a34fe1bed323ac49e2a2aeba63b6403c1ec8103e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          ewitab;
89     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
130     rvdw             = _mm_set1_pd(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161         fix1             = _mm_setzero_pd();
162         fiy1             = _mm_setzero_pd();
163         fiz1             = _mm_setzero_pd();
164         fix2             = _mm_setzero_pd();
165         fiy2             = _mm_setzero_pd();
166         fiz2             = _mm_setzero_pd();
167         fix3             = _mm_setzero_pd();
168         fiy3             = _mm_setzero_pd();
169         fiz3             = _mm_setzero_pd();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193             dx10             = _mm_sub_pd(ix1,jx0);
194             dy10             = _mm_sub_pd(iy1,jy0);
195             dz10             = _mm_sub_pd(iz1,jz0);
196             dx20             = _mm_sub_pd(ix2,jx0);
197             dy20             = _mm_sub_pd(iy2,jy0);
198             dz20             = _mm_sub_pd(iz2,jz0);
199             dx30             = _mm_sub_pd(ix3,jx0);
200             dy30             = _mm_sub_pd(iy3,jy0);
201             dz30             = _mm_sub_pd(iz3,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
207             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
208
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq00         = gmx_mm_inv_pd(rsq00);
214             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
215             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
216             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             /* Compute parameters for interactions between i and j atoms */
235             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* LENNARD-JONES DISPERSION/REPULSION */
239
240             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
241             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
242             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
243             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
244                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
245             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
246
247             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
251             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255             fscal            = _mm_and_pd(fscal,cutoff_mask);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm_mul_pd(fscal,dx00);
259             ty               = _mm_mul_pd(fscal,dy00);
260             tz               = _mm_mul_pd(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm_add_pd(fix0,tx);
264             fiy0             = _mm_add_pd(fiy0,ty);
265             fiz0             = _mm_add_pd(fiz0,tz);
266
267             fjx0             = _mm_add_pd(fjx0,tx);
268             fjy0             = _mm_add_pd(fjy0,ty);
269             fjz0             = _mm_add_pd(fjz0,tz);
270
271             }
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             if (gmx_mm_any_lt(rsq10,rcutoff2))
278             {
279
280             r10              = _mm_mul_pd(rsq10,rinv10);
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq10             = _mm_mul_pd(iq1,jq0);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
288             ewrt             = _mm_mul_pd(r10,ewtabscale);
289             ewitab           = _mm_cvttpd_epi32(ewrt);
290             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
291             ewitab           = _mm_slli_epi32(ewitab,2);
292             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
293             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
294             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
295             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
296             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
297             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
298             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
299             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
300             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
301             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
302
303             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velec            = _mm_and_pd(velec,cutoff_mask);
307             velecsum         = _mm_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             fscal            = _mm_and_pd(fscal,cutoff_mask);
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_pd(fscal,dx10);
315             ty               = _mm_mul_pd(fscal,dy10);
316             tz               = _mm_mul_pd(fscal,dz10);
317
318             /* Update vectorial force */
319             fix1             = _mm_add_pd(fix1,tx);
320             fiy1             = _mm_add_pd(fiy1,ty);
321             fiz1             = _mm_add_pd(fiz1,tz);
322
323             fjx0             = _mm_add_pd(fjx0,tx);
324             fjy0             = _mm_add_pd(fjy0,ty);
325             fjz0             = _mm_add_pd(fjz0,tz);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm_any_lt(rsq20,rcutoff2))
334             {
335
336             r20              = _mm_mul_pd(rsq20,rinv20);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm_mul_pd(iq2,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm_mul_pd(r20,ewtabscale);
345             ewitab           = _mm_cvttpd_epi32(ewrt);
346             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
350             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
351             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
352             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
353             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
354             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
355             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
356             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
357             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
358
359             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_pd(velec,cutoff_mask);
363             velecsum         = _mm_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_pd(fscal,cutoff_mask);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm_mul_pd(fscal,dx20);
371             ty               = _mm_mul_pd(fscal,dy20);
372             tz               = _mm_mul_pd(fscal,dz20);
373
374             /* Update vectorial force */
375             fix2             = _mm_add_pd(fix2,tx);
376             fiy2             = _mm_add_pd(fiy2,ty);
377             fiz2             = _mm_add_pd(fiz2,tz);
