Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset1;
80     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
81     int              vdwioffset2;
82     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
83     int              vdwioffset3;
84     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
88     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112
113     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
116     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
121     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
122     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->ic->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
153                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
154
155         fix1             = _mm_setzero_pd();
156         fiy1             = _mm_setzero_pd();
157         fiz1             = _mm_setzero_pd();
158         fix2             = _mm_setzero_pd();
159         fiy2             = _mm_setzero_pd();
160         fiz2             = _mm_setzero_pd();
161         fix3             = _mm_setzero_pd();
162         fiy3             = _mm_setzero_pd();
163         fiz3             = _mm_setzero_pd();
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx10             = _mm_sub_pd(ix1,jx0);
184             dy10             = _mm_sub_pd(iy1,jy0);
185             dz10             = _mm_sub_pd(iz1,jz0);
186             dx20             = _mm_sub_pd(ix2,jx0);
187             dy20             = _mm_sub_pd(iy2,jy0);
188             dz20             = _mm_sub_pd(iz2,jz0);
189             dx30             = _mm_sub_pd(ix3,jx0);
190             dy30             = _mm_sub_pd(iy3,jy0);
191             dz30             = _mm_sub_pd(iz3,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
195             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
196             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
197
198             rinv10           = sse41_invsqrt_d(rsq10);
199             rinv20           = sse41_invsqrt_d(rsq20);
200             rinv30           = sse41_invsqrt_d(rsq30);
201
202             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
203             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
204             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208
209             fjx0             = _mm_setzero_pd();
210             fjy0             = _mm_setzero_pd();
211             fjz0             = _mm_setzero_pd();
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (gmx_mm_any_lt(rsq10,rcutoff2))
218             {
219
220             r10              = _mm_mul_pd(rsq10,rinv10);
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq10             = _mm_mul_pd(iq1,jq0);
224
225             /* EWALD ELECTROSTATICS */
226
227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
228             ewrt             = _mm_mul_pd(r10,ewtabscale);
229             ewitab           = _mm_cvttpd_epi32(ewrt);
230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
231             ewitab           = _mm_slli_epi32(ewitab,2);
232             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
233             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
234             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
235             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
236             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
238             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
239             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
240             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
241             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
242
243             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velec            = _mm_and_pd(velec,cutoff_mask);
247             velecsum         = _mm_add_pd(velecsum,velec);
248
249             fscal            = felec;
250
251             fscal            = _mm_and_pd(fscal,cutoff_mask);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_pd(fscal,dx10);
255             ty               = _mm_mul_pd(fscal,dy10);
256             tz               = _mm_mul_pd(fscal,dz10);
257
258             /* Update vectorial force */
259             fix1             = _mm_add_pd(fix1,tx);
260             fiy1             = _mm_add_pd(fiy1,ty);
261             fiz1             = _mm_add_pd(fiz1,tz);
262
263             fjx0             = _mm_add_pd(fjx0,tx);
264             fjy0             = _mm_add_pd(fjy0,ty);
265             fjz0             = _mm_add_pd(fjz0,tz);
266
267             }
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (gmx_mm_any_lt(rsq20,rcutoff2))
274             {
275
276             r20              = _mm_mul_pd(rsq20,rinv20);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq20             = _mm_mul_pd(iq2,jq0);
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = _mm_mul_pd(r20,ewtabscale);
285             ewitab           = _mm_cvttpd_epi32(ewrt);
286             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
287             ewitab           = _mm_slli_epi32(ewitab,2);
288             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
289             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
290             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
291             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
292             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
293             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
294             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
295             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
296             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
297             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
298
299             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velec            = _mm_and_pd(velec,cutoff_mask);
