Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->ic->rcoulomb;
138     rcutoff          = _mm_set1_pd(rcutoff_scalar);
139     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
140
141     rswitch_scalar   = fr->ic->rcoulomb_switch;
142     rswitch          = _mm_set1_pd(rswitch_scalar);
143     /* Setup switch parameters */
144     d_scalar         = rcutoff_scalar-rswitch_scalar;
145     d                = _mm_set1_pd(d_scalar);
146     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
147     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
150     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm_setzero_pd();
180         fiy0             = _mm_setzero_pd();
181         fiz0             = _mm_setzero_pd();
182         fix1             = _mm_setzero_pd();
183         fiy1             = _mm_setzero_pd();
184         fiz1             = _mm_setzero_pd();
185         fix2             = _mm_setzero_pd();
186         fiy2             = _mm_setzero_pd();
187         fiz2             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191         vvdwsum          = _mm_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_pd(ix0,jx0);
209             dy00             = _mm_sub_pd(iy0,jy0);
210             dz00             = _mm_sub_pd(iz0,jz0);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx20             = _mm_sub_pd(ix2,jx0);
215             dy20             = _mm_sub_pd(iy2,jy0);
216             dz20             = _mm_sub_pd(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
222
223             rinv00           = sse41_invsqrt_d(rsq00);
224             rinv10           = sse41_invsqrt_d(rsq10);
225             rinv20           = sse41_invsqrt_d(rsq20);
226
227             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
228             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (gmx_mm_any_lt(rsq00,rcutoff2))
245             {
246
247             r00              = _mm_mul_pd(rsq00,rinv00);
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm_mul_pd(iq0,jq0);
251             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
253
254             /* EWALD ELECTROSTATICS */
255
256             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
257             ewrt             = _mm_mul_pd(r00,ewtabscale);
258             ewitab           = _mm_cvttpd_epi32(ewrt);
259             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
260             ewitab           = _mm_slli_epi32(ewitab,2);
261             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
262             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
263             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
264             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
265             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
266             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
267             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
268             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
269             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
270             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
276             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
278             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
279
280             d                = _mm_sub_pd(r00,rswitch);
281             d                = _mm_max_pd(d,_mm_setzero_pd());
282             d2               = _mm_mul_pd(d,d);
283             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
284
285             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
286
287             /* Evaluate switch function */
288             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
289             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
290             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
291             velec            = _mm_mul_pd(velec,sw);
292             vvdw             = _mm_mul_pd(vvdw,sw);
293             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velec            = _mm_and_pd(velec,cutoff_mask);
297             velecsum         = _mm_add_pd(velecsum,velec);
298             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
299             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
300
301             fscal            = _mm_add_pd(felec,fvdw);
302
303             fscal            = _mm_and_pd(fscal,cutoff_mask);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_pd(fscal,dx00);
307             ty               = _mm_mul_pd(fscal,dy00);
308             tz               = _mm_mul_pd(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_pd(fix0,tx);
312             fiy0             = _mm_add_pd(fiy0,ty);
313             fiz0             = _mm_add_pd(fiz0,tz);
314
315             fjx0             = _mm_add_pd(fjx0,tx);
316             fjy0             = _mm_add_pd(fjy0,ty);
317             fjz0             = _mm_add_pd(fjz0,tz);
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq10,rcutoff2))
326             {
327
328             r10              = _mm_mul_pd(rsq10,rinv10);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm_mul_pd(iq1,jq0);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_pd(r10,ewtabscale);
337             ewitab           = _mm_cvttpd_epi32(ewrt);
338             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
339             ewitab           = _mm_slli_epi32(ewitab,2);
340             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
341             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
342             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
343             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
344             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
345             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
346             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
347             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
348             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
349             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
350
351             d                = _mm_sub_pd(r10,rswitch);
352             d                = _mm_max_pd(d,_mm_setzero_pd());
353             d2               = _mm_mul_pd(d,d);
