578896f7f079a08ccb6ec1231da6e2ecf91c0bfa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rcoulomb_switch;
130     rswitch          = _mm_set1_pd(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm_set1_pd(d_scalar);
134     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             /* EWALD ELECTROSTATICS */
224
225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226             ewrt             = _mm_mul_pd(r00,ewtabscale);
227             ewitab           = _mm_cvttpd_epi32(ewrt);
228             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
229             ewitab           = _mm_slli_epi32(ewitab,2);
230             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
231             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
232             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
233             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
234             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
235             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
236             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
237             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
238             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
239             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
240
241             /* LENNARD-JONES DISPERSION/REPULSION */
242
243             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
244             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
245             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
246             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
247             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
248
249             d                = _mm_sub_pd(r00,rswitch);
250             d                = _mm_max_pd(d,_mm_setzero_pd());
251             d2               = _mm_mul_pd(d,d);
252             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
253
254             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
255
256             /* Evaluate switch function */
257             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
258             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
259             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
260             velec            = _mm_mul_pd(velec,sw);
261             vvdw             = _mm_mul_pd(vvdw,sw);
262             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velec            = _mm_and_pd(velec,cutoff_mask);
266             velecsum         = _mm_add_pd(velecsum,velec);
267             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
268             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
269
270             fscal            = _mm_add_pd(felec,fvdw);
271
272             fscal            = _mm_and_pd(fscal,cutoff_mask);
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_pd(fscal,dx00);
276             ty               = _mm_mul_pd(fscal,dy00);
277             tz               = _mm_mul_pd(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm_add_pd(fix0,tx);
281             fiy0             = _mm_add_pd(fiy0,ty);
282             fiz0             = _mm_add_pd(fiz0,tz);
283
284             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
285
286             }
287
288             /* Inner loop uses 83 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             jnrA             = jjnr[jidx];
295             j_coord_offsetA  = DIM*jnrA;
296
297             /* load j atom coordinates */
298             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
299                                               &jx0,&jy0,&jz0);
300
301             /* Calculate displacement vector */
302             dx00             = _mm_sub_pd(ix0,jx0);
303             dy00             = _mm_sub_pd(iy0,jy0);
304             dz00             = _mm_sub_pd(iz0,jz0);
305
306             /* Calculate squared distance and things based on it */
307             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
308
309             rinv00           = gmx_mm_invsqrt_pd(rsq00);
310
311             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
312
313             /* Load parameters for j particles */
314             jq0              = _mm_load_sd(charge+jnrA+0);
315             vdwjidx0A        = 2*vdwtype[jnrA+0];
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_mm_any_lt(rsq00,rcutoff2))
322             {
323
324             r00              = _mm_mul_pd(rsq00,rinv00);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq00             = _mm_mul_pd(iq0,jq0);
328             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm_mul_pd(r00,ewtabscale);
334             ewitab           = _mm_cvttpd_epi32(ewrt);
335             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
336             ewitab           = _mm_slli_epi32(ewitab,2);
337             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
338             ewtabD           = _mm_setzero_pd();
339             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
340             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
341             ewtabFn          = _mm_setzero_pd();
342             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
343             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
344             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
345             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
346             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
347
348             /* LENNARD-JONES DISPERSION/REPULSION */
349
350             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
351             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
352             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
353             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
354             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
355
356             d                = _mm_sub_pd(r00,rswitch);
357             d                = _mm_max_pd(d,_mm_setzero_pd());
358             d2               = _mm_mul_pd(d,d);
359             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
360
361             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
366             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
367             velec            = _mm_mul_pd(velec,sw);
368             vvdw             = _mm_mul_pd(vvdw,sw);
369             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_pd(velec,cutoff_mask);
373             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
374             velecsum         = _mm_add_pd(velecsum,velec);
375             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
376             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
377             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
378
379             fscal            = _mm_add_pd(felec,fvdw);
380
381             fscal            = _mm_and_pd(fscal,cutoff_mask);
382
383             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_pd(fscal,dx00);
387             ty               = _mm_mul_pd(fscal,dy00);
388             tz               = _mm_mul_pd(fscal,dz00);
389
390             /* Update vectorial force */
391             fix0             = _mm_add_pd(fix0,tx);
392             fiy0             = _mm_add_pd(fiy0,ty);
393             fiz0             = _mm_add_pd(fiz0,tz);
394
395             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
396
397             }
398
399             /* Inner loop uses 83 flops */
400         }
401
402         /* End of innermost loop */
403
404         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
405                                               f+i_coord_offset,fshift+i_shift_offset);
406
407         ggid                        = gid[iidx];
408         /* Update potential energies */
409         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
410         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
411
412         /* Increment number of inner iterations */
413         inneriter                  += j_index_end - j_index_start;
414
415         /* Outer loop uses 9 flops */
416     }
417
418     /* Increment number of outer iterations */
419     outeriter        += nri;
420
421     /* Update outer/inner flops */
422
423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
424 }
425 /*
426  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_double
427  * Electrostatics interaction: Ewald
428  * VdW interaction:            LennardJones
429  * Geometry:                   Particle-Particle
430  * Calculate force/pot:        Force
431  */
432 void
433 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_double
434                     (t_nblist                    * gmx_restrict       nlist,
435                      rvec                        * gmx_restrict          xx,
436                      rvec                        * gmx_restrict          ff,
437                      t_forcerec                  * gmx_restrict          fr,
438                      t_mdatoms                   * gmx_restrict     mdatoms,
439                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
440                      t_nrnb                      * gmx_restrict        nrnb)
441 {
442     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
443      * just 0 for non-waters.
