = _mm_slli_epi32(ewitab,2);
716             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
717             ewtabD           = _mm_setzero_pd();
718             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
719             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
720             ewtabFn          = _mm_setzero_pd();
721             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
722             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
723             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
724             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
725             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
726
727             d                = _mm_sub_pd(r20,rswitch);
728             d                = _mm_max_pd(d,_mm_setzero_pd());
729             d2               = _mm_mul_pd(d,d);
730             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
731
732             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
733
734             /* Evaluate switch function */
735             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
736             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
737             velec            = _mm_mul_pd(velec,sw);
738             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
739
740             /* Update potential sum for this i atom from the interaction with this j atom. */
741             velec            = _mm_and_pd(velec,cutoff_mask);
742             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
743             velecsum         = _mm_add_pd(velecsum,velec);
744
745             fscal            = felec;
746
747             fscal            = _mm_and_pd(fscal,cutoff_mask);
748
749             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
750
751             /* Calculate temporary vectorial force */
752             tx               = _mm_mul_pd(fscal,dx20);
753             ty               = _mm_mul_pd(fscal,dy20);
754             tz               = _mm_mul_pd(fscal,dz20);
755
756             /* Update vectorial force */
757             fix2             = _mm_add_pd(fix2,tx);
758             fiy2             = _mm_add_pd(fiy2,ty);
759             fiz2             = _mm_add_pd(fiz2,tz);
760
761             fjx0             = _mm_add_pd(fjx0,tx);
762             fjy0             = _mm_add_pd(fjy0,ty);
763             fjz0             = _mm_add_pd(fjz0,tz);
764
765             }
766
767             /**************************
768              * CALCULATE INTERACTIONS *
769              **************************/
770
771             if (gmx_mm_any_lt(rsq30,rcutoff2))
772             {
773
774             r30              = _mm_mul_pd(rsq30,rinv30);
775
776             /* Compute parameters for interactions between i and j atoms */
777             qq30             = _mm_mul_pd(iq3,jq0);
778
779             /* EWALD ELECTROSTATICS */
780
781             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
782             ewrt             = _mm_mul_pd(r30,ewtabscale);
783             ewitab           = _mm_cvttpd_epi32(ewrt);
784             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
785             ewitab           = _mm_slli_epi32(ewitab,2);
786             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
787             ewtabD           = _mm_setzero_pd();
788             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
789             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
790             ewtabFn          = _mm_setzero_pd();
791             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
792             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
793             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
794             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
795             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
796
797             d                = _mm_sub_pd(r30,rswitch);
798             d                = _mm_max_pd(d,_mm_setzero_pd());
799             d2               = _mm_mul_pd(d,d);
800             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
801
802             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
803
804             /* Evaluate switch function */
805             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
806             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
807             velec            = _mm_mul_pd(velec,sw);
808             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
809
810             /* Update potential sum for this i atom from the interaction with this j atom. */
811             velec            = _mm_and_pd(velec,cutoff_mask);
812             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
813             velecsum         = _mm_add_pd(velecsum,velec);
814
815             fscal            = felec;
816
817             fscal            = _mm_and_pd(fscal,cutoff_mask);
818
819             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm_mul_pd(fscal,dx30);
823             ty               = _mm_mul_pd(fscal,dy30);
824             tz               = _mm_mul_pd(fscal,dz30);
825
826             /* Update vectorial force */
827             fix3             = _mm_add_pd(fix3,tx);
828             fiy3             = _mm_add_pd(fiy3,ty);
829             fiz3             = _mm_add_pd(fiz3,tz);
830
831             fjx0             = _mm_add_pd(fjx0,tx);
832             fjy0             = _mm_add_pd(fjy0,ty);
833             fjz0             = _mm_add_pd(fjz0,tz);
834
835             }
836
837             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
838
839             /* Inner loop uses 257 flops */
840         }
841
842         /* End of innermost loop */
843
844         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
845                                               f+i_coord_offset,fshift+i_shift_offset);
846
847         ggid                        = gid[iidx];
848         /* Update potential energies */
849         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
850         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
851
852         /* Increment number of inner iterations */
853         inneriter                  += j_index_end - j_index_start;
854
855         /* Outer loop uses 26 flops */
856     }
857
858     /* Increment number of outer iterations */
859     outeriter        += nri;
860
861     /* Update outer/inner flops */
862
863     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*257);
864 }
865 /*
866  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse4_1_double
867  * Electrostatics interaction: Ewald
868  * VdW interaction:            LennardJones
869  * Geometry:                   Water4-Particle
870  * Calculate force/pot:        Force
871  */
872 void
873 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse4_1_double
874                     (t_nblist                    * gmx_restrict       nlist,
875                      rvec                        * gmx_restrict          xx,
876                      rvec                        * gmx_restrict          ff,
877                      t_forcerec                  * gmx_restrict          fr,
878                      t_mdatoms                   * gmx_restrict     mdatoms,
879                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
880                      t_nrnb                      * gmx_restrict        nrnb)
881 {
882     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
883      * just 0 for non-waters.