378
379             fjx0             = _mm_add_pd(fjx0,tx);
380             fjy0             = _mm_add_pd(fjy0,ty);
381             fjz0             = _mm_add_pd(fjz0,tz);
382
383             }
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             if (gmx_mm_any_lt(rsq30,rcutoff2))
390             {
391
392             r30              = _mm_mul_pd(rsq30,rinv30);
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq30             = _mm_mul_pd(iq3,jq0);
396
397             /* EWALD ELECTROSTATICS */
398
399             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
400             ewrt             = _mm_mul_pd(r30,ewtabscale);
401             ewitab           = _mm_cvttpd_epi32(ewrt);
402             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
403             ewitab           = _mm_slli_epi32(ewitab,2);
404             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
405             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
406             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
407             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
408             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
409             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
410             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
411             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
412             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
413             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
414
415             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_and_pd(velec,cutoff_mask);
419             velecsum         = _mm_add_pd(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm_and_pd(fscal,cutoff_mask);
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm_mul_pd(fscal,dx30);
427             ty               = _mm_mul_pd(fscal,dy30);
428             tz               = _mm_mul_pd(fscal,dz30);
429
430             /* Update vectorial force */
431             fix3             = _mm_add_pd(fix3,tx);
432             fiy3             = _mm_add_pd(fiy3,ty);
433             fiz3             = _mm_add_pd(fiz3,tz);
434
435             fjx0             = _mm_add_pd(fjx0,tx);
436             fjy0             = _mm_add_pd(fjy0,ty);
437             fjz0             = _mm_add_pd(fjz0,tz);
438
439             }
440
441             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
442
443             /* Inner loop uses 182 flops */
444         }
445
446         if(jidx<j_index_end)
447         {
448
449             jnrA             = jjnr[jidx];
450             j_coord_offsetA  = DIM*jnrA;
451
452             /* load j atom coordinates */
453             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
454                                               &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm_sub_pd(ix0,jx0);
458             dy00             = _mm_sub_pd(iy0,jy0);
459             dz00             = _mm_sub_pd(iz0,jz0);
460             dx10             = _mm_sub_pd(ix1,jx0);
461             dy10             = _mm_sub_pd(iy1,jy0);
462             dz10             = _mm_sub_pd(iz1,jz0);
463             dx20             = _mm_sub_pd(ix2,jx0);
464             dy20             = _mm_sub_pd(iy2,jy0);
465             dz20             = _mm_sub_pd(iz2,jz0);
466             dx30             = _mm_sub_pd(ix3,jx0);
467             dy30             = _mm_sub_pd(iy3,jy0);
468             dz30             = _mm_sub_pd(iz3,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
472             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
473             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
474             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
475
476             rinv10           = gmx_mm_invsqrt_pd(rsq10);
477             rinv20           = gmx_mm_invsqrt_pd(rsq20);
478             rinv30           = gmx_mm_invsqrt_pd(rsq30);
479
480             rinvsq00         = gmx_mm_inv_pd(rsq00);
481             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
482             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
483             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
484
485             /* Load parameters for j particles */
486             jq0              = _mm_load_sd(charge+jnrA+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488
489             fjx0             = _mm_setzero_pd();
490             fjy0             = _mm_setzero_pd();
491             fjz0             = _mm_setzero_pd();
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             if (gmx_mm_any_lt(rsq00,rcutoff2))
498             {
499
500             /* Compute parameters for interactions between i and j atoms */
501             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
506             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
507             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
508             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
509                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
510             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
511
512             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
516             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
517             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
518
519             fscal            = fvdw;
520
521             fscal            = _mm_and_pd(fscal,cutoff_mask);
522
523             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
524
525             /* Calculate temporary vectorial force */
526             tx               = _mm_mul_pd(fscal,dx00);
527             ty               = _mm_mul_pd(fscal,dy00);
528             tz               = _mm_mul_pd(fscal,dz00);
529
530             /* Update vectorial force */
531             fix0             = _mm_add_pd(fix0,tx);
532             fiy0             = _mm_add_pd(fiy0,ty);
533             fiz0             = _mm_add_pd(fiz0,tz);
534
535             fjx0             = _mm_add_pd(fjx0,tx);
536             fjy0             = _mm_add_pd(fjy0,ty);
537             fjz0             = _mm_add_pd(fjz0,tz);
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm_any_lt(rsq10,rcutoff2))
546             {
547
548             r10              = _mm_mul_pd(rsq10,rinv10);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq10             = _mm_mul_pd(iq1,jq0);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = _mm_mul_pd(r10,ewtabscale);
557             ewitab           = _mm_cvttpd_epi32(ewrt);
558             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
559             ewitab           = _mm_slli_epi32(ewitab,2);
560             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