444      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
445      * jnr indices corresponding to data put in the four positions in the SIMD register.
446      */
447     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
448     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449     int              jnrA,jnrB;
450     int              j_coord_offsetA,j_coord_offsetB;
451     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
452     real             rcutoff_scalar;
453     real             *shiftvec,*fshift,*x,*f;
454     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     int              vdwioffset0;
456     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B;
458     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     int              nvdwtype;
463     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
467     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
468     __m128i          ewitab;
469     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
470     real             *ewtab;
471     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
472     real             rswitch_scalar,d_scalar;
473     __m128d          dummy_mask,cutoff_mask;
474     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
475     __m128d          one     = _mm_set1_pd(1.0);
476     __m128d          two     = _mm_set1_pd(2.0);
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = _mm_set1_pd(fr->epsfac);
489     charge           = mdatoms->chargeA;
490     nvdwtype         = fr->ntype;
491     vdwparam         = fr->nbfp;
492     vdwtype          = mdatoms->typeA;
493
494     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
495     ewtab            = fr->ic->tabq_coul_FDV0;
496     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
497     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
498
499     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
500     rcutoff_scalar   = fr->rcoulomb;
501     rcutoff          = _mm_set1_pd(rcutoff_scalar);
502     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
503
504     rswitch_scalar   = fr->rcoulomb_switch;
505     rswitch          = _mm_set1_pd(rswitch_scalar);
506     /* Setup switch parameters */
507     d_scalar         = rcutoff_scalar-rswitch_scalar;
508     d                = _mm_set1_pd(d_scalar);
509     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
510     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
511     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
512     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
513     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
514     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
515
516     /* Avoid stupid compiler warnings */
517     jnrA = jnrB = 0;
518     j_coord_offsetA = 0;
519     j_coord_offsetB = 0;
520
521     outeriter        = 0;
522     inneriter        = 0;
523
524     /* Start outer loop over neighborlists */
525     for(iidx=0; iidx<nri; iidx++)
526     {
527         /* Load shift vector for this list */
528         i_shift_offset   = DIM*shiftidx[iidx];
529
530         /* Load limits for loop over neighbors */
531         j_index_start    = jindex[iidx];
532         j_index_end      = jindex[iidx+1];
533
534         /* Get outer coordinate index */
535         inr              = iinr[iidx];
536         i_coord_offset   = DIM*inr;
537
538         /* Load i particle coords and add shift vector */
539         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
540
541         fix0             = _mm_setzero_pd();
542         fiy0             = _mm_setzero_pd();
543         fiz0             = _mm_setzero_pd();
544
545         /* Load parameters for i particles */
546         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
547         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
548
549         /* Start inner kernel loop */
550         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
551         {
552
553             /* Get j neighbor index, and coordinate index */
554             jnrA             = jjnr[jidx];
555             jnrB             = jjnr[jidx+1];
556             j_coord_offsetA  = DIM*jnrA;
557             j_coord_offsetB  = DIM*jnrB;
558
559             /* load j atom coordinates */
560             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
561                                               &jx0,&jy0,&jz0);
562
563             /* Calculate displacement vector */
564             dx00             = _mm_sub_pd(ix0,jx0);
565             dy00             = _mm_sub_pd(iy0,jy0);
566             dz00             = _mm_sub_pd(iz0,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
570
571             rinv00           = gmx_mm_invsqrt_pd(rsq00);
572
573             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
574
575             /* Load parameters for j particles */
576             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
577             vdwjidx0A        = 2*vdwtype[jnrA+0];
578             vdwjidx0B        = 2*vdwtype[jnrB+0];
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq00,rcutoff2))
585             {
586
587             r00              = _mm_mul_pd(rsq00,rinv00);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq00             = _mm_mul_pd(iq0,jq0);
591             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
592                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_pd(r00,ewtabscale);
598             ewitab           = _mm_cvttpd_epi32(ewrt);
599             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
604             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
605             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
606             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
607             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
608             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
609             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
610             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
611
612             /* LENNARD-JONES DISPERSION/REPULSION */
613
614             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
615             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
616             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
