Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128d          dummy_mask,cutoff_mask;
77     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
78     __m128d          one     = _mm_set1_pd(1.0);
79     __m128d          two     = _mm_set1_pd(2.0);
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = _mm_set1_pd(fr->epsfac);
92     charge           = mdatoms->chargeA;
93
94     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
95     ewtab            = fr->ic->tabq_coul_FDV0;
96     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
97     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
98
99     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
100     rcutoff_scalar   = fr->rcoulomb;
101     rcutoff          = _mm_set1_pd(rcutoff_scalar);
102     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
103
104     /* Avoid stupid compiler warnings */
105     jnrA = jnrB = 0;
106     j_coord_offsetA = 0;
107     j_coord_offsetB = 0;
108
109     outeriter        = 0;
110     inneriter        = 0;
111
112     /* Start outer loop over neighborlists */
113     for(iidx=0; iidx<nri; iidx++)
114     {
115         /* Load shift vector for this list */
116         i_shift_offset   = DIM*shiftidx[iidx];
117
118         /* Load limits for loop over neighbors */
119         j_index_start    = jindex[iidx];
120         j_index_end      = jindex[iidx+1];
121
122         /* Get outer coordinate index */
123         inr              = iinr[iidx];
124         i_coord_offset   = DIM*inr;
125
126         /* Load i particle coords and add shift vector */
127         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
128
129         fix0             = _mm_setzero_pd();
130         fiy0             = _mm_setzero_pd();
131         fiz0             = _mm_setzero_pd();
132
133         /* Load parameters for i particles */
134         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
135
136         /* Reset potential sums */
137         velecsum         = _mm_setzero_pd();
138
139         /* Start inner kernel loop */
140         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
141         {
142
143             /* Get j neighbor index, and coordinate index */
144             jnrA             = jjnr[jidx];
145             jnrB             = jjnr[jidx+1];
146             j_coord_offsetA  = DIM*jnrA;
147             j_coord_offsetB  = DIM*jnrB;
148
149             /* load j atom coordinates */
150             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
151                                               &jx0,&jy0,&jz0);
152
153             /* Calculate displacement vector */
154             dx00             = _mm_sub_pd(ix0,jx0);
155             dy00             = _mm_sub_pd(iy0,jy0);
156             dz00             = _mm_sub_pd(iz0,jz0);
157
158             /* Calculate squared distance and things based on it */
159             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
160
161             rinv00           = gmx_mm_invsqrt_pd(rsq00);
162
163             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
164
165             /* Load parameters for j particles */
166             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
167
168             /**************************
169              * CALCULATE INTERACTIONS *
170              **************************/
171
172             if (gmx_mm_any_lt(rsq00,rcutoff2))
173             {
174
175             r00              = _mm_mul_pd(rsq00,rinv00);
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm_mul_pd(iq0,jq0);
179
180             /* EWALD ELECTROSTATICS */
181
182             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
183             ewrt             = _mm_mul_pd(r00,ewtabscale);
184             ewitab           = _mm_cvttpd_epi32(ewrt);
185             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
186             ewitab           = _mm_slli_epi32(ewitab,2);
187             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
188             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
189             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
190             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
191             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
192             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
193             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
194             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
195             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
196             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
197
198             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
199
200             /* Update potential sum for this i atom from the interaction with this j atom. */
201             velec            = _mm_and_pd(velec,cutoff_mask);
202             velecsum         = _mm_add_pd(velecsum,velec);
203
204             fscal            = felec;
205
206             fscal            = _mm_and_pd(fscal,cutoff_mask);
207
208             /* Calculate temporary vectorial force */
209             tx               = _mm_mul_pd(fscal,dx00);
210             ty               = _mm_mul_pd(fscal,dy00);
211             tz               = _mm_mul_pd(fscal,dz00);
212
213             /* Update vectorial force */
214             fix0             = _mm_add_pd(fix0,tx);
215             fiy0             = _mm_add_pd(fiy0,ty);
216             fiz0             = _mm_add_pd(fiz0,tz);
217
218             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
219
220             }
221
222             /* Inner loop uses 46 flops */
223         }
224
225         if(jidx<j_index_end)
226         {
227
228             jnrA             = jjnr[jidx];
229             j_coord_offsetA  = DIM*jnrA;
230
231             /* load j atom coordinates */
232             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
233                                               &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm_sub_pd(ix0,jx0);
237             dy00             = _mm_sub_pd(iy0,jy0);
238             dz00             = _mm_sub_pd(iz0,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
242
243             rinv00           = gmx_mm_invsqrt_pd(rsq00);
244
245             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
246