884      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
885      * jnr indices corresponding to data put in the four positions in the SIMD register.
886      */
887     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
888     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
889     int              jnrA,jnrB;
890     int              j_coord_offsetA,j_coord_offsetB;
891     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
892     real             rcutoff_scalar;
893     real             *shiftvec,*fshift,*x,*f;
894     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
895     int              vdwioffset0;
896     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
897     int              vdwioffset1;
898     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
899     int              vdwioffset2;
900     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
901     int              vdwioffset3;
902     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
903     int              vdwjidx0A,vdwjidx0B;
904     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
905     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
906     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
907     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
908     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
909     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
910     real             *charge;
911     int              nvdwtype;
912     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
913     int              *vdwtype;
914     real             *vdwparam;
915     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
916     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
917     __m128i          ewitab;
918     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
919     real             *ewtab;
920     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
921     real             rswitch_scalar,d_scalar;
922     __m128d          dummy_mask,cutoff_mask;
923     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
924     __m128d          one     = _mm_set1_pd(1.0);
925     __m128d          two     = _mm_set1_pd(2.0);
926     x                = xx[0];
927     f                = ff[0];
928
929     nri              = nlist->nri;
930     iinr             = nlist->iinr;
931     jindex           = nlist->jindex;
932     jjnr             = nlist->jjnr;
933     shiftidx         = nlist->shift;
934     gid              = nlist->gid;
935     shiftvec         = fr->shift_vec[0];
936     fshift           = fr->fshift[0];
937     facel            = _mm_set1_pd(fr->epsfac);
938     charge           = mdatoms->chargeA;
939     nvdwtype         = fr->ntype;
940     vdwparam         = fr->nbfp;
941     vdwtype          = mdatoms->typeA;
942
943     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
944     ewtab            = fr->ic->tabq_coul_FDV0;
945     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
946     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
947
948     /* Setup water-specific parameters */
949     inr              = nlist->iinr[0];
950     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
951     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
952     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
953     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
954
955     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
956     rcutoff_scalar   = fr->rcoulomb;
957     rcutoff          = _mm_set1_pd(rcutoff_scalar);
958     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
959
960     rswitch_scalar   = fr->rcoulomb_switch;
961     rswitch          = _mm_set1_pd(rswitch_scalar);
962     /* Setup switch parameters */
963     d_scalar         = rcutoff_scalar-rswitch_scalar;
964     d                = _mm_set1_pd(d_scalar);
965     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
966     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
967     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
968     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
969     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
970     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
971
972     /* Avoid stupid compiler warnings */
973     jnrA = jnrB = 0;
974     j_coord_offsetA = 0;
975     j_coord_offsetB = 0;
976
977     outeriter        = 0;
978     inneriter        = 0;
979
980     /* Start outer loop over neighborlists */
981     for(iidx=0; iidx<nri; iidx++)
982     {
983         /* Load shift vector for this list */
984         i_shift_offset   = DIM*shiftidx[iidx];
985
986         /* Load limits for loop over neighbors */
987         j_index_start    = jindex[iidx];
988         j_index_end      = jindex[iidx+1];
989
990         /* Get outer coordinate index */
991         inr              = iinr[iidx];
992         i_coord_offset   = DIM*inr;
993
994         /* Load i particle coords and add shift vector */
995         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
996                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
997
998         fix0             = _mm_setzero_pd();
999         fiy0             = _mm_setzero_pd();
1000         fiz0             = _mm_setzero_pd();
1001         fix1             = _mm_setzero_pd();
1002         fiy1             = _mm_setzero_pd();
1003         fiz1             = _mm_setzero_pd();
1004         fix2             = _mm_setzero_pd();