354             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
355
356             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
357
358             /* Evaluate switch function */
359             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
360             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
361             velec            = _mm_mul_pd(velec,sw);
362             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_pd(velec,cutoff_mask);
366             velecsum         = _mm_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_pd(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_pd(fscal,dx10);
374             ty               = _mm_mul_pd(fscal,dy10);
375             tz               = _mm_mul_pd(fscal,dz10);
376
377             /* Update vectorial force */
378             fix1             = _mm_add_pd(fix1,tx);
379             fiy1             = _mm_add_pd(fiy1,ty);
380             fiz1             = _mm_add_pd(fiz1,tz);
381
382             fjx0             = _mm_add_pd(fjx0,tx);
383             fjy0             = _mm_add_pd(fjy0,ty);
384             fjz0             = _mm_add_pd(fjz0,tz);
385
386             }
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             if (gmx_mm_any_lt(rsq20,rcutoff2))
393             {
394
395             r20              = _mm_mul_pd(rsq20,rinv20);
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq20             = _mm_mul_pd(iq2,jq0);
399
400             /* EWALD ELECTROSTATICS */
401
402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
403             ewrt             = _mm_mul_pd(r20,ewtabscale);
404             ewitab           = _mm_cvttpd_epi32(ewrt);
405             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
406             ewitab           = _mm_slli_epi32(ewitab,2);
407             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
408             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
409             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
410             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
411             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
412             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
413             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
414             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
415             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
416             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
417
418             d                = _mm_sub_pd(r20,rswitch);
419             d                = _mm_max_pd(d,_mm_setzero_pd());
420             d2               = _mm_mul_pd(d,d);
421             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
422
423             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
424
425             /* Evaluate switch function */
426             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
427             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
428             velec            = _mm_mul_pd(velec,sw);
429             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm_and_pd(velec,cutoff_mask);
433             velecsum         = _mm_add_pd(velecsum,velec);
434
435             fscal            = felec;
436
437             fscal            = _mm_and_pd(fscal,cutoff_mask);
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm_mul_pd(fscal,dx20);
441             ty               = _mm_mul_pd(fscal,dy20);
442             tz               = _mm_mul_pd(fscal,dz20);
443
444             /* Update vectorial force */
445             fix2             = _mm_add_pd(fix2,tx);
446             fiy2             = _mm_add_pd(fiy2,ty);
447             fiz2             = _mm_add_pd(fiz2,tz);
448
449             fjx0             = _mm_add_pd(fjx0,tx);
450             fjy0             = _mm_add_pd(fjy0,ty);
451             fjz0             = _mm_add_pd(fjz0,tz);
452
453             }
454
455             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 216 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             jnrA             = jjnr[jidx];
464             j_coord_offsetA  = DIM*jnrA;
465
466             /* load j atom coordinates */
467             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
468                                               &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm_sub_pd(ix0,jx0);
472             dy00             = _mm_sub_pd(iy0,jy0);
473             dz00             = _mm_sub_pd(iz0,jz0);
474             dx10             = _mm_sub_pd(ix1,jx0);
475             dy10             = _mm_sub_pd(iy1,jy0);
476             dz10             = _mm_sub_pd(iz1,jz0);
477             dx20             = _mm_sub_pd(ix2,jx0);
478             dy20             = _mm_sub_pd(iy2,jy0);
479             dz20             = _mm_sub_pd(iz2,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
484             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
485
486             rinv00           = sse41_invsqrt_d(rsq00);
487             rinv10           = sse41_invsqrt_d(rsq10);
488             rinv20           = sse41_invsqrt_d(rsq20);
489
490             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
491             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
492             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
493
494             /* Load parameters for j particles */
495             jq0              = _mm_load_sd(charge+jnrA+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497
498             fjx0             = _mm_setzero_pd();
499             fjy0             = _mm_setzero_pd();
500             fjz0             = _mm_setzero_pd();
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             if (gmx_mm_any_lt(rsq00,rcutoff2))
507             {
508
509             r00              = _mm_mul_pd(rsq00,rinv00);
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq00             = _mm_mul_pd(iq0,jq0);
513             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm_mul_pd(r00,ewtabscale);
519             ewitab           = _mm_cvttpd_epi32(ewrt);
520             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
521             ewitab           = _mm_slli_epi32(ewitab,2);
522             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
523             ewtabD           = _mm_setzero_pd();