247             /* Load parameters for j particles */
248             jq0              = _mm_load_sd(charge+jnrA+0);
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (gmx_mm_any_lt(rsq00,rcutoff2))
255             {
256
257             r00              = _mm_mul_pd(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm_mul_pd(iq0,jq0);
261
262             /* EWALD ELECTROSTATICS */
263
264             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
265             ewrt             = _mm_mul_pd(r00,ewtabscale);
266             ewitab           = _mm_cvttpd_epi32(ewrt);
267             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
268             ewitab           = _mm_slli_epi32(ewitab,2);
269             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
270             ewtabD           = _mm_setzero_pd();
271             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
272             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
273             ewtabFn          = _mm_setzero_pd();
274             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
275             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
276             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
277             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
278             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
279
280             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velec            = _mm_and_pd(velec,cutoff_mask);
284             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
285             velecsum         = _mm_add_pd(velecsum,velec);
286
287             fscal            = felec;
288
289             fscal            = _mm_and_pd(fscal,cutoff_mask);
290
291             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_pd(fscal,dx00);
295             ty               = _mm_mul_pd(fscal,dy00);
296             tz               = _mm_mul_pd(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_pd(fix0,tx);
300             fiy0             = _mm_add_pd(fiy0,ty);
301             fiz0             = _mm_add_pd(fiz0,tz);
302
303             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
304
305             }
306
307             /* Inner loop uses 46 flops */
308         }
309
310         /* End of innermost loop */
311
312         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
313                                               f+i_coord_offset,fshift+i_shift_offset);
314
315         ggid                        = gid[iidx];
316         /* Update potential energies */
317         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
318
319         /* Increment number of inner iterations */
320         inneriter                  += j_index_end - j_index_start;
321
322         /* Outer loop uses 8 flops */
323     }
324
325     /* Increment number of outer iterations */
326     outeriter        += nri;
327
328     /* Update outer/inner flops */
329
330     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*46);
331 }
332 /*
333  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_double
334  * Electrostatics interaction: Ewald
335  * VdW interaction:            None
336  * Geometry:                   Particle-Particle
337  * Calculate force/pot:        Force
338  */
339 void
340 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_double
341                     (t_nblist * gmx_restrict                nlist,
342                      rvec * gmx_restrict                    xx,
343                      rvec * gmx_restrict                    ff,
344                      t_forcerec * gmx_restrict              fr,
345                      t_mdatoms * gmx_restrict               mdatoms,
346                      nb_kernel_data_t * gmx_restrict        kernel_data,
347                      t_nrnb * gmx_restrict                  nrnb)
348 {
349     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
350      * just 0 for non-waters.
351      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
352      * jnr indices corresponding to data put in the four positions in the SIMD register.
353      */
354     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
355     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
356     int              jnrA,jnrB;
357     int              j_coord_offsetA,j_coord_offsetB;
358     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
359     real             rcutoff_scalar;
360     real             *shiftvec,*fshift,*x,*f;
361     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
362     int              vdwioffset0;
363     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
364     int              vdwjidx0A,vdwjidx0B;
365     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
366     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
367     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
368     real             *charge;
369     __m128i          ewitab;
370     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
371     real             *ewtab;
372     __m128d          dummy_mask,cutoff_mask;
373     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
374     __m128d          one     = _mm_set1_pd(1.0);
375     __m128d          two     = _mm_set1_pd(2.0);
376     x                = xx[0];
377     f                = ff[0];
378
379     nri              = nlist->nri;
380     iinr             = nlist->iinr;
381     jindex           = nlist->jindex;
382     jjnr             = nlist->jjnr;
383     shiftidx         = nlist->shift;
384     gid              = nlist->gid;
385     shiftvec         = fr->shift_vec[0];
386     fshift           = fr->fshift[0];
387     facel            = _mm_set1_pd(fr->epsfac);
388     charge           = mdatoms->chargeA;
389
390     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
391     ewtab            = fr->ic->tabq_coul_F;
392     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
393     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
394
395     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
396     rcutoff_scalar   = fr->rcoulomb;
397     rcutoff          = _mm_set1_pd(rcutoff_scalar);
398     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
399
400     /* Avoid stupid compiler warnings */
401     jnrA = jnrB = 0;
402     j_coord_offsetA = 0;
403     j_coord_offsetB = 0;