1005         fiy2             = _mm_setzero_pd();
1006         fiz2             = _mm_setzero_pd();
1007         fix3             = _mm_setzero_pd();
1008         fiy3             = _mm_setzero_pd();
1009         fiz3             = _mm_setzero_pd();
1010
1011         /* Start inner kernel loop */
1012         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1013         {
1014
1015             /* Get j neighbor index, and coordinate index */
1016             jnrA             = jjnr[jidx];
1017             jnrB             = jjnr[jidx+1];
1018             j_coord_offsetA  = DIM*jnrA;
1019             j_coord_offsetB  = DIM*jnrB;
1020
1021             /* load j atom coordinates */
1022             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1023                                               &jx0,&jy0,&jz0);
1024
1025             /* Calculate displacement vector */
1026             dx00             = _mm_sub_pd(ix0,jx0);
1027             dy00             = _mm_sub_pd(iy0,jy0);
1028             dz00             = _mm_sub_pd(iz0,jz0);
1029             dx10             = _mm_sub_pd(ix1,jx0);
1030             dy10             = _mm_sub_pd(iy1,jy0);
1031             dz10             = _mm_sub_pd(iz1,jz0);
1032             dx20             = _mm_sub_pd(ix2,jx0);
1033             dy20             = _mm_sub_pd(iy2,jy0);
1034             dz20             = _mm_sub_pd(iz2,jz0);
1035             dx30             = _mm_sub_pd(ix3,jx0);
1036             dy30             = _mm_sub_pd(iy3,jy0);
1037             dz30             = _mm_sub_pd(iz3,jz0);
1038
1039             /* Calculate squared distance and things based on it */
1040             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1041             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1042             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1043             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1044
1045             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1046             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1047             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1048             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1049
1050             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1051             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1052             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1053             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1054
1055             /* Load parameters for j particles */
1056             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1057             vdwjidx0A        = 2*vdwtype[jnrA+0];
1058             vdwjidx0B        = 2*vdwtype[jnrB+0];
1059
1060             fjx0             = _mm_setzero_pd();
1061             fjy0             = _mm_setzero_pd();
1062             fjz0             = _mm_setzero_pd();
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_mm_any_lt(rsq00,rcutoff2))
1069             {
1070
1071             r00              = _mm_mul_pd(rsq00,rinv00);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1075                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1076
1077             /* LENNARD-JONES DISPERSION/REPULSION */
1078
1079             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1080             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1081             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1082             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1083             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1084
1085             d                = _mm_sub_pd(r00,rswitch);
1086             d                = _mm_max_pd(d,_mm_setzero_pd());
1087             d2               = _mm_mul_pd(d,d);
1088             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1089
1090             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1091
1092             /* Evaluate switch function */
1093             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1094             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1095             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1096
1097             fscal            = fvdw;
1098
1099             fscal            = _mm_and_pd(fscal,cutoff_mask);
1100
1101             /* Calculate temporary vectorial force */
1102             tx               = _mm_mul_pd(fscal,dx00);
1103             ty               = _mm_mul_pd(fscal,dy00);
1104             tz               = _mm_mul_pd(fscal,dz00);
1105
1106             /* Update vectorial force */
1107             fix0             = _mm_add_pd(fix0,tx);
1108             fiy0             = _mm_add_pd(fiy0,ty);
1109             fiz0             = _mm_add_pd(fiz0,tz);
1110
1111             fjx0             = _mm_add_pd(fjx0,tx);
1112             fjy0             = _mm_add_pd(fjy0,ty);
1113             fjz0             = _mm_add_pd(fjz0,tz);
1114
1115             }
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             if (gmx_mm_any_lt(rsq10,rcutoff2))
1122             {
1123
1124             r10              = _mm_mul_pd(rsq10,rinv10);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq10             = _mm_mul_pd(iq1,jq0);
1128
1129             /* EWALD ELECTROSTATICS */
1130
1131             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1132             ewrt             = _mm_mul_pd(r10,ewtabscale);