524             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
525             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
526             ewtabFn          = _mm_setzero_pd();
527             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
528             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
529             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
530             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
531             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
532
533             /* LENNARD-JONES DISPERSION/REPULSION */
534
535             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
536             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
537             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
538             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
539             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
540
541             d                = _mm_sub_pd(r00,rswitch);
542             d                = _mm_max_pd(d,_mm_setzero_pd());
543             d2               = _mm_mul_pd(d,d);
544             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
545
546             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
547
548             /* Evaluate switch function */
549             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
550             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
551             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
552             velec            = _mm_mul_pd(velec,sw);
553             vvdw             = _mm_mul_pd(vvdw,sw);
554             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_and_pd(velec,cutoff_mask);
558             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
559             velecsum         = _mm_add_pd(velecsum,velec);
560             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
561             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
562             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
563
564             fscal            = _mm_add_pd(felec,fvdw);
565
566             fscal            = _mm_and_pd(fscal,cutoff_mask);
567
568             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm_mul_pd(fscal,dx00);
572             ty               = _mm_mul_pd(fscal,dy00);
573             tz               = _mm_mul_pd(fscal,dz00);
574
575             /* Update vectorial force */
576             fix0             = _mm_add_pd(fix0,tx);
577             fiy0             = _mm_add_pd(fiy0,ty);
578             fiz0             = _mm_add_pd(fiz0,tz);
579
580             fjx0             = _mm_add_pd(fjx0,tx);
581             fjy0             = _mm_add_pd(fjy0,ty);
582             fjz0             = _mm_add_pd(fjz0,tz);
583
584             }
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             if (gmx_mm_any_lt(rsq10,rcutoff2))
591             {
592
593             r10              = _mm_mul_pd(rsq10,rinv10);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq10             = _mm_mul_pd(iq1,jq0);
597
598             /* EWALD ELECTROSTATICS */
599
600             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
601             ewrt             = _mm_mul_pd(r10,ewtabscale);
602             ewitab           = _mm_cvttpd_epi32(ewrt);
603             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
604             ewitab           = _mm_slli_epi32(ewitab,2);
605             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
606             ewtabD           = _mm_setzero_pd();
607             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
608             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
609             ewtabFn          = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
611             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
612             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
613             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
614             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
615
616             d                = _mm_sub_pd(r10,rswitch);
617             d                = _mm_max_pd(d,_mm_setzero_pd());
618             d2               = _mm_mul_pd(d,d);
619             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
620
621             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
622
623             /* Evaluate switch function */
624             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
625             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
626             velec            = _mm_mul_pd(velec,sw);
627             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm_and_pd(velec,cutoff_mask);
631             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
632             velecsum         = _mm_add_pd(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _mm_and_pd(fscal,cutoff_mask);
637
638             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
639
640             /* Calculate temporary vectorial force */
641             tx               = _mm_mul_pd(fscal,dx10);
642             ty               = _mm_mul_pd(fscal,dy10);
643             tz               = _mm_mul_pd(fscal,dz10);
644
645             /* Update vectorial force */
646             fix1             = _mm_add_pd(fix1,tx);
647             fiy1             = _mm_add_pd(fiy1,ty);
648             fiz1             = _mm_add_pd(fiz1,tz);
649
650             fjx0             = _mm_add_pd(fjx0,tx);
651             fjy0             = _mm_add_pd(fjy0,ty);
652             fjz0             = _mm_add_pd(fjz0,tz);
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm_any_lt(rsq20,rcutoff2))
661             {
662
663             r20              = _mm_mul_pd(rsq20,rinv20);
664
665             /* Compute parameters for interactions between i and j atoms */
666             qq20             = _mm_mul_pd(iq2,jq0);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_pd(r20,ewtabscale);
672             ewitab           = _mm_cvttpd_epi32(ewrt);
673             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
674             ewitab           = _mm_slli_epi32(ewitab,2);
675             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
676             ewtabD           = _mm_setzero_pd();
