5bd5ccb7e470c5d61807844c16e1a2eff0108f62
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwNone_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136
137     jq0              = _mm_set1_pd(charge[inr+0]);
138     jq1              = _mm_set1_pd(charge[inr+1]);
139     jq2              = _mm_set1_pd(charge[inr+2]);
140     qq00             = _mm_mul_pd(iq0,jq0);
141     qq01             = _mm_mul_pd(iq0,jq1);
142     qq02             = _mm_mul_pd(iq0,jq2);
143     qq10             = _mm_mul_pd(iq1,jq0);
144     qq11             = _mm_mul_pd(iq1,jq1);
145     qq12             = _mm_mul_pd(iq1,jq2);
146     qq20             = _mm_mul_pd(iq2,jq0);
147     qq21             = _mm_mul_pd(iq2,jq1);
148     qq22             = _mm_mul_pd(iq2,jq2);
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm_set1_pd(rcutoff_scalar);
153     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
180
181         fix0             = _mm_setzero_pd();
182         fiy0             = _mm_setzero_pd();
183         fiz0             = _mm_setzero_pd();
184         fix1             = _mm_setzero_pd();
185         fiy1             = _mm_setzero_pd();
186         fiz1             = _mm_setzero_pd();
187         fix2             = _mm_setzero_pd();
188         fiy2             = _mm_setzero_pd();
189         fiz2             = _mm_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_pd(ix0,jx0);
210             dy00             = _mm_sub_pd(iy0,jy0);
211             dz00             = _mm_sub_pd(iz0,jz0);
212             dx01             = _mm_sub_pd(ix0,jx1);
213             dy01             = _mm_sub_pd(iy0,jy1);
214             dz01             = _mm_sub_pd(iz0,jz1);
215             dx02             = _mm_sub_pd(ix0,jx2);
216             dy02             = _mm_sub_pd(iy0,jy2);
217             dz02             = _mm_sub_pd(iz0,jz2);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx11             = _mm_sub_pd(ix1,jx1);
222             dy11             = _mm_sub_pd(iy1,jy1);
223             dz11             = _mm_sub_pd(iz1,jz1);
224             dx12             = _mm_sub_pd(ix1,jx2);
225             dy12             = _mm_sub_pd(iy1,jy2);
226             dz12             = _mm_sub_pd(iz1,jz2);
227             dx20             = _mm_sub_pd(ix2,jx0);
228             dy20             = _mm_sub_pd(iy2,jy0);
229             dz20             = _mm_sub_pd(iz2,jz0);
230             dx21             = _mm_sub_pd(ix2,jx1);
231             dy21             = _mm_sub_pd(iy2,jy1);
232             dz21             = _mm_sub_pd(iz2,jz1);
233             dx22             = _mm_sub_pd(ix2,jx2);
234             dy22             = _mm_sub_pd(iy2,jy2);
235             dz22             = _mm_sub_pd(iz2,jz2);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
239             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
240             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
241             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
242             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
243             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
244             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
245             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
246             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
247
248             rinv00           = gmx_mm_invsqrt_pd(rsq00);
249             rinv01           = gmx_mm_invsqrt_pd(rsq01);
250             rinv02           = gmx_mm_invsqrt_pd(rsq02);
251             rinv10           = gmx_mm_invsqrt_pd(rsq10);
252             rinv11           = gmx_mm_invsqrt_pd(rsq11);
253             rinv12           = gmx_mm_invsqrt_pd(rsq12);
254             rinv20           = gmx_mm_invsqrt_pd(rsq20);
255             rinv21           = gmx_mm_invsqrt_pd(rsq21);
256             rinv22           = gmx_mm_invsqrt_pd(rsq22);
257
258             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
259             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
260             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
261             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
262             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
263             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
264             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
265             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
266             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
267
268             fjx0             = _mm_setzero_pd();
269             fjy0             = _mm_setzero_pd();
270             fjz0             = _mm_setzero_pd();
271             fjx1             = _mm_setzero_pd();
272             fjy1             = _mm_setzero_pd();
273             fjz1             = _mm_setzero_pd();
274             fjx2             = _mm_setzero_pd();
275             fjy2             = _mm_setzero_pd();
276             fjz2             = _mm_setzero_pd();
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (gmx_mm_any_lt(rsq00,rcutoff2))
283             {
284
285             r00              = _mm_mul_pd(rsq00,rinv00);
286
287             /* EWALD ELECTROSTATICS */
288
289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
290             ewrt             = _mm_mul_pd(r00,ewtabscale);
291             ewitab           = _mm_cvttpd_epi32(ewrt);
292             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
293             ewitab           = _mm_slli_epi32(ewitab,2);
294             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
295             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
296             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
297             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
298             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
299             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
300             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
301             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
302             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
303             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
304
305             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_and_pd(velec,cutoff_mask);
309             velecsum         = _mm_add_pd(velecsum,velec);
310
311             fscal            = felec;
312
313             fscal            = _mm_and_pd(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_pd(fscal,dx00);
317             ty               = _mm_mul_pd(fscal,dy00);
318             tz               = _mm_mul_pd(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm_add_pd(fix0,tx);
322             fiy0             = _mm_add_pd(fiy0,ty);
323             fiz0             = _mm_add_pd(fiz0,tz);
324
325             fjx0             = _mm_add_pd(fjx0,tx);
326             fjy0             = _mm_add_pd(fjy0,ty);
327             fjz0             = _mm_add_pd(fjz0,tz);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm_any_lt(rsq01,rcutoff2))
336             {
337
338             r01              = _mm_mul_pd(rsq01,rinv01);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _mm_mul_pd(r01,ewtabscale);
344             ewitab           = _mm_cvttpd_epi32(ewrt);
345             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
346             ewitab           = _mm_slli_epi32(ewitab,2);
347             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
348             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
349             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
350             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
351             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
352             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
353             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
354             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
355             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
356             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
357
358             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velec            = _mm_and_pd(velec,cutoff_mask);
362             velecsum         = _mm_add_pd(velecsum,velec);
363
364             fscal            = felec;
365
366             fscal            = _mm_and_pd(fscal,cutoff_mask);
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm_mul_pd(fscal,dx01);
370             ty               = _mm_mul_pd(fscal,dy01);
371             tz               = _mm_mul_pd(fscal,dz01);
372
373             /* Update vectorial force */
374             fix0             = _mm_add_pd(fix0,tx);
375             fiy0             = _mm_add_pd(fiy0,ty);
376             fiz0             = _mm_add_pd(fiz0,tz);
377
378             fjx1             = _mm_add_pd(fjx1,tx);
379             fjy1             = _mm_add_pd(fjy1,ty);
380             fjz1             = _mm_add_pd(fjz1,tz);
381
382             }
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             if (gmx_mm_any_lt(rsq02,rcutoff2))
389             {
390
391             r02              = _mm_mul_pd(rsq02,rinv02);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _mm_mul_pd(r02,ewtabscale);
397             ewitab           = _mm_cvttpd_epi32(ewrt);
398             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
402             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
403             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
404             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
405             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
406             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
407             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
408             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
409             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
410
411             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velec            = _mm_and_pd(velec,cutoff_mask);
415             velecsum         = _mm_add_pd(velecsum,velec);
416
417             fscal            = felec;
418
419             fscal            = _mm_and_pd(fscal,cutoff_mask);
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm_mul_pd(fscal,dx02);
423             ty               = _mm_mul_pd(fscal,dy02);
424             tz               = _mm_mul_pd(fscal,dz02);
425
426             /* Update vectorial force */
427             fix0             = _mm_add_pd(fix0,tx);
428             fiy0             = _mm_add_pd(fiy0,ty);
429             fiz0             = _mm_add_pd(fiz0,tz);
430
431             fjx2             = _mm_add_pd(fjx2,tx);
432             fjy2             = _mm_add_pd(fjy2,ty);
433             fjz2             = _mm_add_pd(fjz2,tz);
434
435             }
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             if (gmx_mm_any_lt(rsq10,rcutoff2))
442             {
443
444             r10              = _mm_mul_pd(rsq10,rinv10);
445
446             /* EWALD ELECTROSTATICS */
447
448             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
449             ewrt             = _mm_mul_pd(r10,ewtabscale);
450             ewitab           = _mm_cvttpd_epi32(ewrt);
451             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
452             ewitab           = _mm_slli_epi32(ewitab,2);
453             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
454             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
455             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
456             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
457             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
458             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
459             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
460             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
461             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
462             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
463
464             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             velec            = _mm_and_pd(velec,cutoff_mask);
468             velecsum         = _mm_add_pd(velecsum,velec);
469
470             fscal            = felec;
471
472             fscal            = _mm_and_pd(fscal,cutoff_mask);
473
474             /* Calculate temporary vectorial force */
475             tx               = _mm_mul_pd(fscal,dx10);
476             ty               = _mm_mul_pd(fscal,dy10);
477             tz               = _mm_mul_pd(fscal,dz10);
478
479             /* Update vectorial force */
480             fix1             = _mm_add_pd(fix1,tx);
481             fiy1             = _mm_add_pd(fiy1,ty);
482             fiz1             = _mm_add_pd(fiz1,tz);
483
484             fjx0             = _mm_add_pd(fjx0,tx);
485             fjy0             = _mm_add_pd(fjy0,ty);