1133             ewitab           = _mm_cvttpd_epi32(ewrt);
1134             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1135             ewitab           = _mm_slli_epi32(ewitab,2);
1136             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1137             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1138             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1139             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1140             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1141             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1142             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1143             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1144             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1145             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1146
1147             d                = _mm_sub_pd(r10,rswitch);
1148             d                = _mm_max_pd(d,_mm_setzero_pd());
1149             d2               = _mm_mul_pd(d,d);
1150             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1151
1152             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1153
1154             /* Evaluate switch function */
1155             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1156             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1157             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm_and_pd(fscal,cutoff_mask);
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm_mul_pd(fscal,dx10);
1165             ty               = _mm_mul_pd(fscal,dy10);
1166             tz               = _mm_mul_pd(fscal,dz10);
1167
1168             /* Update vectorial force */
1169             fix1             = _mm_add_pd(fix1,tx);
1170             fiy1             = _mm_add_pd(fiy1,ty);
1171             fiz1             = _mm_add_pd(fiz1,tz);
1172
1173             fjx0             = _mm_add_pd(fjx0,tx);
1174             fjy0             = _mm_add_pd(fjy0,ty);
1175             fjz0             = _mm_add_pd(fjz0,tz);
1176
1177             }
1178
1179             /**************************
1180              * CALCULATE INTERACTIONS *
1181              **************************/
1182
1183             if (gmx_mm_any_lt(rsq20,rcutoff2))
1184             {
1185
1186             r20              = _mm_mul_pd(rsq20,rinv20);
1187
1188             /* Compute parameters for interactions between i and j atoms */
1189             qq20             = _mm_mul_pd(iq2,jq0);
1190
1191             /* EWALD ELECTROSTATICS */
1192
1193             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1194             ewrt             = _mm_mul_pd(r20,ewtabscale);
1195             ewitab           = _mm_cvttpd_epi32(ewrt);
1196             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1197             ewitab           = _mm_slli_epi32(ewitab,2);
1198             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1199             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1200             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1201             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1202             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1203             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1204             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1205             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1206             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1207             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1208
1209             d                = _mm_sub_pd(r20,rswitch);
1210             d                = _mm_max_pd(d,_mm_setzero_pd());
1211             d2               = _mm_mul_pd(d,d);
1212             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1213
1214             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1215
1216             /* Evaluate switch function */
1217             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1218             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1219             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm_and_pd(fscal,cutoff_mask);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm_mul_pd(fscal,dx20);
1227             ty               = _mm_mul_pd(fscal,dy20);
1228             tz               = _mm_mul_pd(fscal,dz20);
1229
1230             /* Update vectorial force */
1231             fix2             = _mm_add_pd(fix2,tx);
1232             fiy2             = _mm_add_pd(fiy2,ty);
1233             fiz2             = _mm_add_pd(fiz2,tz);
1234
1235             fjx0             = _mm_add_pd(fjx0,tx);
1236             fjy0             = _mm_add_pd(fjy0,ty);
1237             fjz0             = _mm_add_pd(fjz0,tz);
1238
1239             }
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             if (gmx_mm_any_lt(rsq30,rcutoff2))
1246             {
1247
1248             r30              = _mm_mul_pd(rsq30,rinv30);
1249
1250             /* Compute parameters for interactions between i and j atoms */
1251             qq30             = _mm_mul_pd(iq3,jq0);
1252
1253             /* EWALD ELECTROSTATICS */
1254
1255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1256             ewrt             = _mm_mul_pd(r30,ewtabscale);
1257             ewitab           = _mm_cvttpd_epi32(ewrt);