303             velecsum         = _mm_add_pd(velecsum,velec);
304
305             fscal            = felec;
306
307             fscal            = _mm_and_pd(fscal,cutoff_mask);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_pd(fscal,dx20);
311             ty               = _mm_mul_pd(fscal,dy20);
312             tz               = _mm_mul_pd(fscal,dz20);
313
314             /* Update vectorial force */
315             fix2             = _mm_add_pd(fix2,tx);
316             fiy2             = _mm_add_pd(fiy2,ty);
317             fiz2             = _mm_add_pd(fiz2,tz);
318
319             fjx0             = _mm_add_pd(fjx0,tx);
320             fjy0             = _mm_add_pd(fjy0,ty);
321             fjz0             = _mm_add_pd(fjz0,tz);
322
323             }
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq30,rcutoff2))
330             {
331
332             r30              = _mm_mul_pd(rsq30,rinv30);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq30             = _mm_mul_pd(iq3,jq0);
336
337             /* EWALD ELECTROSTATICS */
338
339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
340             ewrt             = _mm_mul_pd(r30,ewtabscale);
341             ewitab           = _mm_cvttpd_epi32(ewrt);
342             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
343             ewitab           = _mm_slli_epi32(ewitab,2);
344             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
345             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
346             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
347             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
348             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
349             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
350             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
351             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
352             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
353             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
354
355             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_pd(velec,cutoff_mask);
359             velecsum         = _mm_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm_and_pd(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_pd(fscal,dx30);
367             ty               = _mm_mul_pd(fscal,dy30);
368             tz               = _mm_mul_pd(fscal,dz30);
369
370             /* Update vectorial force */
371             fix3             = _mm_add_pd(fix3,tx);
372             fiy3             = _mm_add_pd(fiy3,ty);
373             fiz3             = _mm_add_pd(fiz3,tz);
374
375             fjx0             = _mm_add_pd(fjx0,tx);
376             fjy0             = _mm_add_pd(fjy0,ty);
377             fjz0             = _mm_add_pd(fjz0,tz);
378
379             }
380
381             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 141 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             jnrA             = jjnr[jidx];
390             j_coord_offsetA  = DIM*jnrA;
391
392             /* load j atom coordinates */
393             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
394                                               &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx10             = _mm_sub_pd(ix1,jx0);
398             dy10             = _mm_sub_pd(iy1,jy0);
399             dz10             = _mm_sub_pd(iz1,jz0);
400             dx20             = _mm_sub_pd(ix2,jx0);
401             dy20             = _mm_sub_pd(iy2,jy0);
402             dz20             = _mm_sub_pd(iz2,jz0);
403             dx30             = _mm_sub_pd(ix3,jx0);
404             dy30             = _mm_sub_pd(iy3,jy0);
405             dz30             = _mm_sub_pd(iz3,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
409             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
410             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
411
412             rinv10           = sse41_invsqrt_d(rsq10);
413             rinv20           = sse41_invsqrt_d(rsq20);
414             rinv30           = sse41_invsqrt_d(rsq30);
415
416             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
417             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
418             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
419
420             /* Load parameters for j particles */
421             jq0              = _mm_load_sd(charge+jnrA+0);
422
423             fjx0             = _mm_setzero_pd();
424             fjy0             = _mm_setzero_pd();
425             fjz0             = _mm_setzero_pd();
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             if (gmx_mm_any_lt(rsq10,rcutoff2))
432             {
433
434             r10              = _mm_mul_pd(rsq10,rinv10);
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq10             = _mm_mul_pd(iq1,jq0);
438
439             /* EWALD ELECTROSTATICS */
440
441             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
442             ewrt             = _mm_mul_pd(r10,ewtabscale);
443             ewitab           = _mm_cvttpd_epi32(ewrt);
444             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
445             ewitab           = _mm_slli_epi32(ewitab,2);
446             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
447             ewtabD           = _mm_setzero_pd();
448             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
449             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
450             ewtabFn          = _mm_setzero_pd();
451             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
452             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
453             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
454             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
455             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
456