486             fjz0             = _mm_add_pd(fjz0,tz);
487
488             }
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             if (gmx_mm_any_lt(rsq11,rcutoff2))
495             {
496
497             r11              = _mm_mul_pd(rsq11,rinv11);
498
499             /* EWALD ELECTROSTATICS */
500
501             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
502             ewrt             = _mm_mul_pd(r11,ewtabscale);
503             ewitab           = _mm_cvttpd_epi32(ewrt);
504             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
505             ewitab           = _mm_slli_epi32(ewitab,2);
506             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
507             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
508             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
509             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
510             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
511             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
512             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
513             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
514             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
515             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
516
517             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_and_pd(velec,cutoff_mask);
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_and_pd(fscal,cutoff_mask);
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm_mul_pd(fscal,dx11);
529             ty               = _mm_mul_pd(fscal,dy11);
530             tz               = _mm_mul_pd(fscal,dz11);
531
532             /* Update vectorial force */
533             fix1             = _mm_add_pd(fix1,tx);
534             fiy1             = _mm_add_pd(fiy1,ty);
535             fiz1             = _mm_add_pd(fiz1,tz);
536
537             fjx1             = _mm_add_pd(fjx1,tx);
538             fjy1             = _mm_add_pd(fjy1,ty);
539             fjz1             = _mm_add_pd(fjz1,tz);
540
541             }
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             if (gmx_mm_any_lt(rsq12,rcutoff2))
548             {
549
550             r12              = _mm_mul_pd(rsq12,rinv12);
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = _mm_mul_pd(r12,ewtabscale);
556             ewitab           = _mm_cvttpd_epi32(ewrt);
557             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
558             ewitab           = _mm_slli_epi32(ewitab,2);
559             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
560             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
561             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
562             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
563             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
564             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
565             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
566             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
567             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
568             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
569
570             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _mm_and_pd(velec,cutoff_mask);
574             velecsum         = _mm_add_pd(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_and_pd(fscal,cutoff_mask);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_pd(fscal,dx12);
582             ty               = _mm_mul_pd(fscal,dy12);
583             tz               = _mm_mul_pd(fscal,dz12);
584
585             /* Update vectorial force */
586             fix1             = _mm_add_pd(fix1,tx);
587             fiy1             = _mm_add_pd(fiy1,ty);
588             fiz1             = _mm_add_pd(fiz1,tz);
589
590             fjx2             = _mm_add_pd(fjx2,tx);
591             fjy2             = _mm_add_pd(fjy2,ty);
592             fjz2             = _mm_add_pd(fjz2,tz);
593
594             }
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             if (gmx_mm_any_lt(rsq20,rcutoff2))
601             {
602
603             r20              = _mm_mul_pd(rsq20,rinv20);
604
605             /* EWALD ELECTROSTATICS */
606
607             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
608             ewrt             = _mm_mul_pd(r20,ewtabscale);
609             ewitab           = _mm_cvttpd_epi32(ewrt);
610             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
611             ewitab           = _mm_slli_epi32(ewitab,2);
612             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
613             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
614             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
615             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
616             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
617             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
618             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
619             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
620             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
621             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
622
623             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velec            = _mm_and_pd(velec,cutoff_mask);
627             velecsum         = _mm_add_pd(velecsum,velec);
628
629             fscal            = felec;
630
631             fscal            = _mm_and_pd(fscal,cutoff_mask);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm_mul_pd(fscal,dx20);
635             ty               = _mm_mul_pd(fscal,dy20);
636             tz               = _mm_mul_pd(fscal,dz20);
637
638             /* Update vectorial force */
639             fix2             = _mm_add_pd(fix2,tx);
640             fiy2             = _mm_add_pd(fiy2,ty);
641             fiz2             = _mm_add_pd(fiz2,tz);
642
643             fjx0             = _mm_add_pd(fjx0,tx);
644             fjy0             = _mm_add_pd(fjy0,ty);
645             fjz0             = _mm_add_pd(fjz0,tz);
646
647             }
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm_any_lt(rsq21,rcutoff2))
654             {
655
656             r21              = _mm_mul_pd(rsq21,rinv21);
657
658             /* EWALD ELECTROSTATICS */
659
660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
661             ewrt             = _mm_mul_pd(r21,ewtabscale);
662             ewitab           = _mm_cvttpd_epi32(ewrt);
663             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
664             ewitab           = _mm_slli_epi32(ewitab,2);
665             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
666             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
667             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
668             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
669             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
670             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
671             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
672             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
673             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
674             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
675
676             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
677
678             /* Update potential sum for this i atom from the interaction with this j atom. */
679             velec            = _mm_and_pd(velec,cutoff_mask);
680             velecsum         = _mm_add_pd(velecsum,velec);
681
682             fscal            = felec;
683
684             fscal            = _mm_and_pd(fscal,cutoff_mask);
685
686             /* Calculate temporary vectorial force */
687             tx               = _mm_mul_pd(fscal,dx21);
688             ty               = _mm_mul_pd(fscal,dy21);
689             tz               = _mm_mul_pd(fscal,dz21);
690
691             /* Update vectorial force */
692             fix2             = _mm_add_pd(fix2,tx);
693             fiy2             = _mm_add_pd(fiy2,ty);
694             fiz2             = _mm_add_pd(fiz2,tz);
695
696             fjx1             = _mm_add_pd(fjx1,tx);
697             fjy1             = _mm_add_pd(fjy1,ty);
698             fjz1             = _mm_add_pd(fjz1,tz);
699
700             }
701
702             /**************************
703              * CALCULATE INTERACTIONS *
704              **************************/
705
706             if (gmx_mm_any_lt(rsq22,rcutoff2))
707             {
708
709             r22              = _mm_mul_pd(rsq22,rinv22);
710
711             /* EWALD ELECTROSTATICS */
712
713             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
714             ewrt             = _mm_mul_pd(r22,ewtabscale);
715             ewitab           = _mm_cvttpd_epi32(ewrt);
716             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
717             ewitab           = _mm_slli_epi32(ewitab,2);
718             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
719             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
720             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
721             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
722             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
723             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
724             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
725             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
726             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
727             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
728
729             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
730
731             /* Update potential sum for this i atom from the interaction with this j atom. */
732             velec            = _mm_and_pd(velec,cutoff_mask);
733             velecsum         = _mm_add_pd(velecsum,velec);
734
735             fscal            = felec;
736
737             fscal            = _mm_and_pd(fscal,cutoff_mask);
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm_mul_pd(fscal,dx22);
741             ty               = _mm_mul_pd(fscal,dy22);
742             tz               = _mm_mul_pd(fscal,dz22);
743
744             /* Update vectorial force */
745             fix2             = _mm_add_pd(fix2,tx);
746             fiy2             = _mm_add_pd(fiy2,ty);
747             fiz2             = _mm_add_pd(fiz2,tz);
748
749             fjx2             = _mm_add_pd(fjx2,tx);
750             fjy2             = _mm_add_pd(fjy2,ty);
751             fjz2             = _mm_add_pd(fjz2,tz);
752
753             }
754
755             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
756
757             /* Inner loop uses 414 flops */
758         }
759
760         if(jidx<j_index_end)
761         {
762
763             jnrA             = jjnr[jidx];
764             j_coord_offsetA  = DIM*jnrA;
765
766             /* load j atom coordinates */
767             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
768                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
769
770             /* Calculate displacement vector */
771             dx00             = _mm_sub_pd(ix0,jx0);
772             dy00             = _mm_sub_pd(iy0,jy0);
773             dz00             = _mm_sub_pd(iz0,jz0);
774             dx01             = _mm_sub_pd(ix0,jx1);
775             dy01             = _mm_sub_pd(iy0,jy1);
776             dz01             = _mm_sub_pd(iz0,jz1);
777             dx02             = _mm_sub_pd(ix0,jx2);
778             dy02             = _mm_sub_pd(iy0,jy2);
779             dz02             = _mm_sub_pd(iz0,jz2);
780             dx10             = _mm_sub_pd(ix1,jx0);
781             dy10             = _mm_sub_pd(iy1,jy0);
782             dz10             = _mm_sub_pd(iz1,jz0);
783             dx11             = _mm_sub_pd(ix1,jx1);
784             dy11             = _mm_sub_pd(iy1,jy1);
785             dz11             = _mm_sub_pd(iz1,jz1);
786             dx12             = _mm_sub_pd(ix1,jx2);
787             dy12             = _mm_sub_pd(iy1,jy2);
788             dz12             = _mm_sub_pd(iz1,jz2);
789             dx20             = _mm_sub_pd(ix2,jx0);
790             dy20             = _mm_sub_pd(iy2,jy0);
791             dz20             = _mm_sub_pd(iz2,jz0);
792             dx21             = _mm_sub_pd(ix2,jx1);
793             dy21             = _mm_sub_pd(iy2,jy1);
794             dz21             = _mm_sub_pd(iz2,jz1);
795             dx22             = _mm_sub_pd(ix2,jx2);
796             dy22             = _mm_sub_pd(iy2,jy2);
797             dz22             = _mm_sub_pd(iz2,jz2);
798