404
405     outeriter        = 0;
406     inneriter        = 0;
407
408     /* Start outer loop over neighborlists */
409     for(iidx=0; iidx<nri; iidx++)
410     {
411         /* Load shift vector for this list */
412         i_shift_offset   = DIM*shiftidx[iidx];
413
414         /* Load limits for loop over neighbors */
415         j_index_start    = jindex[iidx];
416         j_index_end      = jindex[iidx+1];
417
418         /* Get outer coordinate index */
419         inr              = iinr[iidx];
420         i_coord_offset   = DIM*inr;
421
422         /* Load i particle coords and add shift vector */
423         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
424
425         fix0             = _mm_setzero_pd();
426         fiy0             = _mm_setzero_pd();
427         fiz0             = _mm_setzero_pd();
428
429         /* Load parameters for i particles */
430         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
431
432         /* Start inner kernel loop */
433         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
434         {
435
436             /* Get j neighbor index, and coordinate index */
437             jnrA             = jjnr[jidx];
438             jnrB             = jjnr[jidx+1];
439             j_coord_offsetA  = DIM*jnrA;
440             j_coord_offsetB  = DIM*jnrB;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_pd(ix0,jx0);
448             dy00             = _mm_sub_pd(iy0,jy0);
449             dz00             = _mm_sub_pd(iz0,jz0);
450
451             /* Calculate squared distance and things based on it */
452             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
453
454             rinv00           = gmx_mm_invsqrt_pd(rsq00);
455
456             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
457
458             /* Load parameters for j particles */
459             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             if (gmx_mm_any_lt(rsq00,rcutoff2))
466             {
467
468             r00              = _mm_mul_pd(rsq00,rinv00);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq00             = _mm_mul_pd(iq0,jq0);
472
473             /* EWALD ELECTROSTATICS */
474
475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
476             ewrt             = _mm_mul_pd(r00,ewtabscale);
477             ewitab           = _mm_cvttpd_epi32(ewrt);
478             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
479             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
480                                          &ewtabF,&ewtabFn);
481             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
482             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
483
484             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
485
486             fscal            = felec;
487
488             fscal            = _mm_and_pd(fscal,cutoff_mask);
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm_mul_pd(fscal,dx00);
492             ty               = _mm_mul_pd(fscal,dy00);
493             tz               = _mm_mul_pd(fscal,dz00);
494
495             /* Update vectorial force */
496             fix0             = _mm_add_pd(fix0,tx);
497             fiy0             = _mm_add_pd(fiy0,ty);
498             fiz0             = _mm_add_pd(fiz0,tz);
499
500             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
501
502             }
503
504             /* Inner loop uses 39 flops */
505         }
506
507         if(jidx<j_index_end)
508         {
509
510             jnrA             = jjnr[jidx];
511             j_coord_offsetA  = DIM*jnrA;
512
513             /* load j atom coordinates */
514             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
515                                               &jx0,&jy0,&jz0);
516
517             /* Calculate displacement vector */
518             dx00             = _mm_sub_pd(ix0,jx0);
519             dy00             = _mm_sub_pd(iy0,jy0);
520             dz00             = _mm_sub_pd(iz0,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
524
525             rinv00           = gmx_mm_invsqrt_pd(rsq00);
526
527             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
528
529             /* Load parameters for j particles */
530             jq0              = _mm_load_sd(charge+jnrA+0);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq00,rcutoff2))
537             {
538
539             r00              = _mm_mul_pd(rsq00,rinv00);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq00             = _mm_mul_pd(iq0,jq0);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _mm_mul_pd(r00,ewtabscale);
548             ewitab           = _mm_cvttpd_epi32(ewrt);
549             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
550             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
551             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
552             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
553
554             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
555
556             fscal            = felec;
557
558             fscal            = _mm_and_pd(fscal,cutoff_mask);
559
560             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm_mul_pd(fscal,dx00);
564             ty               = _mm_mul_pd(fscal,dy00);
565             tz               = _mm_mul_pd(fscal,dz00);
566
567             /* Update vectorial force */
568             fix0             = _mm_add_pd(fix0,tx);
569             fiy0             = _mm_add_pd(fiy0,ty);
570             fiz0             = _mm_add_pd(fiz0,tz);
571
572             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
573
574             }
575
576             /* Inner loop uses 39 flops */
577         }
578
579         /* End of innermost loop */
580
581         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
582                                               f+i_coord_offset,fshift+i_shift_offset);
583
584         /* Increment number of inner iterations */
585         inneriter                  += j_index_end - j_index_start;
586
587         /* Outer loop uses 7 flops */
588     }
589
590     /* Increment number of outer iterations */
591     outeriter        += nri;
592
593     /* Update outer/inner flops */
594
595     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
596 }