1258             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1259             ewitab           = _mm_slli_epi32(ewitab,2);
1260             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1261             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1262             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1263             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1264             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1265             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1266             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1267             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1268             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1269             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1270
1271             d                = _mm_sub_pd(r30,rswitch);
1272             d                = _mm_max_pd(d,_mm_setzero_pd());
1273             d2               = _mm_mul_pd(d,d);
1274             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1275
1276             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1277
1278             /* Evaluate switch function */
1279             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1280             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1281             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1282
1283             fscal            = felec;
1284
1285             fscal            = _mm_and_pd(fscal,cutoff_mask);
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_pd(fscal,dx30);
1289             ty               = _mm_mul_pd(fscal,dy30);
1290             tz               = _mm_mul_pd(fscal,dz30);
1291
1292             /* Update vectorial force */
1293             fix3             = _mm_add_pd(fix3,tx);
1294             fiy3             = _mm_add_pd(fiy3,ty);
1295             fiz3             = _mm_add_pd(fiz3,tz);
1296
1297             fjx0             = _mm_add_pd(fjx0,tx);
1298             fjy0             = _mm_add_pd(fjy0,ty);
1299             fjz0             = _mm_add_pd(fjz0,tz);
1300
1301             }
1302
1303             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1304
1305             /* Inner loop uses 245 flops */
1306         }
1307
1308         if(jidx<j_index_end)
1309         {
1310
1311             jnrA             = jjnr[jidx];
1312             j_coord_offsetA  = DIM*jnrA;
1313
1314             /* load j atom coordinates */
1315             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1316                                               &jx0,&jy0,&jz0);
1317
1318             /* Calculate displacement vector */
1319             dx00             = _mm_sub_pd(ix0,jx0);
1320             dy00             = _mm_sub_pd(iy0,jy0);
1321             dz00             = _mm_sub_pd(iz0,jz0);
1322             dx10             = _mm_sub_pd(ix1,jx0);
1323             dy10             = _mm_sub_pd(iy1,jy0);
1324             dz10             = _mm_sub_pd(iz1,jz0);
1325             dx20             = _mm_sub_pd(ix2,jx0);
1326             dy20             = _mm_sub_pd(iy2,jy0);
1327             dz20             = _mm_sub_pd(iz2,jz0);
1328             dx30             = _mm_sub_pd(ix3,jx0);
1329             dy30             = _mm_sub_pd(iy3,jy0);
1330             dz30             = _mm_sub_pd(iz3,jz0);
1331
1332             /* Calculate squared distance and things based on it */
1333             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1334             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1335             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1336             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1337
1338             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1339             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1340             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1341             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1342
1343             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1344             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1345             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1346             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1347
1348             /* Load parameters for j particles */
1349             jq0              = _mm_load_sd(charge+jnrA+0);
1350             vdwjidx0A        = 2*vdwtype[jnrA+0];
1351
1352             fjx0             = _mm_setzero_pd();
1353             fjy0             = _mm_setzero_pd();
1354             fjz0             = _mm_setzero_pd();
1355
1356             /**************************
1357              * CALCULATE INTERACTIONS *
1358              **************************/
1359
1360             if (gmx_mm_any_lt(rsq00,rcutoff2))
1361             {
1362
1363             r00              = _mm_mul_pd(rsq00,rinv00);
1364
1365             /* Compute parameters for interactions between i and j atoms */
1366             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1367
1368             /* LENNARD-JONES DISPERSION/REPULSION */
1369
1370             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1371             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1372             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1373             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1374             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1375