799             /* Calculate squared distance and things based on it */
800             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
801             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
802             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
803             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
804             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
805             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
806             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
807             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
808             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
809
810             rinv00           = gmx_mm_invsqrt_pd(rsq00);
811             rinv01           = gmx_mm_invsqrt_pd(rsq01);
812             rinv02           = gmx_mm_invsqrt_pd(rsq02);
813             rinv10           = gmx_mm_invsqrt_pd(rsq10);
814             rinv11           = gmx_mm_invsqrt_pd(rsq11);
815             rinv12           = gmx_mm_invsqrt_pd(rsq12);
816             rinv20           = gmx_mm_invsqrt_pd(rsq20);
817             rinv21           = gmx_mm_invsqrt_pd(rsq21);
818             rinv22           = gmx_mm_invsqrt_pd(rsq22);
819
820             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
821             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
822             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
823             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
824             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
825             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
826             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
827             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
828             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
829
830             fjx0             = _mm_setzero_pd();
831             fjy0             = _mm_setzero_pd();
832             fjz0             = _mm_setzero_pd();
833             fjx1             = _mm_setzero_pd();
834             fjy1             = _mm_setzero_pd();
835             fjz1             = _mm_setzero_pd();
836             fjx2             = _mm_setzero_pd();
837             fjy2             = _mm_setzero_pd();
838             fjz2             = _mm_setzero_pd();
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             if (gmx_mm_any_lt(rsq00,rcutoff2))
845             {
846
847             r00              = _mm_mul_pd(rsq00,rinv00);
848
849             /* EWALD ELECTROSTATICS */
850
851             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
852             ewrt             = _mm_mul_pd(r00,ewtabscale);
853             ewitab           = _mm_cvttpd_epi32(ewrt);
854             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
855             ewitab           = _mm_slli_epi32(ewitab,2);
856             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
857             ewtabD           = _mm_setzero_pd();
858             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
859             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
860             ewtabFn          = _mm_setzero_pd();
861             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
862             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
863             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
864             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
865             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
866
867             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
868
869             /* Update potential sum for this i atom from the interaction with this j atom. */
870             velec            = _mm_and_pd(velec,cutoff_mask);
871             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
872             velecsum         = _mm_add_pd(velecsum,velec);
873
874             fscal            = felec;
875
876             fscal            = _mm_and_pd(fscal,cutoff_mask);
877
878             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
879
880             /* Calculate temporary vectorial force */
881             tx               = _mm_mul_pd(fscal,dx00);
882             ty               = _mm_mul_pd(fscal,dy00);
883             tz               = _mm_mul_pd(fscal,dz00);
884
885             /* Update vectorial force */
886             fix0             = _mm_add_pd(fix0,tx);
887             fiy0             = _mm_add_pd(fiy0,ty);
888             fiz0             = _mm_add_pd(fiz0,tz);
889
890             fjx0             = _mm_add_pd(fjx0,tx);
891             fjy0             = _mm_add_pd(fjy0,ty);
892             fjz0             = _mm_add_pd(fjz0,tz);
893
894             }
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             if (gmx_mm_any_lt(rsq01,rcutoff2))
901             {
902
903             r01              = _mm_mul_pd(rsq01,rinv01);
904
905             /* EWALD ELECTROSTATICS */
906
907             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
908             ewrt             = _mm_mul_pd(r01,ewtabscale);
909             ewitab           = _mm_cvttpd_epi32(ewrt);
910             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
911             ewitab           = _mm_slli_epi32(ewitab,2);
912             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
913             ewtabD           = _mm_setzero_pd();
914             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
915             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
916             ewtabFn          = _mm_setzero_pd();
917             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
918             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
919             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
920             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
921             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
922
923             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
924
925             /* Update potential sum for this i atom from the interaction with this j atom. */
926             velec            = _mm_and_pd(velec,cutoff_mask);
927             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
928             velecsum         = _mm_add_pd(velecsum,velec);
929
930             fscal            = felec;
931
932             fscal            = _mm_and_pd(fscal,cutoff_mask);
933
934             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm_mul_pd(fscal,dx01);
938             ty               = _mm_mul_pd(fscal,dy01);
939             tz               = _mm_mul_pd(fscal,dz01);
940
941             /* Update vectorial force */
942             fix0             = _mm_add_pd(fix0,tx);
943             fiy0             = _mm_add_pd(fiy0,ty);
944             fiz0             = _mm_add_pd(fiz0,tz);
945
946             fjx1             = _mm_add_pd(fjx1,tx);
947             fjy1             = _mm_add_pd(fjy1,ty);
948             fjz1             = _mm_add_pd(fjz1,tz);
949
950             }
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm_any_lt(rsq02,rcutoff2))
957             {
958
959             r02              = _mm_mul_pd(rsq02,rinv02);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_pd(r02,ewtabscale);
965             ewitab           = _mm_cvttpd_epi32(ewrt);
966             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
967             ewitab           = _mm_slli_epi32(ewitab,2);
968             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
969             ewtabD           = _mm_setzero_pd();
970             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
971             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
972             ewtabFn          = _mm_setzero_pd();
973             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
974             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
975             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
976             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
977             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
978
979             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
980
981             /* Update potential sum for this i atom from the interaction with this j atom. */
982             velec            = _mm_and_pd(velec,cutoff_mask);
983             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
984             velecsum         = _mm_add_pd(velecsum,velec);
985
986             fscal            = felec;
987
988             fscal            = _mm_and_pd(fscal,cutoff_mask);
989
990             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm_mul_pd(fscal,dx02);
994             ty               = _mm_mul_pd(fscal,dy02);
995             tz               = _mm_mul_pd(fscal,dz02);
996
997             /* Update vectorial force */
998             fix0             = _mm_add_pd(fix0,tx);
999             fiy0             = _mm_add_pd(fiy0,ty);
1000             fiz0             = _mm_add_pd(fiz0,tz);
1001
1002             fjx2             = _mm_add_pd(fjx2,tx);
1003             fjy2             = _mm_add_pd(fjy2,ty);
1004             fjz2             = _mm_add_pd(fjz2,tz);
1005
1006             }
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             if (gmx_mm_any_lt(rsq10,rcutoff2))
1013             {
1014
1015             r10              = _mm_mul_pd(rsq10,rinv10);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _mm_mul_pd(r10,ewtabscale);
1021             ewitab           = _mm_cvttpd_epi32(ewrt);
1022             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1023             ewitab           = _mm_slli_epi32(ewitab,2);
1024             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1025             ewtabD           = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1027             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1028             ewtabFn          = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1030             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1031             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1032             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1033             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1034
1035             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1036
1037             /* Update potential sum for this i atom from the interaction with this j atom. */
1038             velec            = _mm_and_pd(velec,cutoff_mask);
1039             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1040             velecsum         = _mm_add_pd(velecsum,velec);
1041
1042             fscal            = felec;
1043
1044             fscal            = _mm_and_pd(fscal,cutoff_mask);
1045
1046             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm_mul_pd(fscal,dx10);
1050             ty               = _mm_mul_pd(fscal,dy10);
1051             tz               = _mm_mul_pd(fscal,dz10);
1052
1053             /* Update vectorial force */
1054             fix1             = _mm_add_pd(fix1,tx);
1055             fiy1             = _mm_add_pd(fiy1,ty);
1056             fiz1             = _mm_add_pd(fiz1,tz);
1057
1058             fjx0             = _mm_add_pd(fjx0,tx);
1059             fjy0             = _mm_add_pd(fjy0,ty);
1060             fjz0             = _mm_add_pd(fjz0,tz);
1061
1062             }
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_mm_any_lt(rsq11,rcutoff2))
1069             {
1070
1071             r11              = _mm_mul_pd(rsq11,rinv11);
1072
1073             /* EWALD ELECTROSTATICS */
1074
1075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076             ewrt             = _mm_mul_pd(r11,ewtabscale);
1077             ewitab           = _mm_cvttpd_epi32(ewrt);
1078             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1079             ewitab           = _mm_slli_epi32(ewitab,2);
1080             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1081             ewtabD           = _mm_setzero_pd();
1082             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1083             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1084             ewtabFn          = _mm_setzero_pd();
1085             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1086             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1087             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1088             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1089             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1090
1091             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1092
1093             /* Update potential sum for this i atom from the interaction with this j atom. */
1094             velec            = _mm_and_pd(velec,cutoff_mask);