677             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
678             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
679             ewtabFn          = _mm_setzero_pd();
680             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
681             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
682             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
683             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
684             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
685
686             d                = _mm_sub_pd(r20,rswitch);
687             d                = _mm_max_pd(d,_mm_setzero_pd());
688             d2               = _mm_mul_pd(d,d);
689             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
690
691             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
692
693             /* Evaluate switch function */
694             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
695             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
696             velec            = _mm_mul_pd(velec,sw);
697             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
698
699             /* Update potential sum for this i atom from the interaction with this j atom. */
700             velec            = _mm_and_pd(velec,cutoff_mask);
701             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
702             velecsum         = _mm_add_pd(velecsum,velec);
703
704             fscal            = felec;
705
706             fscal            = _mm_and_pd(fscal,cutoff_mask);
707
708             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm_mul_pd(fscal,dx20);
712             ty               = _mm_mul_pd(fscal,dy20);
713             tz               = _mm_mul_pd(fscal,dz20);
714
715             /* Update vectorial force */
716             fix2             = _mm_add_pd(fix2,tx);
717             fiy2             = _mm_add_pd(fiy2,ty);
718             fiz2             = _mm_add_pd(fiz2,tz);
719
720             fjx0             = _mm_add_pd(fjx0,tx);
721             fjy0             = _mm_add_pd(fjy0,ty);
722             fjz0             = _mm_add_pd(fjz0,tz);
723
724             }
725
726             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
727
728             /* Inner loop uses 216 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
734                                               f+i_coord_offset,fshift+i_shift_offset);
735
736         ggid                        = gid[iidx];
737         /* Update potential energies */
738         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
739         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
740
741         /* Increment number of inner iterations */
742         inneriter                  += j_index_end - j_index_start;
743
744         /* Outer loop uses 20 flops */
745     }
746
747     /* Increment number of outer iterations */
748     outeriter        += nri;
749
750     /* Update outer/inner flops */
751
752     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*216);
753 }
754 /*
755  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_double
756  * Electrostatics interaction: Ewald
757  * VdW interaction:            LennardJones
758  * Geometry:                   Water3-Particle
759  * Calculate force/pot:        Force
760  */
761 void
762 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_sse4_1_double
763                     (t_nblist                    * gmx_restrict       nlist,
764                      rvec                        * gmx_restrict          xx,
765                      rvec                        * gmx_restrict          ff,
766                      struct t_forcerec           * gmx_restrict          fr,
767                      t_mdatoms                   * gmx_restrict     mdatoms,
768                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
769                      t_nrnb                      * gmx_restrict        nrnb)
770 {
771     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
772      * just 0 for non-waters.
773      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
774      * jnr indices corresponding to data put in the four positions in the SIMD register.
775      */
776     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
777     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
778     int              jnrA,jnrB;
779     int              j_coord_offsetA,j_coord_offsetB;
780     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
781     real             rcutoff_scalar;
782     real             *shiftvec,*fshift,*x,*f;
783     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
784     int              vdwioffset0;
785     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
786     int              vdwioffset1;
787     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
788     int              vdwioffset2;
789     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
790     int              vdwjidx0A,vdwjidx0B;
791     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
792     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
793     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
794     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
795     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
796     real             *charge;
797     int              nvdwtype;
798     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
799     int              *vdwtype;
800     real             *vdwparam;
801     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
802     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
803     __m128i          ewitab;
804     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
805     real             *ewtab;
806     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
807     real             rswitch_scalar,d_scalar;
808     __m128d          dummy_mask,cutoff_mask;
809     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
810     __m128d          one     = _mm_set1_pd(1.0);
811     __m128d          two     = _mm_set1_pd(2.0);
812     x                = xx[0];
813     f                = ff[0];
814
815     nri              = nlist->nri;
816     iinr             = nlist->iinr;
817     jindex           = nlist->jindex;
818     jjnr             = nlist->jjnr;
819     shiftidx         = nlist->shift;