457             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velec            = _mm_and_pd(velec,cutoff_mask);
461             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
462             velecsum         = _mm_add_pd(velecsum,velec);
463
464             fscal            = felec;
465
466             fscal            = _mm_and_pd(fscal,cutoff_mask);
467
468             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_pd(fscal,dx10);
472             ty               = _mm_mul_pd(fscal,dy10);
473             tz               = _mm_mul_pd(fscal,dz10);
474
475             /* Update vectorial force */
476             fix1             = _mm_add_pd(fix1,tx);
477             fiy1             = _mm_add_pd(fiy1,ty);
478             fiz1             = _mm_add_pd(fiz1,tz);
479
480             fjx0             = _mm_add_pd(fjx0,tx);
481             fjy0             = _mm_add_pd(fjy0,ty);
482             fjz0             = _mm_add_pd(fjz0,tz);
483
484             }
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (gmx_mm_any_lt(rsq20,rcutoff2))
491             {
492
493             r20              = _mm_mul_pd(rsq20,rinv20);
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq20             = _mm_mul_pd(iq2,jq0);
497
498             /* EWALD ELECTROSTATICS */
499
500             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
501             ewrt             = _mm_mul_pd(r20,ewtabscale);
502             ewitab           = _mm_cvttpd_epi32(ewrt);
503             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
504             ewitab           = _mm_slli_epi32(ewitab,2);
505             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
506             ewtabD           = _mm_setzero_pd();
507             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
508             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
509             ewtabFn          = _mm_setzero_pd();
510             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
511             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
512             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
513             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
514             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
515
516             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_and_pd(velec,cutoff_mask);
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_and_pd(fscal,cutoff_mask);
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx20);
531             ty               = _mm_mul_pd(fscal,dy20);
532             tz               = _mm_mul_pd(fscal,dz20);
533
534             /* Update vectorial force */
535             fix2             = _mm_add_pd(fix2,tx);
536             fiy2             = _mm_add_pd(fiy2,ty);
537             fiz2             = _mm_add_pd(fiz2,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             }
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq30,rcutoff2))
550             {
551
552             r30              = _mm_mul_pd(rsq30,rinv30);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq30             = _mm_mul_pd(iq3,jq0);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
560             ewrt             = _mm_mul_pd(r30,ewtabscale);
561             ewitab           = _mm_cvttpd_epi32(ewrt);
562             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
563             ewitab           = _mm_slli_epi32(ewitab,2);
564             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
565             ewtabD           = _mm_setzero_pd();
566             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
567             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
568             ewtabFn          = _mm_setzero_pd();
569             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
570             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
571             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
572             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
573             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
574
575             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm_and_pd(velec,cutoff_mask);
579             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
580             velecsum         = _mm_add_pd(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_and_pd(fscal,cutoff_mask);
585
586             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm_mul_pd(fscal,dx30);
590             ty               = _mm_mul_pd(fscal,dy30);
591             tz               = _mm_mul_pd(fscal,dz30);
592
593             /* Update vectorial force */
594             fix3             = _mm_add_pd(fix3,tx);
595             fiy3             = _mm_add_pd(fiy3,ty);
596             fiz3             = _mm_add_pd(fiz3,tz);
597
598             fjx0             = _mm_add_pd(fjx0,tx);
599             fjy0             = _mm_add_pd(fjy0,ty);
600             fjz0             = _mm_add_pd(fjz0,tz);
601
602             }
603
604             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
605
606             /* Inner loop uses 141 flops */
607         }
608
609         /* End of innermost loop */
610
611         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
612                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
613
614         ggid                        = gid[iidx];
615         /* Update potential energies */
616         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 19 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*141);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse4_1_double
633  * Electrostatics interaction: Ewald
634  * VdW interaction:            None
635  * Geometry:                   Water4-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse4_1_double
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      struct t_forcerec           * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
649      * just 0 for non-waters.