1095             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1096             velecsum         = _mm_add_pd(velecsum,velec);
1097
1098             fscal            = felec;
1099
1100             fscal            = _mm_and_pd(fscal,cutoff_mask);
1101
1102             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1103
1104             /* Calculate temporary vectorial force */
1105             tx               = _mm_mul_pd(fscal,dx11);
1106             ty               = _mm_mul_pd(fscal,dy11);
1107             tz               = _mm_mul_pd(fscal,dz11);
1108
1109             /* Update vectorial force */
1110             fix1             = _mm_add_pd(fix1,tx);
1111             fiy1             = _mm_add_pd(fiy1,ty);
1112             fiz1             = _mm_add_pd(fiz1,tz);
1113
1114             fjx1             = _mm_add_pd(fjx1,tx);
1115             fjy1             = _mm_add_pd(fjy1,ty);
1116             fjz1             = _mm_add_pd(fjz1,tz);
1117
1118             }
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             if (gmx_mm_any_lt(rsq12,rcutoff2))
1125             {
1126
1127             r12              = _mm_mul_pd(rsq12,rinv12);
1128
1129             /* EWALD ELECTROSTATICS */
1130
1131             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1132             ewrt             = _mm_mul_pd(r12,ewtabscale);
1133             ewitab           = _mm_cvttpd_epi32(ewrt);
1134             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1135             ewitab           = _mm_slli_epi32(ewitab,2);
1136             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1137             ewtabD           = _mm_setzero_pd();
1138             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1139             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1140             ewtabFn          = _mm_setzero_pd();
1141             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1142             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1143             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1144             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1145             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1146
1147             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1148
1149             /* Update potential sum for this i atom from the interaction with this j atom. */
1150             velec            = _mm_and_pd(velec,cutoff_mask);
1151             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1152             velecsum         = _mm_add_pd(velecsum,velec);
1153
1154             fscal            = felec;
1155
1156             fscal            = _mm_and_pd(fscal,cutoff_mask);
1157
1158             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1159
1160             /* Calculate temporary vectorial force */
1161             tx               = _mm_mul_pd(fscal,dx12);
1162             ty               = _mm_mul_pd(fscal,dy12);
1163             tz               = _mm_mul_pd(fscal,dz12);
1164
1165             /* Update vectorial force */
1166             fix1             = _mm_add_pd(fix1,tx);
1167             fiy1             = _mm_add_pd(fiy1,ty);
1168             fiz1             = _mm_add_pd(fiz1,tz);
1169
1170             fjx2             = _mm_add_pd(fjx2,tx);
1171             fjy2             = _mm_add_pd(fjy2,ty);
1172             fjz2             = _mm_add_pd(fjz2,tz);
1173
1174             }
1175
1176             /**************************
1177              * CALCULATE INTERACTIONS *
1178              **************************/
1179
1180             if (gmx_mm_any_lt(rsq20,rcutoff2))
1181             {
1182
1183             r20              = _mm_mul_pd(rsq20,rinv20);
1184
1185             /* EWALD ELECTROSTATICS */
1186
1187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1188             ewrt             = _mm_mul_pd(r20,ewtabscale);
1189             ewitab           = _mm_cvttpd_epi32(ewrt);
1190             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1191             ewitab           = _mm_slli_epi32(ewitab,2);
1192             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1193             ewtabD           = _mm_setzero_pd();
1194             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1195             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1196             ewtabFn          = _mm_setzero_pd();
1197             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1198             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1199             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1200             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1201             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1202
1203             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1204
1205             /* Update potential sum for this i atom from the interaction with this j atom. */
1206             velec            = _mm_and_pd(velec,cutoff_mask);
1207             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1208             velecsum         = _mm_add_pd(velecsum,velec);
1209
1210             fscal            = felec;
1211
1212             fscal            = _mm_and_pd(fscal,cutoff_mask);
1213
1214             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1215
1216             /* Calculate temporary vectorial force */
1217             tx               = _mm_mul_pd(fscal,dx20);
1218             ty               = _mm_mul_pd(fscal,dy20);
1219             tz               = _mm_mul_pd(fscal,dz20);
1220
1221             /* Update vectorial force */
1222             fix2             = _mm_add_pd(fix2,tx);
1223             fiy2             = _mm_add_pd(fiy2,ty);
1224             fiz2             = _mm_add_pd(fiz2,tz);
1225
1226             fjx0             = _mm_add_pd(fjx0,tx);
1227             fjy0             = _mm_add_pd(fjy0,ty);
1228             fjz0             = _mm_add_pd(fjz0,tz);
1229
1230             }
1231
1232             /**************************
1233              * CALCULATE INTERACTIONS *
1234              **************************/
1235
1236             if (gmx_mm_any_lt(rsq21,rcutoff2))
1237             {
1238
1239             r21              = _mm_mul_pd(rsq21,rinv21);
1240
1241             /* EWALD ELECTROSTATICS */
1242
1243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1244             ewrt             = _mm_mul_pd(r21,ewtabscale);
1245             ewitab           = _mm_cvttpd_epi32(ewrt);
1246             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1247             ewitab           = _mm_slli_epi32(ewitab,2);
1248             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1249             ewtabD           = _mm_setzero_pd();
1250             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1251             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1252             ewtabFn          = _mm_setzero_pd();
1253             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1254             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1255             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1256             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1257             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1258
1259             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1260
1261             /* Update potential sum for this i atom from the interaction with this j atom. */
1262             velec            = _mm_and_pd(velec,cutoff_mask);
1263             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1264             velecsum         = _mm_add_pd(velecsum,velec);
1265
1266             fscal            = felec;
1267
1268             fscal            = _mm_and_pd(fscal,cutoff_mask);
1269
1270             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1271
1272             /* Calculate temporary vectorial force */
1273             tx               = _mm_mul_pd(fscal,dx21);
1274             ty               = _mm_mul_pd(fscal,dy21);
1275             tz               = _mm_mul_pd(fscal,dz21);
1276
1277             /* Update vectorial force */
1278             fix2             = _mm_add_pd(fix2,tx);
1279             fiy2             = _mm_add_pd(fiy2,ty);
1280             fiz2             = _mm_add_pd(fiz2,tz);
1281
1282             fjx1             = _mm_add_pd(fjx1,tx);
1283             fjy1             = _mm_add_pd(fjy1,ty);
1284             fjz1             = _mm_add_pd(fjz1,tz);
1285
1286             }
1287
1288             /**************************
1289              * CALCULATE INTERACTIONS *
1290              **************************/
1291
1292             if (gmx_mm_any_lt(rsq22,rcutoff2))
1293             {
1294
1295             r22              = _mm_mul_pd(rsq22,rinv22);
1296
1297             /* EWALD ELECTROSTATICS */
1298
1299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1300             ewrt             = _mm_mul_pd(r22,ewtabscale);
1301             ewitab           = _mm_cvttpd_epi32(ewrt);
1302             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1303             ewitab           = _mm_slli_epi32(ewitab,2);
1304             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1305             ewtabD           = _mm_setzero_pd();
1306             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1307             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1308             ewtabFn          = _mm_setzero_pd();
1309             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1310             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1311             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1312             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1313             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1314
1315             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1316
1317             /* Update potential sum for this i atom from the interaction with this j atom. */
1318             velec            = _mm_and_pd(velec,cutoff_mask);
1319             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1320             velecsum         = _mm_add_pd(velecsum,velec);
1321
1322             fscal            = felec;
1323
1324             fscal            = _mm_and_pd(fscal,cutoff_mask);
1325
1326             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1327
1328             /* Calculate temporary vectorial force */
1329             tx               = _mm_mul_pd(fscal,dx22);
1330             ty               = _mm_mul_pd(fscal,dy22);
1331             tz               = _mm_mul_pd(fscal,dz22);
1332
1333             /* Update vectorial force */
1334             fix2             = _mm_add_pd(fix2,tx);
1335             fiy2             = _mm_add_pd(fiy2,ty);
1336             fiz2             = _mm_add_pd(fiz2,tz);
1337
1338             fjx2             = _mm_add_pd(fjx2,tx);
1339             fjy2             = _mm_add_pd(fjy2,ty);
1340             fjz2             = _mm_add_pd(fjz2,tz);
1341
1342             }
1343
1344             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1345
1346             /* Inner loop uses 414 flops */
1347         }
1348
1349         /* End of innermost loop */
1350
1351         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1352                                               f+i_coord_offset,fshift+i_shift_offset);
1353
1354         ggid                        = gid[iidx];
1355         /* Update potential energies */
1356         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1357
1358         /* Increment number of inner iterations */
1359         inneriter                  += j_index_end - j_index_start;
1360
1361         /* Outer loop uses 19 flops */
1362     }
1363
1364     /* Increment number of outer iterations */
1365     outeriter        += nri;
1366
1367     /* Update outer/inner flops */
1368
1369     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*414);
1370 }
1371 /*
1372  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_sse4_1_double
1373  * Electrostatics interaction: Ewald
1374  * VdW interaction:            None
1375  * Geometry:                   Water3-Water3
1376  * Calculate force/pot:        Force
1377  */
1378 void
1379 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_sse4_1_double
1380                     (t_nblist                    * gmx_restrict       nlist,
1381                      rvec                        * gmx_restrict          xx,
1382                      rvec                        * gmx_restrict          ff,
1383                      t_forcerec                  * gmx_restrict          fr,
1384                      t_mdatoms                   * gmx_restrict     mdatoms,
1385                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1386                      t_nrnb                      * gmx_restrict        nrnb)
1387 {
1388     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1389      * just 0 for non-waters.