1376             d                = _mm_sub_pd(r00,rswitch);
1377             d                = _mm_max_pd(d,_mm_setzero_pd());
1378             d2               = _mm_mul_pd(d,d);
1379             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1380
1381             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1382
1383             /* Evaluate switch function */
1384             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1385             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1386             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1387
1388             fscal            = fvdw;
1389
1390             fscal            = _mm_and_pd(fscal,cutoff_mask);
1391
1392             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1393
1394             /* Calculate temporary vectorial force */
1395             tx               = _mm_mul_pd(fscal,dx00);
1396             ty               = _mm_mul_pd(fscal,dy00);
1397             tz               = _mm_mul_pd(fscal,dz00);
1398
1399             /* Update vectorial force */
1400             fix0             = _mm_add_pd(fix0,tx);
1401             fiy0             = _mm_add_pd(fiy0,ty);
1402             fiz0             = _mm_add_pd(fiz0,tz);
1403
1404             fjx0             = _mm_add_pd(fjx0,tx);
1405             fjy0             = _mm_add_pd(fjy0,ty);
1406             fjz0             = _mm_add_pd(fjz0,tz);
1407
1408             }
1409
1410             /**************************
1411              * CALCULATE INTERACTIONS *
1412              **************************/
1413
1414             if (gmx_mm_any_lt(rsq10,rcutoff2))
1415             {
1416
1417             r10              = _mm_mul_pd(rsq10,rinv10);
1418
1419             /* Compute parameters for interactions between i and j atoms */
1420             qq10             = _mm_mul_pd(iq1,jq0);
1421
1422             /* EWALD ELECTROSTATICS */
1423
1424             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1425             ewrt             = _mm_mul_pd(r10,ewtabscale);
1426             ewitab           = _mm_cvttpd_epi32(ewrt);
1427             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1428             ewitab           = _mm_slli_epi32(ewitab,2);
1429             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1430             ewtabD           = _mm_setzero_pd();
1431             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1432             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1433             ewtabFn          = _mm_setzero_pd();
1434             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1435             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1436             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1437             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1438             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1439
1440             d                = _mm_sub_pd(r10,rswitch);
1441             d                = _mm_max_pd(d,_mm_setzero_pd());
1442             d2               = _mm_mul_pd(d,d);
1443             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1444
1445             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1446
1447             /* Evaluate switch function */
1448             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1449             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1450             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1451
1452             fscal            = felec;
1453
1454             fscal            = _mm_and_pd(fscal,cutoff_mask);
1455
1456             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1457
1458             /* Calculate temporary vectorial force */
1459             tx               = _mm_mul_pd(fscal,dx10);
1460             ty               = _mm_mul_pd(fscal,dy10);
1461             tz               = _mm_mul_pd(fscal,dz10);
1462
1463             /* Update vectorial force */
1464             fix1             = _mm_add_pd(fix1,tx);
1465             fiy1             = _mm_add_pd(fiy1,ty);
1466             fiz1             = _mm_add_pd(fiz1,tz);
1467
1468             fjx0             = _mm_add_pd(fjx0,tx);
1469             fjy0             = _mm_add_pd(fjy0,ty);
1470             fjz0             = _mm_add_pd(fjz0,tz);
1471
1472             }
1473
1474             /**************************
1475              * CALCULATE INTERACTIONS *
1476              **************************/
1477
1478             if (gmx_mm_any_lt(rsq20,rcutoff2))
1479             {
1480
1481             r20              = _mm_mul_pd(rsq20,rinv20);
1482
1483             /* Compute parameters for interactions between i and j atoms */
1484             qq20             = _mm_mul_pd(iq2,jq0);
1485
1486             /* EWALD ELECTROSTATICS */
1487
1488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1489             ewrt             = _mm_mul_pd(r20,ewtabscale);
1490             ewitab           = _mm_cvttpd_epi32(ewrt);
1491             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1492             ewitab           = _mm_slli_epi32(ewitab,2);
1493             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1494             ewtabD           = _mm_setzero_pd();
1495             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1496             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1497             ewtabFn          = _mm_setzero_pd();