650      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB;
656     int              j_coord_offsetA,j_coord_offsetB;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
661     int              vdwioffset1;
662     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
663     int              vdwioffset2;
664     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
665     int              vdwioffset3;
666     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
667     int              vdwjidx0A,vdwjidx0B;
668     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
669     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
670     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
671     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
672     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
673     real             *charge;
674     __m128i          ewitab;
675     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
676     real             *ewtab;
677     __m128d          dummy_mask,cutoff_mask;
678     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
679     __m128d          one     = _mm_set1_pd(1.0);
680     __m128d          two     = _mm_set1_pd(2.0);
681     x                = xx[0];
682     f                = ff[0];
683
684     nri              = nlist->nri;
685     iinr             = nlist->iinr;
686     jindex           = nlist->jindex;
687     jjnr             = nlist->jjnr;
688     shiftidx         = nlist->shift;
689     gid              = nlist->gid;
690     shiftvec         = fr->shift_vec[0];
691     fshift           = fr->fshift[0];
692     facel            = _mm_set1_pd(fr->ic->epsfac);
693     charge           = mdatoms->chargeA;
694
695     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
696     ewtab            = fr->ic->tabq_coul_F;
697     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
698     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
699
700     /* Setup water-specific parameters */
701     inr              = nlist->iinr[0];
702     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
703     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
704     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
705
706     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
707     rcutoff_scalar   = fr->ic->rcoulomb;
708     rcutoff          = _mm_set1_pd(rcutoff_scalar);
709     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
710
711     /* Avoid stupid compiler warnings */
712     jnrA = jnrB = 0;
713     j_coord_offsetA = 0;
714     j_coord_offsetB = 0;
715
716     outeriter        = 0;
717     inneriter        = 0;
718
719     /* Start outer loop over neighborlists */
720     for(iidx=0; iidx<nri; iidx++)
721     {
722         /* Load shift vector for this list */
723         i_shift_offset   = DIM*shiftidx[iidx];
724
725         /* Load limits for loop over neighbors */
726         j_index_start    = jindex[iidx];
727         j_index_end      = jindex[iidx+1];
728
729         /* Get outer coordinate index */
730         inr              = iinr[iidx];
731         i_coord_offset   = DIM*inr;
732
733         /* Load i particle coords and add shift vector */
734         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
735                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
736
737         fix1             = _mm_setzero_pd();
738         fiy1             = _mm_setzero_pd();
739         fiz1             = _mm_setzero_pd();
740         fix2             = _mm_setzero_pd();
741         fiy2             = _mm_setzero_pd();
742         fiz2             = _mm_setzero_pd();
743         fix3             = _mm_setzero_pd();
744         fiy3             = _mm_setzero_pd();
745         fiz3             = _mm_setzero_pd();
746
747         /* Start inner kernel loop */
748         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
749         {
750
751             /* Get j neighbor index, and coordinate index */
752             jnrA             = jjnr[jidx];
753             jnrB             = jjnr[jidx+1];
754             j_coord_offsetA  = DIM*jnrA;
755             j_coord_offsetB  = DIM*jnrB;
756
757             /* load j atom coordinates */
758             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
759                                               &jx0,&jy0,&jz0);
760
761             /* Calculate displacement vector */
762             dx10             = _mm_sub_pd(ix1,jx0);
763             dy10             = _mm_sub_pd(iy1,jy0);
764             dz10             = _mm_sub_pd(iz1,jz0);
765             dx20             = _mm_sub_pd(ix2,jx0);
766             dy20             = _mm_sub_pd(iy2,jy0);
767             dz20             = _mm_sub_pd(iz2,jz0);
768             dx30             = _mm_sub_pd(ix3,jx0);
769             dy30             = _mm_sub_pd(iy3,jy0);
770             dz30             = _mm_sub_pd(iz3,jz0);
771
772             /* Calculate squared distance and things based on it */
773             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
774             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
775             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
776
777             rinv10           = sse41_invsqrt_d(rsq10);
778             rinv20           = sse41_invsqrt_d(rsq20);
779             rinv30           = sse41_invsqrt_d(rsq30);
780
781             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
782             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
783             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
784
785             /* Load parameters for j particles */
786             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
787
788             fjx0             = _mm_setzero_pd();
789             fjy0             = _mm_setzero_pd();
790             fjz0             = _mm_setzero_pd();
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             if (gmx_mm_any_lt(rsq10,rcutoff2))
797             {
798
799             r10              = _mm_mul_pd(rsq10,rinv10);