820     gid              = nlist->gid;
821     shiftvec         = fr->shift_vec[0];
822     fshift           = fr->fshift[0];
823     facel            = _mm_set1_pd(fr->ic->epsfac);
824     charge           = mdatoms->chargeA;
825     nvdwtype         = fr->ntype;
826     vdwparam         = fr->nbfp;
827     vdwtype          = mdatoms->typeA;
828
829     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
830     ewtab            = fr->ic->tabq_coul_FDV0;
831     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
832     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
833
834     /* Setup water-specific parameters */
835     inr              = nlist->iinr[0];
836     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
837     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
838     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
839     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
840
841     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
842     rcutoff_scalar   = fr->ic->rcoulomb;
843     rcutoff          = _mm_set1_pd(rcutoff_scalar);
844     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
845
846     rswitch_scalar   = fr->ic->rcoulomb_switch;
847     rswitch          = _mm_set1_pd(rswitch_scalar);
848     /* Setup switch parameters */
849     d_scalar         = rcutoff_scalar-rswitch_scalar;
850     d                = _mm_set1_pd(d_scalar);
851     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
852     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
853     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
854     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
855     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
856     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
857
858     /* Avoid stupid compiler warnings */
859     jnrA = jnrB = 0;
860     j_coord_offsetA = 0;
861     j_coord_offsetB = 0;
862
863     outeriter        = 0;
864     inneriter        = 0;
865
866     /* Start outer loop over neighborlists */
867     for(iidx=0; iidx<nri; iidx++)
868     {
869         /* Load shift vector for this list */
870         i_shift_offset   = DIM*shiftidx[iidx];
871
872         /* Load limits for loop over neighbors */
873         j_index_start    = jindex[iidx];
874         j_index_end      = jindex[iidx+1];
875
876         /* Get outer coordinate index */
877         inr              = iinr[iidx];
878         i_coord_offset   = DIM*inr;
879
880         /* Load i particle coords and add shift vector */
881         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
882                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
883
884         fix0             = _mm_setzero_pd();
885         fiy0             = _mm_setzero_pd();
886         fiz0             = _mm_setzero_pd();
887         fix1             = _mm_setzero_pd();
888         fiy1             = _mm_setzero_pd();
889         fiz1             = _mm_setzero_pd();
890         fix2             = _mm_setzero_pd();
891         fiy2             = _mm_setzero_pd();
892         fiz2             = _mm_setzero_pd();
893
894         /* Start inner kernel loop */
895         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
896         {
897
898             /* Get j neighbor index, and coordinate index */
899             jnrA             = jjnr[jidx];
900             jnrB             = jjnr[jidx+1];
901             j_coord_offsetA  = DIM*jnrA;
902             j_coord_offsetB  = DIM*jnrB;
903
904             /* load j atom coordinates */
905             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
906                                               &jx0,&jy0,&jz0);
907
908             /* Calculate displacement vector */
909             dx00             = _mm_sub_pd(ix0,jx0);
910             dy00             = _mm_sub_pd(iy0,jy0);
911             dz00             = _mm_sub_pd(iz0,jz0);
912             dx10             = _mm_sub_pd(ix1,jx0);
913             dy10             = _mm_sub_pd(iy1,jy0);
914             dz10             = _mm_sub_pd(iz1,jz0);
915             dx20             = _mm_sub_pd(ix2,jx0);
916             dy20             = _mm_sub_pd(iy2,jy0);
917             dz20             = _mm_sub_pd(iz2,jz0);
918
919             /* Calculate squared distance and things based on it */
920             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
921             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
922             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
923
924             rinv00           = sse41_invsqrt_d(rsq00);
925             rinv10           = sse41_invsqrt_d(rsq10);
926             rinv20           = sse41_invsqrt_d(rsq20);
927
928             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
929             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
930             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
931
932             /* Load parameters for j particles */
933             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
934             vdwjidx0A        = 2*vdwtype[jnrA+0];
935             vdwjidx0B        = 2*vdwtype[jnrB+0];
936
937             fjx0             = _mm_setzero_pd();
938             fjy0             = _mm_setzero_pd();
939             fjz0             = _mm_setzero_pd();
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             if (gmx_mm_any_lt(rsq00,rcutoff2))
946             {
947
948             r00              = _mm_mul_pd(rsq00,rinv00);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq00             = _mm_mul_pd(iq0,jq0);
952             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
953                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
958             ewrt             = _mm_mul_pd(r00,ewtabscale);
959             ewitab           = _mm_cvttpd_epi32(ewrt);
960             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
961             ewitab           = _mm_slli_epi32(ewitab,2);
962             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
963             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
964             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
965             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
966             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
967             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