1390      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1391      * jnr indices corresponding to data put in the four positions in the SIMD register.
1392      */
1393     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1394     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1395     int              jnrA,jnrB;
1396     int              j_coord_offsetA,j_coord_offsetB;
1397     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1398     real             rcutoff_scalar;
1399     real             *shiftvec,*fshift,*x,*f;
1400     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1401     int              vdwioffset0;
1402     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1403     int              vdwioffset1;
1404     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1405     int              vdwioffset2;
1406     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1407     int              vdwjidx0A,vdwjidx0B;
1408     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1409     int              vdwjidx1A,vdwjidx1B;
1410     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1411     int              vdwjidx2A,vdwjidx2B;
1412     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1413     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1414     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1415     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1416     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1417     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1418     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1419     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1420     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1421     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1422     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1423     real             *charge;
1424     __m128i          ewitab;
1425     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1426     real             *ewtab;
1427     __m128d          dummy_mask,cutoff_mask;
1428     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1429     __m128d          one     = _mm_set1_pd(1.0);
1430     __m128d          two     = _mm_set1_pd(2.0);
1431     x                = xx[0];
1432     f                = ff[0];
1433
1434     nri              = nlist->nri;
1435     iinr             = nlist->iinr;
1436     jindex           = nlist->jindex;
1437     jjnr             = nlist->jjnr;
1438     shiftidx         = nlist->shift;
1439     gid              = nlist->gid;
1440     shiftvec         = fr->shift_vec[0];
1441     fshift           = fr->fshift[0];
1442     facel            = _mm_set1_pd(fr->epsfac);
1443     charge           = mdatoms->chargeA;
1444
1445     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1446     ewtab            = fr->ic->tabq_coul_F;
1447     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1448     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1449
1450     /* Setup water-specific parameters */
1451     inr              = nlist->iinr[0];
1452     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1453     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1454     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1455
1456     jq0              = _mm_set1_pd(charge[inr+0]);
1457     jq1              = _mm_set1_pd(charge[inr+1]);
1458     jq2              = _mm_set1_pd(charge[inr+2]);
1459     qq00             = _mm_mul_pd(iq0,jq0);
1460     qq01             = _mm_mul_pd(iq0,jq1);
1461     qq02             = _mm_mul_pd(iq0,jq2);
1462     qq10             = _mm_mul_pd(iq1,jq0);
1463     qq11             = _mm_mul_pd(iq1,jq1);
1464     qq12             = _mm_mul_pd(iq1,jq2);
1465     qq20             = _mm_mul_pd(iq2,jq0);
1466     qq21             = _mm_mul_pd(iq2,jq1);
1467     qq22             = _mm_mul_pd(iq2,jq2);
1468
1469     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1470     rcutoff_scalar   = fr->rcoulomb;
1471     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1472     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1473
1474     /* Avoid stupid compiler warnings */
1475     jnrA = jnrB = 0;
1476     j_coord_offsetA = 0;
1477     j_coord_offsetB = 0;
1478
1479     outeriter        = 0;
1480     inneriter        = 0;
1481
1482     /* Start outer loop over neighborlists */
1483     for(iidx=0; iidx<nri; iidx++)
1484     {
1485         /* Load shift vector for this list */
1486         i_shift_offset   = DIM*shiftidx[iidx];
1487
1488         /* Load limits for loop over neighbors */
1489         j_index_start    = jindex[iidx];
1490         j_index_end      = jindex[iidx+1];
1491
1492         /* Get outer coordinate index */
1493         inr              = iinr[iidx];
1494         i_coord_offset   = DIM*inr;
1495
1496         /* Load i particle coords and add shift vector */
1497         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1498                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1499
1500         fix0             = _mm_setzero_pd();
1501         fiy0             = _mm_setzero_pd();
1502         fiz0             = _mm_setzero_pd();
1503         fix1             = _mm_setzero_pd();
1504         fiy1             = _mm_setzero_pd();
1505         fiz1             = _mm_setzero_pd();
1506         fix2             = _mm_setzero_pd();
1507         fiy2             = _mm_setzero_pd();
1508         fiz2             = _mm_setzero_pd();
1509
1510         /* Start inner kernel loop */
1511         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1512         {
1513
1514             /* Get j neighbor index, and coordinate index */
1515             jnrA             = jjnr[jidx];
1516             jnrB             = jjnr[jidx+1];
1517             j_coord_offsetA  = DIM*jnrA;
1518             j_coord_offsetB  = DIM*jnrB;
1519
1520             /* load j atom coordinates */
1521             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1522                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1523
1524             /* Calculate displacement vector */
1525             dx00             = _mm_sub_pd(ix0,jx0);
1526             dy00             = _mm_sub_pd(iy0,jy0);
1527             dz00             = _mm_sub_pd(iz0,jz0);
1528             dx01             = _mm_sub_pd(ix0,jx1);
1529             dy01             = _mm_sub_pd(iy0,jy1);
1530             dz01             = _mm_sub_pd(iz0,jz1);
1531             dx02             = _mm_sub_pd(ix0,jx2);
1532             dy02             = _mm_sub_pd(iy0,jy2);
1533             dz02             = _mm_sub_pd(iz0,jz2);
1534             dx10             = _mm_sub_pd(ix1,jx0);
1535             dy10             = _mm_sub_pd(iy1,jy0);
1536             dz10             = _mm_sub_pd(iz1,jz0);
1537             dx11             = _mm_sub_pd(ix1,jx1);
1538             dy11             = _mm_sub_pd(iy1,jy1);
1539             dz11             = _mm_sub_pd(iz1,jz1);
1540             dx12             = _mm_sub_pd(ix1,jx2);
1541             dy12             = _mm_sub_pd(iy1,jy2);
1542             dz12             = _mm_sub_pd(iz1,jz2);
1543             dx20             = _mm_sub_pd(ix2,jx0);
1544             dy20             = _mm_sub_pd(iy2,jy0);
1545             dz20             = _mm_sub_pd(iz2,jz0);
1546             dx21             = _mm_sub_pd(ix2,jx1);
1547             dy21             = _mm_sub_pd(iy2,jy1);
1548             dz21             = _mm_sub_pd(iz2,jz1);
1549             dx22             = _mm_sub_pd(ix2,jx2);
1550             dy22             = _mm_sub_pd(iy2,jy2);
1551             dz22             = _mm_sub_pd(iz2,jz2);
1552
1553             /* Calculate squared distance and things based on it */
1554             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1555             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1556             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1557             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1558             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1559             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1560             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1561             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1562             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1563
1564             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1565             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1566             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1567             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1568             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1569             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1570             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1571             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1572             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1573
1574             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1575             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1576             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1577             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1578             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1579             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1580             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1581             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1582             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1583
1584             fjx0             = _mm_setzero_pd();
1585             fjy0             = _mm_setzero_pd();
1586             fjz0             = _mm_setzero_pd();
1587             fjx1             = _mm_setzero_pd();
1588             fjy1             = _mm_setzero_pd();
1589             fjz1             = _mm_setzero_pd();
1590             fjx2             = _mm_setzero_pd();
1591             fjy2             = _mm_setzero_pd();
1592             fjz2             = _mm_setzero_pd();
1593
1594             /**************************
1595              * CALCULATE INTERACTIONS *
1596              **************************/
1597
1598             if (gmx_mm_any_lt(rsq00,rcutoff2))
1599             {
1600
1601             r00              = _mm_mul_pd(rsq00,rinv00);
1602
1603             /* EWALD ELECTROSTATICS */
1604
1605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1606             ewrt             = _mm_mul_pd(r00,ewtabscale);
1607             ewitab           = _mm_cvttpd_epi32(ewrt);
1608             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1609             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1610                                          &ewtabF,&ewtabFn);
1611             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1612             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1613
1614             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1615
1616             fscal            = felec;
1617
1618             fscal            = _mm_and_pd(fscal,cutoff_mask);
1619
1620             /* Calculate temporary vectorial force */
1621             tx               = _mm_mul_pd(fscal,dx00);
1622             ty               = _mm_mul_pd(fscal,dy00);
1623             tz               = _mm_mul_pd(fscal,dz00);
1624
1625             /* Update vectorial force */
1626             fix0             = _mm_add_pd(fix0,tx);
1627             fiy0             = _mm_add_pd(fiy0,ty);
1628             fiz0             = _mm_add_pd(fiz0,tz);
1629