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq10             = _mm_mul_pd(iq1,jq0);
803
804             /* EWALD ELECTROSTATICS */
805
806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
807             ewrt             = _mm_mul_pd(r10,ewtabscale);
808             ewitab           = _mm_cvttpd_epi32(ewrt);
809             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
810             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
811                                          &ewtabF,&ewtabFn);
812             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
813             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
814
815             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
816
817             fscal            = felec;
818
819             fscal            = _mm_and_pd(fscal,cutoff_mask);
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm_mul_pd(fscal,dx10);
823             ty               = _mm_mul_pd(fscal,dy10);
824             tz               = _mm_mul_pd(fscal,dz10);
825
826             /* Update vectorial force */
827             fix1             = _mm_add_pd(fix1,tx);
828             fiy1             = _mm_add_pd(fiy1,ty);
829             fiz1             = _mm_add_pd(fiz1,tz);
830
831             fjx0             = _mm_add_pd(fjx0,tx);
832             fjy0             = _mm_add_pd(fjy0,ty);
833             fjz0             = _mm_add_pd(fjz0,tz);
834
835             }
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             if (gmx_mm_any_lt(rsq20,rcutoff2))
842             {
843
844             r20              = _mm_mul_pd(rsq20,rinv20);
845
846             /* Compute parameters for interactions between i and j atoms */
847             qq20             = _mm_mul_pd(iq2,jq0);
848
849             /* EWALD ELECTROSTATICS */
850
851             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
852             ewrt             = _mm_mul_pd(r20,ewtabscale);
853             ewitab           = _mm_cvttpd_epi32(ewrt);
854             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
855             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
856                                          &ewtabF,&ewtabFn);
857             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
858             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
859
860             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
861
862             fscal            = felec;
863
864             fscal            = _mm_and_pd(fscal,cutoff_mask);
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm_mul_pd(fscal,dx20);
868             ty               = _mm_mul_pd(fscal,dy20);
869             tz               = _mm_mul_pd(fscal,dz20);
870
871             /* Update vectorial force */
872             fix2             = _mm_add_pd(fix2,tx);
873             fiy2             = _mm_add_pd(fiy2,ty);
874             fiz2             = _mm_add_pd(fiz2,tz);
875
876             fjx0             = _mm_add_pd(fjx0,tx);
877             fjy0             = _mm_add_pd(fjy0,ty);
878             fjz0             = _mm_add_pd(fjz0,tz);
879
880             }
881
882             /**************************
883              * CALCULATE INTERACTIONS *
884              **************************/
885
886             if (gmx_mm_any_lt(rsq30,rcutoff2))
887             {
888
889             r30              = _mm_mul_pd(rsq30,rinv30);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq30             = _mm_mul_pd(iq3,jq0);
893
894             /* EWALD ELECTROSTATICS */
895
896             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
897             ewrt             = _mm_mul_pd(r30,ewtabscale);
898             ewitab           = _mm_cvttpd_epi32(ewrt);
899             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
900             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
901                                          &ewtabF,&ewtabFn);
902             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
903             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
904
905             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
906
907             fscal            = felec;
908
909             fscal            = _mm_and_pd(fscal,cutoff_mask);
910
911             /* Calculate temporary vectorial force */
912             tx               = _mm_mul_pd(fscal,dx30);
913             ty               = _mm_mul_pd(fscal,dy30);
914             tz               = _mm_mul_pd(fscal,dz30);
915
916             /* Update vectorial force */
917             fix3             = _mm_add_pd(fix3,tx);
918             fiy3             = _mm_add_pd(fiy3,ty);
919             fiz3             = _mm_add_pd(fiz3,tz);
920
921             fjx0             = _mm_add_pd(fjx0,tx);
922             fjy0             = _mm_add_pd(fjy0,ty);
923             fjz0             = _mm_add_pd(fjz0,tz);
924
925             }
926
927             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
928
929             /* Inner loop uses 120 flops */
930         }
931
932         if(jidx<j_index_end)
933         {
934
935             jnrA             = jjnr[jidx];
936             j_coord_offsetA  = DIM*jnrA;
937
938             /* load j atom coordinates */
939             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
940                                               &jx0,&jy0,&jz0);
941
942             /* Calculate displacement vector */
943             dx10             = _mm_sub_pd(ix1,jx0);
944             dy10             = _mm_sub_pd(iy1,jy0);
945             dz10             = _mm_sub_pd(iz1,jz0);
946             dx20             = _mm_sub_pd(ix2,jx0);
947             dy20             = _mm_sub_pd(iy2,jy0);
948             dz20             = _mm_sub_pd(iz2,jz0);
949             dx30             = _mm_sub_pd(ix3,jx0);
950             dy30             = _mm_sub_pd(iy3,jy0);
951             dz30             = _mm_sub_pd(iz3,jz0);
952
953             /* Calculate squared distance and things based on it */