968             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
969             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
970             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
971             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
972
973             /* LENNARD-JONES DISPERSION/REPULSION */
974
975             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
976             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
977             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
978             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
979             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
980
981             d                = _mm_sub_pd(r00,rswitch);
982             d                = _mm_max_pd(d,_mm_setzero_pd());
983             d2               = _mm_mul_pd(d,d);
984             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
985
986             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
987
988             /* Evaluate switch function */
989             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
990             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
991             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
992             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
993
994             fscal            = _mm_add_pd(felec,fvdw);
995
996             fscal            = _mm_and_pd(fscal,cutoff_mask);
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm_mul_pd(fscal,dx00);
1000             ty               = _mm_mul_pd(fscal,dy00);
1001             tz               = _mm_mul_pd(fscal,dz00);
1002
1003             /* Update vectorial force */
1004             fix0             = _mm_add_pd(fix0,tx);
1005             fiy0             = _mm_add_pd(fiy0,ty);
1006             fiz0             = _mm_add_pd(fiz0,tz);
1007
1008             fjx0             = _mm_add_pd(fjx0,tx);
1009             fjy0             = _mm_add_pd(fjy0,ty);
1010             fjz0             = _mm_add_pd(fjz0,tz);
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm_any_lt(rsq10,rcutoff2))
1019             {
1020
1021             r10              = _mm_mul_pd(rsq10,rinv10);
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             qq10             = _mm_mul_pd(iq1,jq0);
1025
1026             /* EWALD ELECTROSTATICS */
1027
1028             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1029             ewrt             = _mm_mul_pd(r10,ewtabscale);
1030             ewitab           = _mm_cvttpd_epi32(ewrt);
1031             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1032             ewitab           = _mm_slli_epi32(ewitab,2);
1033             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1034             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1035             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1036             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1037             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1038             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1039             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1040             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1041             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1042             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1043
1044             d                = _mm_sub_pd(r10,rswitch);
1045             d                = _mm_max_pd(d,_mm_setzero_pd());
1046             d2               = _mm_mul_pd(d,d);
1047             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1048
1049             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1050
1051             /* Evaluate switch function */
1052             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1053             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1054             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1055
1056             fscal            = felec;
1057
1058             fscal            = _mm_and_pd(fscal,cutoff_mask);
1059
1060             /* Calculate temporary vectorial force */
1061             tx               = _mm_mul_pd(fscal,dx10);
1062             ty               = _mm_mul_pd(fscal,dy10);
1063             tz               = _mm_mul_pd(fscal,dz10);
1064
1065             /* Update vectorial force */
1066             fix1             = _mm_add_pd(fix1,tx);
1067             fiy1             = _mm_add_pd(fiy1,ty);
1068             fiz1             = _mm_add_pd(fiz1,tz);
1069
1070             fjx0             = _mm_add_pd(fjx0,tx);
1071             fjy0             = _mm_add_pd(fjy0,ty);
1072             fjz0             = _mm_add_pd(fjz0,tz);
1073
1074             }
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             if (gmx_mm_any_lt(rsq20,rcutoff2))
1081             {
1082
1083             r20              = _mm_mul_pd(rsq20,rinv20);
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm_mul_pd(iq2,jq0);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1091             ewrt             = _mm_mul_pd(r20,ewtabscale);
1092             ewitab           = _mm_cvttpd_epi32(ewrt);
1093             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1094             ewitab           = _mm_slli_epi32(ewitab,2);
1095             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1096             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1097             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1098             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1099             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1100             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1101             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1102             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1103             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1104             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1105
1106             d                = _mm_sub_pd(r20,rswitch);
1107             d                = _mm_max_pd(d,_mm_setzero_pd());
1108             d2               = _mm_mul_pd(d,d);
1109             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1110
1111             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1112