1630             fjx0             = _mm_add_pd(fjx0,tx);
1631             fjy0             = _mm_add_pd(fjy0,ty);
1632             fjz0             = _mm_add_pd(fjz0,tz);
1633
1634             }
1635
1636             /**************************
1637              * CALCULATE INTERACTIONS *
1638              **************************/
1639
1640             if (gmx_mm_any_lt(rsq01,rcutoff2))
1641             {
1642
1643             r01              = _mm_mul_pd(rsq01,rinv01);
1644
1645             /* EWALD ELECTROSTATICS */
1646
1647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1648             ewrt             = _mm_mul_pd(r01,ewtabscale);
1649             ewitab           = _mm_cvttpd_epi32(ewrt);
1650             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1651             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1652                                          &ewtabF,&ewtabFn);
1653             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1654             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1655
1656             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1657
1658             fscal            = felec;
1659
1660             fscal            = _mm_and_pd(fscal,cutoff_mask);
1661
1662             /* Calculate temporary vectorial force */
1663             tx               = _mm_mul_pd(fscal,dx01);
1664             ty               = _mm_mul_pd(fscal,dy01);
1665             tz               = _mm_mul_pd(fscal,dz01);
1666
1667             /* Update vectorial force */
1668             fix0             = _mm_add_pd(fix0,tx);
1669             fiy0             = _mm_add_pd(fiy0,ty);
1670             fiz0             = _mm_add_pd(fiz0,tz);
1671
1672             fjx1             = _mm_add_pd(fjx1,tx);
1673             fjy1             = _mm_add_pd(fjy1,ty);
1674             fjz1             = _mm_add_pd(fjz1,tz);
1675
1676             }
1677
1678             /**************************
1679              * CALCULATE INTERACTIONS *
1680              **************************/
1681
1682             if (gmx_mm_any_lt(rsq02,rcutoff2))
1683             {
1684
1685             r02              = _mm_mul_pd(rsq02,rinv02);
1686
1687             /* EWALD ELECTROSTATICS */
1688
1689             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1690             ewrt             = _mm_mul_pd(r02,ewtabscale);
1691             ewitab           = _mm_cvttpd_epi32(ewrt);
1692             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1693             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1694                                          &ewtabF,&ewtabFn);
1695             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1696             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1697
1698             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1699
1700             fscal            = felec;
1701
1702             fscal            = _mm_and_pd(fscal,cutoff_mask);
1703
1704             /* Calculate temporary vectorial force */
1705             tx               = _mm_mul_pd(fscal,dx02);
1706             ty               = _mm_mul_pd(fscal,dy02);
1707             tz               = _mm_mul_pd(fscal,dz02);
1708
1709             /* Update vectorial force */
1710             fix0             = _mm_add_pd(fix0,tx);
1711             fiy0             = _mm_add_pd(fiy0,ty);
1712             fiz0             = _mm_add_pd(fiz0,tz);
1713
1714             fjx2             = _mm_add_pd(fjx2,tx);
1715             fjy2             = _mm_add_pd(fjy2,ty);
1716             fjz2             = _mm_add_pd(fjz2,tz);
1717
1718             }
1719
1720             /**************************
1721              * CALCULATE INTERACTIONS *
1722              **************************/
1723
1724             if (gmx_mm_any_lt(rsq10,rcutoff2))
1725             {
1726
1727             r10              = _mm_mul_pd(rsq10,rinv10);
1728
1729             /* EWALD ELECTROSTATICS */
1730
1731             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1732             ewrt             = _mm_mul_pd(r10,ewtabscale);
1733             ewitab           = _mm_cvttpd_epi32(ewrt);
1734             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1735             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1736                                          &ewtabF,&ewtabFn);
1737             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1738             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1739
1740             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1741
1742             fscal            = felec;
1743
1744             fscal            = _mm_and_pd(fscal,cutoff_mask);
1745
1746             /* Calculate temporary vectorial force */
1747             tx               = _mm_mul_pd(fscal,dx10);
1748             ty               = _mm_mul_pd(fscal,dy10);
1749             tz               = _mm_mul_pd(fscal,dz10);
1750
1751             /* Update vectorial force */
1752             fix1             = _mm_add_pd(fix1,tx);
1753             fiy1             = _mm_add_pd(fiy1,ty);
1754             fiz1             = _mm_add_pd(fiz1,tz);
1755
1756             fjx0             = _mm_add_pd(fjx0,tx);
1757             fjy0             = _mm_add_pd(fjy0,ty);
1758             fjz0             = _mm_add_pd(fjz0,tz);
1759
1760             }
1761
1762             /**************************
1763              * CALCULATE INTERACTIONS *
1764              **************************/
1765
1766             if (gmx_mm_any_lt(rsq11,rcutoff2))
1767             {
1768
1769             r11              = _mm_mul_pd(rsq11,rinv11);
1770
1771             /* EWALD ELECTROSTATICS */
1772
1773             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1774             ewrt             = _mm_mul_pd(r11,ewtabscale);
1775             ewitab           = _mm_cvttpd_epi32(ewrt);
1776             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1777             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1778                                          &ewtabF,&ewtabFn);
1779             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1780             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1781
1782             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1783
1784             fscal            = felec;
1785
1786             fscal            = _mm_and_pd(fscal,cutoff_mask);
1787
1788             /* Calculate temporary vectorial force */
1789             tx               = _mm_mul_pd(fscal,dx11);
1790             ty               = _mm_mul_pd(fscal,dy11);
1791             tz               = _mm_mul_pd(fscal,dz11);
1792
1793             /* Update vectorial force */
1794             fix1             = _mm_add_pd(fix1,tx);
1795             fiy1             = _mm_add_pd(fiy1,ty);
1796             fiz1             = _mm_add_pd(fiz1,tz);
1797
1798             fjx1             = _mm_add_pd(fjx1,tx);
1799             fjy1             = _mm_add_pd(fjy1,ty);
1800             fjz1             = _mm_add_pd(fjz1,tz);
1801
1802             }
1803
1804             /**************************
1805              * CALCULATE INTERACTIONS *
1806              **************************/
1807
1808             if (gmx_mm_any_lt(rsq12,rcutoff2))
1809             {
1810
1811             r12              = _mm_mul_pd(rsq12,rinv12);
1812
1813             /* EWALD ELECTROSTATICS */
1814
1815             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1816             ewrt             = _mm_mul_pd(r12,ewtabscale);
1817             ewitab           = _mm_cvttpd_epi32(ewrt);
1818             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1819             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1820                                          &ewtabF,&ewtabFn);
1821             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1822             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1823
1824             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1825
1826             fscal            = felec;
1827
1828             fscal            = _mm_and_pd(fscal,cutoff_mask);
1829
1830             /* Calculate temporary vectorial force */
1831             tx               = _mm_mul_pd(fscal,dx12);
1832             ty               = _mm_mul_pd(fscal,dy12);
1833             tz               = _mm_mul_pd(fscal,dz12);
1834
1835             /* Update vectorial force */
1836             fix1             = _mm_add_pd(fix1,tx);
1837             fiy1             = _mm_add_pd(fiy1,ty);
1838             fiz1             = _mm_add_pd(fiz1,tz);
1839
1840             fjx2             = _mm_add_pd(fjx2,tx);
1841             fjy2             = _mm_add_pd(fjy2,ty);
1842             fjz2             = _mm_add_pd(fjz2,tz);
1843
1844             }
1845
1846             /**************************
1847              * CALCULATE INTERACTIONS *
1848              **************************/
1849
1850             if (gmx_mm_any_lt(rsq20,rcutoff2))
1851             {
1852
1853             r20              = _mm_mul_pd(rsq20,rinv20);
1854
1855             /* EWALD ELECTROSTATICS */
1856
1857             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1858             ewrt             = _mm_mul_pd(r20,ewtabscale);
1859             ewitab           = _mm_cvttpd_epi32(ewrt);
1860             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1861             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1862                                          &ewtabF,&ewtabFn);
1863             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1864             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1865
1866             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1867
1868             fscal            = felec;
1869
1870             fscal            = _mm_and_pd(fscal,cutoff_mask);
1871
1872             /* Calculate temporary vectorial force */
1873             tx               = _mm_mul_pd(fscal,dx20);
1874             ty               = _mm_mul_pd(fscal,dy20);
1875             tz               = _mm_mul_pd(fscal,dz20);
1876
1877             /* Update vectorial force */
1878             fix2             = _mm_add_pd(fix2,tx);
1879             fiy2             = _mm_add_pd(fiy2,ty);
1880             fiz2             = _mm_add_pd(fiz2,tz);
1881
1882             fjx0             = _mm_add_pd(fjx0,tx);
1883             fjy0             = _mm_add_pd(fjy0,ty);
1884             fjz0             = _mm_add_pd(fjz0,tz);
1885
1886             }
1887
1888             /**************************
1889              * CALCULATE INTERACTIONS *
1890              **************************/
1891
1892             if (gmx_mm_any_lt(rsq21,rcutoff2))
1893             {
1894
1895             r21              = _mm_mul_pd(rsq21,rinv21);
1896
1897             /* EWALD ELECTROSTATICS */
1898
1899             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1900             ewrt             = _mm_mul_pd(r21,ewtabscale);
1901             ewitab           = _mm_cvttpd_epi32(ewrt);
1902             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1903             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1904                                          &ewtabF,&ewtabFn);
1905             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1906             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1907
1908             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1909
1910             fscal            = felec;
1911
1912             fscal            = _mm_and_pd(fscal,cutoff_mask);
1913
