16654bfc277605dc062878ae15fe66adf070d240
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          ewitab;
88     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89     real             *ewtab;
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
109     ewtab            = fr->ic->tabq_coul_FDV0;
110     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
111     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm_set1_pd(rcutoff_scalar);
116     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_pd();
144         fiy0             = _mm_setzero_pd();
145         fiz0             = _mm_setzero_pd();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_pd();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_pd(ix0,jx0);
169             dy00             = _mm_sub_pd(iy0,jy0);
170             dz00             = _mm_sub_pd(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_pd(rsq00);
176
177             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             if (gmx_mm_any_lt(rsq00,rcutoff2))
187             {
188
189             r00              = _mm_mul_pd(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_pd(iq0,jq0);
193
194             /* EWALD ELECTROSTATICS */
195
196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
197             ewrt             = _mm_mul_pd(r00,ewtabscale);
198             ewitab           = _mm_cvttpd_epi32(ewrt);
199             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
200             ewitab           = _mm_slli_epi32(ewitab,2);
201             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
202             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
203             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
204             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
205             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
206             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
207             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
208             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
209             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
210             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
211
212             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             velec            = _mm_and_pd(velec,cutoff_mask);
216             velecsum         = _mm_add_pd(velecsum,velec);
217
218             fscal            = felec;
219
220             fscal            = _mm_and_pd(fscal,cutoff_mask);
221
222             /* Calculate temporary vectorial force */
223             tx               = _mm_mul_pd(fscal,dx00);
224             ty               = _mm_mul_pd(fscal,dy00);
225             tz               = _mm_mul_pd(fscal,dz00);
226
227             /* Update vectorial force */
228             fix0             = _mm_add_pd(fix0,tx);
229             fiy0             = _mm_add_pd(fiy0,ty);
230             fiz0             = _mm_add_pd(fiz0,tz);
231
232             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
233
234             }
235
236             /* Inner loop uses 46 flops */
237         }
238
239         if(jidx<j_index_end)
240         {
241
242             jnrA             = jjnr[jidx];
243             j_coord_offsetA  = DIM*jnrA;
244
245             /* load j atom coordinates */
246             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
247                                               &jx0,&jy0,&jz0);
248
249             /* Calculate displacement vector */
250             dx00             = _mm_sub_pd(ix0,jx0);
251             dy00             = _mm_sub_pd(iy0,jy0);
252             dz00             = _mm_sub_pd(iz0,jz0);
253
254             /* Calculate squared distance and things based on it */
255             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
256
257             rinv00           = gmx_mm_invsqrt_pd(rsq00);
258
259             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
260
261             /* Load parameters for j particles */
262             jq0              = _mm_load_sd(charge+jnrA+0);
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             if (gmx_mm_any_lt(rsq00,rcutoff2))
269             {
270
271             r00              = _mm_mul_pd(rsq00,rinv00);
272
273             /* Compute parameters for interactions between i and j atoms */
274             qq00             = _mm_mul_pd(iq0,jq0);
275
276             /* EWALD ELECTROSTATICS */
277
278             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
279             ewrt             = _mm_mul_pd(r00,ewtabscale);
280             ewitab           = _mm_cvttpd_epi32(ewrt);
281             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
282             ewitab           = _mm_slli_epi32(ewitab,2);
283             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
284             ewtabD           = _mm_setzero_pd();
285             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
286             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
287             ewtabFn          = _mm_setzero_pd();
288             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
289             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
290             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
291             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
292             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
293
294             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_and_pd(velec,cutoff_mask);
298             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
299             velecsum         = _mm_add_pd(velecsum,velec);