954             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
955             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
956             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
957
958             rinv10           = sse41_invsqrt_d(rsq10);
959             rinv20           = sse41_invsqrt_d(rsq20);
960             rinv30           = sse41_invsqrt_d(rsq30);
961
962             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
963             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
964             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
965
966             /* Load parameters for j particles */
967             jq0              = _mm_load_sd(charge+jnrA+0);
968
969             fjx0             = _mm_setzero_pd();
970             fjy0             = _mm_setzero_pd();
971             fjz0             = _mm_setzero_pd();
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             if (gmx_mm_any_lt(rsq10,rcutoff2))
978             {
979
980             r10              = _mm_mul_pd(rsq10,rinv10);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq10             = _mm_mul_pd(iq1,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r10,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
991             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
992             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
993             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
994
995             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
996
997             fscal            = felec;
998
999             fscal            = _mm_and_pd(fscal,cutoff_mask);
1000
1001             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1002
1003             /* Calculate temporary vectorial force */
1004             tx               = _mm_mul_pd(fscal,dx10);
1005             ty               = _mm_mul_pd(fscal,dy10);
1006             tz               = _mm_mul_pd(fscal,dz10);
1007
1008             /* Update vectorial force */
1009             fix1             = _mm_add_pd(fix1,tx);
1010             fiy1             = _mm_add_pd(fiy1,ty);
1011             fiz1             = _mm_add_pd(fiz1,tz);
1012
1013             fjx0             = _mm_add_pd(fjx0,tx);
1014             fjy0             = _mm_add_pd(fjy0,ty);
1015             fjz0             = _mm_add_pd(fjz0,tz);
1016
1017             }
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             if (gmx_mm_any_lt(rsq20,rcutoff2))
1024             {
1025
1026             r20              = _mm_mul_pd(rsq20,rinv20);
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq20             = _mm_mul_pd(iq2,jq0);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_pd(r20,ewtabscale);
1035             ewitab           = _mm_cvttpd_epi32(ewrt);
1036             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1037             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1038             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1039             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1040
1041             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1042
1043             fscal            = felec;
1044
1045             fscal            = _mm_and_pd(fscal,cutoff_mask);
1046
1047             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_pd(fscal,dx20);
1051             ty               = _mm_mul_pd(fscal,dy20);
1052             tz               = _mm_mul_pd(fscal,dz20);
1053
1054             /* Update vectorial force */
1055             fix2             = _mm_add_pd(fix2,tx);
1056             fiy2             = _mm_add_pd(fiy2,ty);
1057             fiz2             = _mm_add_pd(fiz2,tz);
1058
1059             fjx0             = _mm_add_pd(fjx0,tx);
1060             fjy0             = _mm_add_pd(fjy0,ty);
1061             fjz0             = _mm_add_pd(fjz0,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm_any_lt(rsq30,rcutoff2))
1070             {
1071
1072             r30              = _mm_mul_pd(rsq30,rinv30);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq30             = _mm_mul_pd(iq3,jq0);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _mm_mul_pd(r30,ewtabscale);
1081             ewitab           = _mm_cvttpd_epi32(ewrt);
1082             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1083             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1084             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1085             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1086
1087             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm_and_pd(fscal,cutoff_mask);
1092
1093             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_pd(fscal,dx30);
1097             ty               = _mm_mul_pd(fscal,dy30);
1098             tz               = _mm_mul_pd(fscal,dz30);
1099
1100             /* Update vectorial force */
1101             fix3             = _mm_add_pd(fix3,tx);
1102             fiy3             = _mm_add_pd(fiy3,ty);
1103             fiz3             = _mm_add_pd(fiz3,tz);
1104
1105             fjx0             = _mm_add_pd(fjx0,tx);
1106             fjy0             = _mm_add_pd(fjy0,ty);
1107             fjz0             = _mm_add_pd(fjz0,tz);
1108
1109             }
1110
1111             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1112
1113             /* Inner loop uses 120 flops */
1114         }
1115
1116         /* End of innermost loop */
1117
1118         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1119                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1120
1121         /* Increment number of inner iterations */
1122         inneriter                  += j_index_end - j_index_start;
1123
1124         /* Outer loop uses 18 flops */
1125     }
1126
1127     /* Increment number of outer iterations */
1128     outeriter        += nri;
1129
1130     /* Update outer/inner flops */
1131
1132     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
1133 }