1914             /* Calculate temporary vectorial force */
1915             tx               = _mm_mul_pd(fscal,dx21);
1916             ty               = _mm_mul_pd(fscal,dy21);
1917             tz               = _mm_mul_pd(fscal,dz21);
1918
1919             /* Update vectorial force */
1920             fix2             = _mm_add_pd(fix2,tx);
1921             fiy2             = _mm_add_pd(fiy2,ty);
1922             fiz2             = _mm_add_pd(fiz2,tz);
1923
1924             fjx1             = _mm_add_pd(fjx1,tx);
1925             fjy1             = _mm_add_pd(fjy1,ty);
1926             fjz1             = _mm_add_pd(fjz1,tz);
1927
1928             }
1929
1930             /**************************
1931              * CALCULATE INTERACTIONS *
1932              **************************/
1933
1934             if (gmx_mm_any_lt(rsq22,rcutoff2))
1935             {
1936
1937             r22              = _mm_mul_pd(rsq22,rinv22);
1938
1939             /* EWALD ELECTROSTATICS */
1940
1941             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1942             ewrt             = _mm_mul_pd(r22,ewtabscale);
1943             ewitab           = _mm_cvttpd_epi32(ewrt);
1944             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1945             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1946                                          &ewtabF,&ewtabFn);
1947             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1948             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1949
1950             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1951
1952             fscal            = felec;
1953
1954             fscal            = _mm_and_pd(fscal,cutoff_mask);
1955
1956             /* Calculate temporary vectorial force */
1957             tx               = _mm_mul_pd(fscal,dx22);
1958             ty               = _mm_mul_pd(fscal,dy22);
1959             tz               = _mm_mul_pd(fscal,dz22);
1960
1961             /* Update vectorial force */
1962             fix2             = _mm_add_pd(fix2,tx);
1963             fiy2             = _mm_add_pd(fiy2,ty);
1964             fiz2             = _mm_add_pd(fiz2,tz);
1965
1966             fjx2             = _mm_add_pd(fjx2,tx);
1967             fjy2             = _mm_add_pd(fjy2,ty);
1968             fjz2             = _mm_add_pd(fjz2,tz);
1969
1970             }
1971
1972             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1973
1974             /* Inner loop uses 351 flops */
1975         }
1976
1977         if(jidx<j_index_end)
1978         {
1979
1980             jnrA             = jjnr[jidx];
1981             j_coord_offsetA  = DIM*jnrA;
1982
1983             /* load j atom coordinates */
1984             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1985                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1986
1987             /* Calculate displacement vector */
1988             dx00             = _mm_sub_pd(ix0,jx0);
1989             dy00             = _mm_sub_pd(iy0,jy0);
1990             dz00             = _mm_sub_pd(iz0,jz0);
1991             dx01             = _mm_sub_pd(ix0,jx1);
1992             dy01             = _mm_sub_pd(iy0,jy1);
1993             dz01             = _mm_sub_pd(iz0,jz1);
1994             dx02             = _mm_sub_pd(ix0,jx2);
1995             dy02             = _mm_sub_pd(iy0,jy2);
1996             dz02             = _mm_sub_pd(iz0,jz2);
1997             dx10             = _mm_sub_pd(ix1,jx0);
1998             dy10             = _mm_sub_pd(iy1,jy0);
1999             dz10             = _mm_sub_pd(iz1,jz0);
2000             dx11             = _mm_sub_pd(ix1,jx1);
2001             dy11             = _mm_sub_pd(iy1,jy1);
2002             dz11             = _mm_sub_pd(iz1,jz1);
2003             dx12             = _mm_sub_pd(ix1,jx2);
2004             dy12             = _mm_sub_pd(iy1,jy2);
2005             dz12             = _mm_sub_pd(iz1,jz2);
2006             dx20             = _mm_sub_pd(ix2,jx0);
2007             dy20             = _mm_sub_pd(iy2,jy0);
2008             dz20             = _mm_sub_pd(iz2,jz0);
2009             dx21             = _mm_sub_pd(ix2,jx1);
2010             dy21             = _mm_sub_pd(iy2,jy1);
2011             dz21             = _mm_sub_pd(iz2,jz1);
2012             dx22             = _mm_sub_pd(ix2,jx2);
2013             dy22             = _mm_sub_pd(iy2,jy2);
2014             dz22             = _mm_sub_pd(iz2,jz2);
2015
2016             /* Calculate squared distance and things based on it */
2017             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2018             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2019             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2020             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2021             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2022             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2023             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2024             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2025             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2026
2027             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2028             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2029             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2030             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2031             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2032             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2033             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2034             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2035             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2036
2037             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2038             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2039             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2040             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2041             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2042             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2043             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2044             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2045             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2046
2047             fjx0             = _mm_setzero_pd();
2048             fjy0             = _mm_setzero_pd();
2049             fjz0             = _mm_setzero_pd();
2050             fjx1             = _mm_setzero_pd();
2051             fjy1             = _mm_setzero_pd();
2052             fjz1             = _mm_setzero_pd();
2053             fjx2             = _mm_setzero_pd();
2054             fjy2             = _mm_setzero_pd();
2055             fjz2             = _mm_setzero_pd();
2056
2057             /**************************
2058              * CALCULATE INTERACTIONS *
2059              **************************/
2060
2061             if (gmx_mm_any_lt(rsq00,rcutoff2))
2062             {
2063
2064             r00              = _mm_mul_pd(rsq00,rinv00);
2065
2066             /* EWALD ELECTROSTATICS */
2067
2068             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2069             ewrt             = _mm_mul_pd(r00,ewtabscale);
2070             ewitab           = _mm_cvttpd_epi32(ewrt);
2071             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2072             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2073             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2074             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2075
2076             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2077
2078             fscal            = felec;
2079
2080             fscal            = _mm_and_pd(fscal,cutoff_mask);
2081
2082             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2083
2084             /* Calculate temporary vectorial force */
2085             tx               = _mm_mul_pd(fscal,dx00);
2086             ty               = _mm_mul_pd(fscal,dy00);
2087             tz               = _mm_mul_pd(fscal,dz00);
2088
2089             /* Update vectorial force */
2090             fix0             = _mm_add_pd(fix0,tx);
2091             fiy0             = _mm_add_pd(fiy0,ty);
2092             fiz0             = _mm_add_pd(fiz0,tz);
2093
2094             fjx0             = _mm_add_pd(fjx0,tx);
2095             fjy0             = _mm_add_pd(fjy0,ty);
2096             fjz0             = _mm_add_pd(fjz0,tz);
2097
2098             }
2099
2100             /**************************
2101              * CALCULATE INTERACTIONS *
2102              **************************/
2103
2104             if (gmx_mm_any_lt(rsq01,rcutoff2))
2105             {
2106
2107             r01              = _mm_mul_pd(rsq01,rinv01);
2108
2109             /* EWALD ELECTROSTATICS */
2110
2111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2112             ewrt             = _mm_mul_pd(r01,ewtabscale);
2113             ewitab           = _mm_cvttpd_epi32(ewrt);
2114             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2115             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2116             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2117             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2118
2119             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2120
2121             fscal            = felec;
2122
2123             fscal            = _mm_and_pd(fscal,cutoff_mask);
2124
2125             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2126
2127             /* Calculate temporary vectorial force */
2128             tx               = _mm_mul_pd(fscal,dx01);
2129             ty               = _mm_mul_pd(fscal,dy01);
2130             tz               = _mm_mul_pd(fscal,dz01);
2131
2132             /* Update vectorial force */
2133             fix0             = _mm_add_pd(fix0,tx);
2134             fiy0             = _mm_add_pd(fiy0,ty);
2135             fiz0             = _mm_add_pd(fiz0,tz);
2136
2137             fjx1             = _mm_add_pd(fjx1,tx);
2138             fjy1             = _mm_add_pd(fjy1,ty);
2139             fjz1             = _mm_add_pd(fjz1,tz);
2140
2141             }
2142
2143             /**************************
2144              * CALCULATE INTERACTIONS *
2145              **************************/
2146
2147             if (gmx_mm_any_lt(rsq02,rcutoff2))
2148             {
2149
2150             r02              = _mm_mul_pd(rsq02,rinv02);
2151
2152             /* EWALD ELECTROSTATICS */
2153
2154             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2155             ewrt             = _mm_mul_pd(r02,ewtabscale);
2156             ewitab           = _mm_cvttpd_epi32(ewrt);
2157             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2158             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2159             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2160             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2161
2162             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2163
2164             fscal            = felec;
2165
2166             fscal            = _mm_and_pd(fscal,cutoff_mask);
2167
2168             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2169
2170             /* Calculate temporary vectorial force */
2171             tx               = _mm_mul_pd(fscal,dx02);
2172             ty               = _mm_mul_pd(fscal,dy02);