1113             /* Evaluate switch function */
1114             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1115             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1116             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1117
1118             fscal            = felec;
1119
1120             fscal            = _mm_and_pd(fscal,cutoff_mask);
1121
1122             /* Calculate temporary vectorial force */
1123             tx               = _mm_mul_pd(fscal,dx20);
1124             ty               = _mm_mul_pd(fscal,dy20);
1125             tz               = _mm_mul_pd(fscal,dz20);
1126
1127             /* Update vectorial force */
1128             fix2             = _mm_add_pd(fix2,tx);
1129             fiy2             = _mm_add_pd(fiy2,ty);
1130             fiz2             = _mm_add_pd(fiz2,tz);
1131
1132             fjx0             = _mm_add_pd(fjx0,tx);
1133             fjy0             = _mm_add_pd(fjy0,ty);
1134             fjz0             = _mm_add_pd(fjz0,tz);
1135
1136             }
1137
1138             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1139
1140             /* Inner loop uses 204 flops */
1141         }
1142
1143         if(jidx<j_index_end)
1144         {
1145
1146             jnrA             = jjnr[jidx];
1147             j_coord_offsetA  = DIM*jnrA;
1148
1149             /* load j atom coordinates */
1150             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1151                                               &jx0,&jy0,&jz0);
1152
1153             /* Calculate displacement vector */
1154             dx00             = _mm_sub_pd(ix0,jx0);
1155             dy00             = _mm_sub_pd(iy0,jy0);
1156             dz00             = _mm_sub_pd(iz0,jz0);
1157             dx10             = _mm_sub_pd(ix1,jx0);
1158             dy10             = _mm_sub_pd(iy1,jy0);
1159             dz10             = _mm_sub_pd(iz1,jz0);
1160             dx20             = _mm_sub_pd(ix2,jx0);
1161             dy20             = _mm_sub_pd(iy2,jy0);
1162             dz20             = _mm_sub_pd(iz2,jz0);
1163
1164             /* Calculate squared distance and things based on it */
1165             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1166             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1167             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1168
1169             rinv00           = sse41_invsqrt_d(rsq00);
1170             rinv10           = sse41_invsqrt_d(rsq10);
1171             rinv20           = sse41_invsqrt_d(rsq20);
1172
1173             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1174             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1175             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1176
1177             /* Load parameters for j particles */
1178             jq0              = _mm_load_sd(charge+jnrA+0);
1179             vdwjidx0A        = 2*vdwtype[jnrA+0];
1180
1181             fjx0             = _mm_setzero_pd();
1182             fjy0             = _mm_setzero_pd();
1183             fjz0             = _mm_setzero_pd();
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             if (gmx_mm_any_lt(rsq00,rcutoff2))
1190             {
1191
1192             r00              = _mm_mul_pd(rsq00,rinv00);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq00             = _mm_mul_pd(iq0,jq0);
1196             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1197
1198             /* EWALD ELECTROSTATICS */
1199
1200             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1201             ewrt             = _mm_mul_pd(r00,ewtabscale);
1202             ewitab           = _mm_cvttpd_epi32(ewrt);
1203             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1204             ewitab           = _mm_slli_epi32(ewitab,2);
1205             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1206             ewtabD           = _mm_setzero_pd();
1207             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1208             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1209             ewtabFn          = _mm_setzero_pd();
1210             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1211             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1212             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1213             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1214             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1215
1216             /* LENNARD-JONES DISPERSION/REPULSION */
1217
1218             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1219             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1220             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1221             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1222             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1223
1224             d                = _mm_sub_pd(r00,rswitch);
1225             d                = _mm_max_pd(d,_mm_setzero_pd());
1226             d2               = _mm_mul_pd(d,d);
1227             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1228
1229             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1230
1231             /* Evaluate switch function */
1232             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1233             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1234             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1235             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1236
1237             fscal            = _mm_add_pd(felec,fvdw);
1238
1239             fscal            = _mm_and_pd(fscal,cutoff_mask);
1240
1241             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm_mul_pd(fscal,dx00);
1245             ty               = _mm_mul_pd(fscal,dy00);
1246             tz               = _mm_mul_pd(fscal,dz00);
1247
1248             /* Update vectorial force */
1249             fix0             = _mm_add_pd(fix0,tx);
1250             fiy0             = _mm_add_pd(fiy0,ty);
1251             fiz0             = _mm_add_pd(fiz0,tz);
1252
1253             fjx0             = _mm_add_pd(fjx0,tx);
1254             fjy0             = _mm_add_pd(fjy0,ty);
1255             fjz0             = _mm_add_pd(fjz0,tz);
1256
1257             }