1498             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1499             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1500             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1501             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1502             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1503
1504             d                = _mm_sub_pd(r20,rswitch);
1505             d                = _mm_max_pd(d,_mm_setzero_pd());
1506             d2               = _mm_mul_pd(d,d);
1507             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1508
1509             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1510
1511             /* Evaluate switch function */
1512             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1513             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1514             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1515
1516             fscal            = felec;
1517
1518             fscal            = _mm_and_pd(fscal,cutoff_mask);
1519
1520             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1521
1522             /* Calculate temporary vectorial force */
1523             tx               = _mm_mul_pd(fscal,dx20);
1524             ty               = _mm_mul_pd(fscal,dy20);
1525             tz               = _mm_mul_pd(fscal,dz20);
1526
1527             /* Update vectorial force */
1528             fix2             = _mm_add_pd(fix2,tx);
1529             fiy2             = _mm_add_pd(fiy2,ty);
1530             fiz2             = _mm_add_pd(fiz2,tz);
1531
1532             fjx0             = _mm_add_pd(fjx0,tx);
1533             fjy0             = _mm_add_pd(fjy0,ty);
1534             fjz0             = _mm_add_pd(fjz0,tz);
1535
1536             }
1537
1538             /**************************
1539              * CALCULATE INTERACTIONS *
1540              **************************/
1541
1542             if (gmx_mm_any_lt(rsq30,rcutoff2))
1543             {
1544
1545             r30              = _mm_mul_pd(rsq30,rinv30);
1546
1547             /* Compute parameters for interactions between i and j atoms */
1548             qq30             = _mm_mul_pd(iq3,jq0);
1549
1550             /* EWALD ELECTROSTATICS */
1551
1552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1553             ewrt             = _mm_mul_pd(r30,ewtabscale);
1554             ewitab           = _mm_cvttpd_epi32(ewrt);
1555             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1556             ewitab           = _mm_slli_epi32(ewitab,2);
1557             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1558             ewtabD           = _mm_setzero_pd();
1559             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1560             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1561             ewtabFn          = _mm_setzero_pd();
1562             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1563             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1564             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1565             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1566             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1567
1568             d                = _mm_sub_pd(r30,rswitch);
1569             d                = _mm_max_pd(d,_mm_setzero_pd());
1570             d2               = _mm_mul_pd(d,d);
1571             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1572
1573             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1574
1575             /* Evaluate switch function */
1576             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1577             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1578             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1579
1580             fscal            = felec;
1581
1582             fscal            = _mm_and_pd(fscal,cutoff_mask);
1583
1584             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1585
1586             /* Calculate temporary vectorial force */
1587             tx               = _mm_mul_pd(fscal,dx30);
1588             ty               = _mm_mul_pd(fscal,dy30);
1589             tz               = _mm_mul_pd(fscal,dz30);
1590
1591             /* Update vectorial force */
1592             fix3             = _mm_add_pd(fix3,tx);
1593             fiy3             = _mm_add_pd(fiy3,ty);
1594             fiz3             = _mm_add_pd(fiz3,tz);
1595
1596             fjx0             = _mm_add_pd(fjx0,tx);
1597             fjy0             = _mm_add_pd(fjy0,ty);
1598             fjz0             = _mm_add_pd(fjz0,tz);
1599
1600             }
1601
1602             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1603
1604             /* Inner loop uses 245 flops */
1605         }
1606
1607         /* End of innermost loop */
1608
1609         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1610                                               f+i_coord_offset,fshift+i_shift_offset);
1611
1612         /* Increment number of inner iterations */
1613         inneriter                  += j_index_end - j_index_start;
1614
1615         /* Outer loop uses 24 flops */
1616     }
1617
1618     /* Increment number of outer iterations */
1619     outeriter        += nri;
1620
1621     /* Update outer/inner flops */
1622
1623     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*245);
1624 }