2173             tz               = _mm_mul_pd(fscal,dz02);
2174
2175             /* Update vectorial force */
2176             fix0             = _mm_add_pd(fix0,tx);
2177             fiy0             = _mm_add_pd(fiy0,ty);
2178             fiz0             = _mm_add_pd(fiz0,tz);
2179
2180             fjx2             = _mm_add_pd(fjx2,tx);
2181             fjy2             = _mm_add_pd(fjy2,ty);
2182             fjz2             = _mm_add_pd(fjz2,tz);
2183
2184             }
2185
2186             /**************************
2187              * CALCULATE INTERACTIONS *
2188              **************************/
2189
2190             if (gmx_mm_any_lt(rsq10,rcutoff2))
2191             {
2192
2193             r10              = _mm_mul_pd(rsq10,rinv10);
2194
2195             /* EWALD ELECTROSTATICS */
2196
2197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2198             ewrt             = _mm_mul_pd(r10,ewtabscale);
2199             ewitab           = _mm_cvttpd_epi32(ewrt);
2200             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2201             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2202             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2203             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2204
2205             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2206
2207             fscal            = felec;
2208
2209             fscal            = _mm_and_pd(fscal,cutoff_mask);
2210
2211             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2212
2213             /* Calculate temporary vectorial force */
2214             tx               = _mm_mul_pd(fscal,dx10);
2215             ty               = _mm_mul_pd(fscal,dy10);
2216             tz               = _mm_mul_pd(fscal,dz10);
2217
2218             /* Update vectorial force */
2219             fix1             = _mm_add_pd(fix1,tx);
2220             fiy1             = _mm_add_pd(fiy1,ty);
2221             fiz1             = _mm_add_pd(fiz1,tz);
2222
2223             fjx0             = _mm_add_pd(fjx0,tx);
2224             fjy0             = _mm_add_pd(fjy0,ty);
2225             fjz0             = _mm_add_pd(fjz0,tz);
2226
2227             }
2228
2229             /**************************
2230              * CALCULATE INTERACTIONS *
2231              **************************/
2232
2233             if (gmx_mm_any_lt(rsq11,rcutoff2))
2234             {
2235
2236             r11              = _mm_mul_pd(rsq11,rinv11);
2237
2238             /* EWALD ELECTROSTATICS */
2239
2240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2241             ewrt             = _mm_mul_pd(r11,ewtabscale);
2242             ewitab           = _mm_cvttpd_epi32(ewrt);
2243             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2244             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2245             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2246             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2247
2248             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2249
2250             fscal            = felec;
2251
2252             fscal            = _mm_and_pd(fscal,cutoff_mask);
2253
2254             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2255
2256             /* Calculate temporary vectorial force */
2257             tx               = _mm_mul_pd(fscal,dx11);
2258             ty               = _mm_mul_pd(fscal,dy11);
2259             tz               = _mm_mul_pd(fscal,dz11);
2260
2261             /* Update vectorial force */
2262             fix1             = _mm_add_pd(fix1,tx);
2263             fiy1             = _mm_add_pd(fiy1,ty);
2264             fiz1             = _mm_add_pd(fiz1,tz);
2265
2266             fjx1             = _mm_add_pd(fjx1,tx);
2267             fjy1             = _mm_add_pd(fjy1,ty);
2268             fjz1             = _mm_add_pd(fjz1,tz);
2269
2270             }
2271
2272             /**************************
2273              * CALCULATE INTERACTIONS *
2274              **************************/
2275
2276             if (gmx_mm_any_lt(rsq12,rcutoff2))
2277             {
2278
2279             r12              = _mm_mul_pd(rsq12,rinv12);
2280
2281             /* EWALD ELECTROSTATICS */
2282
2283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2284             ewrt             = _mm_mul_pd(r12,ewtabscale);
2285             ewitab           = _mm_cvttpd_epi32(ewrt);
2286             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2287             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2288             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2289             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2290
2291             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2292
2293             fscal            = felec;
2294
2295             fscal            = _mm_and_pd(fscal,cutoff_mask);
2296
2297             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2298
2299             /* Calculate temporary vectorial force */
2300             tx               = _mm_mul_pd(fscal,dx12);
2301             ty               = _mm_mul_pd(fscal,dy12);
2302             tz               = _mm_mul_pd(fscal,dz12);
2303
2304             /* Update vectorial force */
2305             fix1             = _mm_add_pd(fix1,tx);
2306             fiy1             = _mm_add_pd(fiy1,ty);
2307             fiz1             = _mm_add_pd(fiz1,tz);
2308
2309             fjx2             = _mm_add_pd(fjx2,tx);
2310             fjy2             = _mm_add_pd(fjy2,ty);
2311             fjz2             = _mm_add_pd(fjz2,tz);
2312
2313             }
2314
2315             /**************************
2316              * CALCULATE INTERACTIONS *
2317              **************************/
2318
2319             if (gmx_mm_any_lt(rsq20,rcutoff2))
2320             {
2321
2322             r20              = _mm_mul_pd(rsq20,rinv20);
2323
2324             /* EWALD ELECTROSTATICS */
2325
2326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2327             ewrt             = _mm_mul_pd(r20,ewtabscale);
2328             ewitab           = _mm_cvttpd_epi32(ewrt);
2329             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2330             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2331             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2332             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2333
2334             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2335
2336             fscal            = felec;
2337
2338             fscal            = _mm_and_pd(fscal,cutoff_mask);
2339
2340             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2341
2342             /* Calculate temporary vectorial force */
2343             tx               = _mm_mul_pd(fscal,dx20);
2344             ty               = _mm_mul_pd(fscal,dy20);
2345             tz               = _mm_mul_pd(fscal,dz20);
2346
2347             /* Update vectorial force */
2348             fix2             = _mm_add_pd(fix2,tx);
2349             fiy2             = _mm_add_pd(fiy2,ty);
2350             fiz2             = _mm_add_pd(fiz2,tz);
2351
2352             fjx0             = _mm_add_pd(fjx0,tx);
2353             fjy0             = _mm_add_pd(fjy0,ty);
2354             fjz0             = _mm_add_pd(fjz0,tz);
2355
2356             }
2357
2358             /**************************
2359              * CALCULATE INTERACTIONS *
2360              **************************/
2361
2362             if (gmx_mm_any_lt(rsq21,rcutoff2))
2363             {
2364
2365             r21              = _mm_mul_pd(rsq21,rinv21);
2366
2367             /* EWALD ELECTROSTATICS */
2368
2369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2370             ewrt             = _mm_mul_pd(r21,ewtabscale);
2371             ewitab           = _mm_cvttpd_epi32(ewrt);
2372             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2373             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2374             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2375             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2376
2377             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2378
2379             fscal            = felec;
2380
2381             fscal            = _mm_and_pd(fscal,cutoff_mask);
2382
2383             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2384
2385             /* Calculate temporary vectorial force */
2386             tx               = _mm_mul_pd(fscal,dx21);
2387             ty               = _mm_mul_pd(fscal,dy21);
2388             tz               = _mm_mul_pd(fscal,dz21);
2389
2390             /* Update vectorial force */
2391             fix2             = _mm_add_pd(fix2,tx);
2392             fiy2             = _mm_add_pd(fiy2,ty);
2393             fiz2             = _mm_add_pd(fiz2,tz);
2394
2395             fjx1             = _mm_add_pd(fjx1,tx);
2396             fjy1             = _mm_add_pd(fjy1,ty);
2397             fjz1             = _mm_add_pd(fjz1,tz);
2398
2399             }
2400
2401             /**************************
2402              * CALCULATE INTERACTIONS *
2403              **************************/
2404
2405             if (gmx_mm_any_lt(rsq22,rcutoff2))
2406             {
2407
2408             r22              = _mm_mul_pd(rsq22,rinv22);
2409
2410             /* EWALD ELECTROSTATICS */
2411
2412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2413             ewrt             = _mm_mul_pd(r22,ewtabscale);
2414             ewitab           = _mm_cvttpd_epi32(ewrt);
2415             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2416             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2417             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2418             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2419
2420             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2421
2422             fscal            = felec;
2423
2424             fscal            = _mm_and_pd(fscal,cutoff_mask);
2425
2426             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2427
2428             /* Calculate temporary vectorial force */
2429             tx               = _mm_mul_pd(fscal,dx22);
2430             ty               = _mm_mul_pd(fscal,dy22);
2431             tz               = _mm_mul_pd(fscal,dz22);
2432
2433             /* Update vectorial force */
2434             fix2             = _mm_add_pd(fix2,tx);
2435             fiy2             = _mm_add_pd(fiy2,ty);
2436             fiz2             = _mm_add_pd(fiz2,tz);
2437
2438             fjx2             = _mm_add_pd(fjx2,tx);
2439             fjy2             = _mm_add_pd(fjy2,ty);
2440             fjz2             = _mm_add_pd(fjz2,tz);
2441
2442             }
2443
2444             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2445
2446             /* Inner loop uses 351 flops */
2447         }
2448
2449         /* End of innermost loop */
2450
2451         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2452                                               f+i_coord_offset,fshift+i_shift_offset);
2453
2454         /* Increment number of inner iterations */
2455         inneriter                  += j_index_end - j_index_start;
2456
2457         /* Outer loop uses 18 flops */
2458     }
2459
2460     /* Increment number of outer iterations */
2461     outeriter        += nri;
2462
2463     /* Update outer/inner flops */
2464
2465     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*351);
2466 }