1258
1259             /**************************
1260              * CALCULATE INTERACTIONS *
1261              **************************/
1262
1263             if (gmx_mm_any_lt(rsq10,rcutoff2))
1264             {
1265
1266             r10              = _mm_mul_pd(rsq10,rinv10);
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq10             = _mm_mul_pd(iq1,jq0);
1270
1271             /* EWALD ELECTROSTATICS */
1272
1273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1274             ewrt             = _mm_mul_pd(r10,ewtabscale);
1275             ewitab           = _mm_cvttpd_epi32(ewrt);
1276             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1277             ewitab           = _mm_slli_epi32(ewitab,2);
1278             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1279             ewtabD           = _mm_setzero_pd();
1280             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1281             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1282             ewtabFn          = _mm_setzero_pd();
1283             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1284             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1285             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1286             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1287             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1288
1289             d                = _mm_sub_pd(r10,rswitch);
1290             d                = _mm_max_pd(d,_mm_setzero_pd());
1291             d2               = _mm_mul_pd(d,d);
1292             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1293
1294             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1295
1296             /* Evaluate switch function */
1297             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1298             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1299             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1300
1301             fscal            = felec;
1302
1303             fscal            = _mm_and_pd(fscal,cutoff_mask);
1304
1305             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1306
1307             /* Calculate temporary vectorial force */
1308             tx               = _mm_mul_pd(fscal,dx10);
1309             ty               = _mm_mul_pd(fscal,dy10);
1310             tz               = _mm_mul_pd(fscal,dz10);
1311
1312             /* Update vectorial force */
1313             fix1             = _mm_add_pd(fix1,tx);
1314             fiy1             = _mm_add_pd(fiy1,ty);
1315             fiz1             = _mm_add_pd(fiz1,tz);
1316
1317             fjx0             = _mm_add_pd(fjx0,tx);
1318             fjy0             = _mm_add_pd(fjy0,ty);
1319             fjz0             = _mm_add_pd(fjz0,tz);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_mm_any_lt(rsq20,rcutoff2))
1328             {
1329
1330             r20              = _mm_mul_pd(rsq20,rinv20);
1331
1332             /* Compute parameters for interactions between i and j atoms */
1333             qq20             = _mm_mul_pd(iq2,jq0);
1334
1335             /* EWALD ELECTROSTATICS */
1336
1337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1338             ewrt             = _mm_mul_pd(r20,ewtabscale);
1339             ewitab           = _mm_cvttpd_epi32(ewrt);
1340             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1341             ewitab           = _mm_slli_epi32(ewitab,2);
1342             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1343             ewtabD           = _mm_setzero_pd();
1344             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1345             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1346             ewtabFn          = _mm_setzero_pd();
1347             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1348             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1349             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1350             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1351             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1352
1353             d                = _mm_sub_pd(r20,rswitch);
1354             d                = _mm_max_pd(d,_mm_setzero_pd());
1355             d2               = _mm_mul_pd(d,d);
1356             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1357
1358             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1359
1360             /* Evaluate switch function */
1361             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1362             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1363             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1364
1365             fscal            = felec;
1366
1367             fscal            = _mm_and_pd(fscal,cutoff_mask);
1368
1369             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1370
1371             /* Calculate temporary vectorial force */
1372             tx               = _mm_mul_pd(fscal,dx20);
1373             ty               = _mm_mul_pd(fscal,dy20);
1374             tz               = _mm_mul_pd(fscal,dz20);
1375
1376             /* Update vectorial force */
1377             fix2             = _mm_add_pd(fix2,tx);
1378             fiy2             = _mm_add_pd(fiy2,ty);
1379             fiz2             = _mm_add_pd(fiz2,tz);
1380
1381             fjx0             = _mm_add_pd(fjx0,tx);
1382             fjy0             = _mm_add_pd(fjy0,ty);
1383             fjz0             = _mm_add_pd(fjz0,tz);
1384
1385             }
1386
1387             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1388
1389             /* Inner loop uses 204 flops */
1390         }
1391
1392         /* End of innermost loop */
1393
1394         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1395                                               f+i_coord_offset,fshift+i_shift_offset);
1396
1397         /* Increment number of inner iterations */
1398         inneriter                  += j_index_end - j_index_start;
1399
1400         /* Outer loop uses 18 flops */
1401     }
1402
1403     /* Increment number of outer iterations */
1404     outeriter        += nri;
1405
1406     /* Update outer/inner flops */
1407
1408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*204);
1409 }