617             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
618             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
619
620             d                = _mm_sub_pd(r00,rswitch);
621             d                = _mm_max_pd(d,_mm_setzero_pd());
622             d2               = _mm_mul_pd(d,d);
623             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
624
625             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
626
627             /* Evaluate switch function */
628             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
629             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
630             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
631             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
632
633             fscal            = _mm_add_pd(felec,fvdw);
634
635             fscal            = _mm_and_pd(fscal,cutoff_mask);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm_mul_pd(fscal,dx00);
639             ty               = _mm_mul_pd(fscal,dy00);
640             tz               = _mm_mul_pd(fscal,dz00);
641
642             /* Update vectorial force */
643             fix0             = _mm_add_pd(fix0,tx);
644             fiy0             = _mm_add_pd(fiy0,ty);
645             fiz0             = _mm_add_pd(fiz0,tz);
646
647             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
648
649             }
650
651             /* Inner loop uses 77 flops */
652         }
653
654         if(jidx<j_index_end)
655         {
656
657             jnrA             = jjnr[jidx];
658             j_coord_offsetA  = DIM*jnrA;
659
660             /* load j atom coordinates */
661             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
662                                               &jx0,&jy0,&jz0);
663
664             /* Calculate displacement vector */
665             dx00             = _mm_sub_pd(ix0,jx0);
666             dy00             = _mm_sub_pd(iy0,jy0);
667             dz00             = _mm_sub_pd(iz0,jz0);
668
669             /* Calculate squared distance and things based on it */
670             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
671
672             rinv00           = gmx_mm_invsqrt_pd(rsq00);
673
674             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
675
676             /* Load parameters for j particles */
677             jq0              = _mm_load_sd(charge+jnrA+0);
678             vdwjidx0A        = 2*vdwtype[jnrA+0];
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             if (gmx_mm_any_lt(rsq00,rcutoff2))
685             {
686
687             r00              = _mm_mul_pd(rsq00,rinv00);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq00             = _mm_mul_pd(iq0,jq0);
691             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
692
693             /* EWALD ELECTROSTATICS */
694
695             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
696             ewrt             = _mm_mul_pd(r00,ewtabscale);
697             ewitab           = _mm_cvttpd_epi32(ewrt);
698             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
699             ewitab           = _mm_slli_epi32(ewitab,2);
700             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
701             ewtabD           = _mm_setzero_pd();
702             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
703             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
704             ewtabFn          = _mm_setzero_pd();
705             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
706             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
707             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
708             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
709             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
710
711             /* LENNARD-JONES DISPERSION/REPULSION */
712
713             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
714             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
715             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
716             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
717             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
718
719             d                = _mm_sub_pd(r00,rswitch);
720             d                = _mm_max_pd(d,_mm_setzero_pd());
721             d2               = _mm_mul_pd(d,d);
722             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
723
724             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
725
726             /* Evaluate switch function */
727             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
728             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
729             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
730             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
731
732             fscal            = _mm_add_pd(felec,fvdw);
733
734             fscal            = _mm_and_pd(fscal,cutoff_mask);
735
736             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
737
738             /* Calculate temporary vectorial force */
739             tx               = _mm_mul_pd(fscal,dx00);
740             ty               = _mm_mul_pd(fscal,dy00);
741             tz               = _mm_mul_pd(fscal,dz00);
742
743             /* Update vectorial force */
744             fix0             = _mm_add_pd(fix0,tx);
745             fiy0             = _mm_add_pd(fiy0,ty);
746             fiz0             = _mm_add_pd(fiz0,tz);
747
748             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
749
750             }
751
752             /* Inner loop uses 77 flops */
753         }
754
755         /* End of innermost loop */
756
757         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
758                                               f+i_coord_offset,fshift+i_shift_offset);
759
760         /* Increment number of inner iterations */
761         inneriter                  += j_index_end - j_index_start;
762
763         /* Outer loop uses 7 flops */
764     }
765
766     /* Increment number of outer iterations */
767     outeriter        += nri;
768
769     /* Update outer/inner flops */
770
771     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*77);
772 }