300
301             fscal            = felec;
302
303             fscal            = _mm_and_pd(fscal,cutoff_mask);
304
305             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm_mul_pd(fscal,dx00);
309             ty               = _mm_mul_pd(fscal,dy00);
310             tz               = _mm_mul_pd(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm_add_pd(fix0,tx);
314             fiy0             = _mm_add_pd(fiy0,ty);
315             fiz0             = _mm_add_pd(fiz0,tz);
316
317             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
318
319             }
320
321             /* Inner loop uses 46 flops */
322         }
323
324         /* End of innermost loop */
325
326         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
327                                               f+i_coord_offset,fshift+i_shift_offset);
328
329         ggid                        = gid[iidx];
330         /* Update potential energies */
331         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
332
333         /* Increment number of inner iterations */
334         inneriter                  += j_index_end - j_index_start;
335
336         /* Outer loop uses 8 flops */
337     }
338
339     /* Increment number of outer iterations */
340     outeriter        += nri;
341
342     /* Update outer/inner flops */
343
344     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*46);
345 }
346 /*
347  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_double
348  * Electrostatics interaction: Ewald
349  * VdW interaction:            None
350  * Geometry:                   Particle-Particle
351  * Calculate force/pot:        Force
352  */
353 void
354 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_double
355                     (t_nblist                    * gmx_restrict       nlist,
356                      rvec                        * gmx_restrict          xx,
357                      rvec                        * gmx_restrict          ff,
358                      t_forcerec                  * gmx_restrict          fr,
359                      t_mdatoms                   * gmx_restrict     mdatoms,
360                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
361                      t_nrnb                      * gmx_restrict        nrnb)
362 {
363     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
364      * just 0 for non-waters.
365      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
366      * jnr indices corresponding to data put in the four positions in the SIMD register.
367      */
368     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
369     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
370     int              jnrA,jnrB;
371     int              j_coord_offsetA,j_coord_offsetB;
372     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
373     real             rcutoff_scalar;
374     real             *shiftvec,*fshift,*x,*f;
375     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
376     int              vdwioffset0;
377     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
378     int              vdwjidx0A,vdwjidx0B;
379     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
380     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
381     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
382     real             *charge;
383     __m128i          ewitab;
384     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
385     real             *ewtab;
386     __m128d          dummy_mask,cutoff_mask;
387     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
388     __m128d          one     = _mm_set1_pd(1.0);
389     __m128d          two     = _mm_set1_pd(2.0);
390     x                = xx[0];
391     f                = ff[0];
392
393     nri              = nlist->nri;
394     iinr             = nlist->iinr;
395     jindex           = nlist->jindex;
396     jjnr             = nlist->jjnr;
397     shiftidx         = nlist->shift;
398     gid              = nlist->gid;
399     shiftvec         = fr->shift_vec[0];
400     fshift           = fr->fshift[0];
401     facel            = _mm_set1_pd(fr->epsfac);
402     charge           = mdatoms->chargeA;
403
404     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
405     ewtab            = fr->ic->tabq_coul_F;
406     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
407     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
408
409     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
410     rcutoff_scalar   = fr->rcoulomb;
411     rcutoff          = _mm_set1_pd(rcutoff_scalar);
412     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
413
414     /* Avoid stupid compiler warnings */
415     jnrA = jnrB = 0;
416     j_coord_offsetA = 0;
417     j_coord_offsetB = 0;
418
419     outeriter        = 0;
420     inneriter        = 0;
421
422     /* Start outer loop over neighborlists */
423     for(iidx=0; iidx<nri; iidx++)
424     {
425         /* Load shift vector for this list */
426         i_shift_offset   = DIM*shiftidx[iidx];
427
428         /* Load limits for loop over neighbors */
429         j_index_start    = jindex[iidx];
430         j_index_end      = jindex[iidx+1];
431
432         /* Get outer coordinate index */
433         inr              = iinr[iidx];
434         i_coord_offset   = DIM*inr;
435
436         /* Load i particle coords and add shift vector */
437         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
438
439         fix0             = _mm_setzero_pd();
440         fiy0             = _mm_setzero_pd();
441         fiz0             = _mm_setzero_pd();
442
443         /* Load parameters for i particles */
444         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
445
446         /* Start inner kernel loop */
447         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
448         {
449
450             /* Get j neighbor index, and coordinate index */
451             jnrA             = jjnr[jidx];
452             jnrB             = jjnr[jidx+1];
453             j_coord_offsetA  = DIM*jnrA;
454             j_coord_offsetB  = DIM*jnrB;
455
456             /* load j atom coordinates */
457             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
458                                               &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm_sub_pd(ix0,jx0);
462             dy00             = _mm_sub_pd(iy0,jy0);
463             dz00             = _mm_sub_pd(iz0,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
467
468             rinv00           = gmx_mm_invsqrt_pd(rsq00);
469
470             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
471
472             /* Load parameters for j particles */
473             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (gmx_mm_any_lt(rsq00,rcutoff2))
480             {
481
482             r00              = _mm_mul_pd(rsq00,rinv00);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq00             = _mm_mul_pd(iq0,jq0);
486
487             /* EWALD ELECTROSTATICS */
488
489             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
490             ewrt             = _mm_mul_pd(r00,ewtabscale);
491             ewitab           = _mm_cvttpd_epi32(ewrt);
492             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
493             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
494                                          &ewtabF,&ewtabFn);
495             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
496             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
497
498             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
499
500             fscal            = felec;
501
502             fscal            = _mm_and_pd(fscal,cutoff_mask);
503
504             /* Calculate temporary vectorial force */
505             tx               = _mm_mul_pd(fscal,dx00);
506             ty               = _mm_mul_pd(fscal,dy00);
507             tz               = _mm_mul_pd(fscal,dz00);
508
509             /* Update vectorial force */
510             fix0             = _mm_add_pd(fix0,tx);
511             fiy0             = _mm_add_pd(fiy0,ty);
512             fiz0             = _mm_add_pd(fiz0,tz);
513
514             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
515
516             }
517
518             /* Inner loop uses 39 flops */
519         }
520
521         if(jidx<j_index_end)
522         {
523
524             jnrA             = jjnr[jidx];
525             j_coord_offsetA  = DIM*jnrA;
526
527             /* load j atom coordinates */
528             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
529                                               &jx0,&jy0,&jz0);
530
531             /* Calculate displacement vector */
532             dx00             = _mm_sub_pd(ix0,jx0);
533             dy00             = _mm_sub_pd(iy0,jy0);
534             dz00             = _mm_sub_pd(iz0,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
538
539             rinv00           = gmx_mm_invsqrt_pd(rsq00);
540
541             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
542
543             /* Load parameters for j particles */
544             jq0              = _mm_load_sd(charge+jnrA+0);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_mm_any_lt(rsq00,rcutoff2))
551             {
552
553             r00              = _mm_mul_pd(rsq00,rinv00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq00             = _mm_mul_pd(iq0,jq0);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
561             ewrt             = _mm_mul_pd(r00,ewtabscale);
562             ewitab           = _mm_cvttpd_epi32(ewrt);
563             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
564             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
565             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
566             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
567
568             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
569
570             fscal            = felec;
571
572             fscal            = _mm_and_pd(fscal,cutoff_mask);
573
574             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm_mul_pd(fscal,dx00);
578             ty               = _mm_mul_pd(fscal,dy00);
579             tz               = _mm_mul_pd(fscal,dz00);
580
581             /* Update vectorial force */
582             fix0             = _mm_add_pd(fix0,tx);
583             fiy0             = _mm_add_pd(fiy0,ty);
584             fiz0             = _mm_add_pd(fiz0,tz);
585
586             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
587
588             }
589
590             /* Inner loop uses 39 flops */
591         }
592
593         /* End of innermost loop */
594
595         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
596                                               f+i_coord_offset,fshift+i_shift_offset);
597
598         /* Increment number of inner iterations */
599         inneriter                  += j_index_end - j_index_start;
600
601         /* Outer loop uses 7 flops */
602     }
603
604     /* Increment number of outer iterations */
605     outeriter        += nri;
606
607     /* Update outer/inner flops */
608
609     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
610 }