561             ewtabD           = _mm_setzero_pd();
562             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
563             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
564             ewtabFn          = _mm_setzero_pd();
565             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
566             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
567             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
568             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
569             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
570
571             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm_and_pd(velec,cutoff_mask);
575             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
576             velecsum         = _mm_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm_and_pd(fscal,cutoff_mask);
581
582             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm_mul_pd(fscal,dx10);
586             ty               = _mm_mul_pd(fscal,dy10);
587             tz               = _mm_mul_pd(fscal,dz10);
588
589             /* Update vectorial force */
590             fix1             = _mm_add_pd(fix1,tx);
591             fiy1             = _mm_add_pd(fiy1,ty);
592             fiz1             = _mm_add_pd(fiz1,tz);
593
594             fjx0             = _mm_add_pd(fjx0,tx);
595             fjy0             = _mm_add_pd(fjy0,ty);
596             fjz0             = _mm_add_pd(fjz0,tz);
597
598             }
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (gmx_mm_any_lt(rsq20,rcutoff2))
605             {
606
607             r20              = _mm_mul_pd(rsq20,rinv20);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq20             = _mm_mul_pd(iq2,jq0);
611
612             /* EWALD ELECTROSTATICS */
613
614             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
615             ewrt             = _mm_mul_pd(r20,ewtabscale);
616             ewitab           = _mm_cvttpd_epi32(ewrt);
617             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
618             ewitab           = _mm_slli_epi32(ewitab,2);
619             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
620             ewtabD           = _mm_setzero_pd();
621             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
622             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
623             ewtabFn          = _mm_setzero_pd();
624             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
625             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
626             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
627             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
628             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
629
630             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _mm_and_pd(velec,cutoff_mask);
634             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
635             velecsum         = _mm_add_pd(velecsum,velec);
636
637             fscal            = felec;
638
639             fscal            = _mm_and_pd(fscal,cutoff_mask);
640
641             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_pd(fscal,dx20);
645             ty               = _mm_mul_pd(fscal,dy20);
646             tz               = _mm_mul_pd(fscal,dz20);
647
648             /* Update vectorial force */
649             fix2             = _mm_add_pd(fix2,tx);
650             fiy2             = _mm_add_pd(fiy2,ty);
651             fiz2             = _mm_add_pd(fiz2,tz);
652
653             fjx0             = _mm_add_pd(fjx0,tx);
654             fjy0             = _mm_add_pd(fjy0,ty);
655             fjz0             = _mm_add_pd(fjz0,tz);
656
657             }
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             if (gmx_mm_any_lt(rsq30,rcutoff2))
664             {
665
666             r30              = _mm_mul_pd(rsq30,rinv30);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq30             = _mm_mul_pd(iq3,jq0);
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = _mm_mul_pd(r30,ewtabscale);
675             ewitab           = _mm_cvttpd_epi32(ewrt);
676             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
677             ewitab           = _mm_slli_epi32(ewitab,2);
678             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
679             ewtabD           = _mm_setzero_pd();
680             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
681             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
682             ewtabFn          = _mm_setzero_pd();
683             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
684             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
685             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
686             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
687             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
688
689             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
690
691             /* Update potential sum for this i atom from the interaction with this j atom. */
692             velec            = _mm_and_pd(velec,cutoff_mask);
693             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
694             velecsum         = _mm_add_pd(velecsum,velec);
695
696             fscal            = felec;
697
698             fscal            = _mm_and_pd(fscal,cutoff_mask);
699
700             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
701
702             /* Calculate temporary vectorial force */
703             tx               = _mm_mul_pd(fscal,dx30);
704             ty               = _mm_mul_pd(fscal,dy30);
705             tz               = _mm_mul_pd(fscal,dz30);
706
707             /* Update vectorial force */
708             fix3             = _mm_add_pd(fix3,tx);
709             fiy3             = _mm_add_pd(fiy3,ty);
710             fiz3             = _mm_add_pd(fiz3,tz);
711
712             fjx0             = _mm_add_pd(fjx0,tx);
713             fjy0             = _mm_add_pd(fjy0,ty);
714             fjz0             = _mm_add_pd(fjz0,tz);
715
716             }
717
718             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
719
720             /* Inner loop uses 182 flops */
721         }
722
723         /* End of innermost loop */
724
725         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
726                                               f+i_coord_offset,fshift+i_shift_offset);
727
728         ggid                        = gid[iidx];
729         /* Update potential energies */
730         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
731         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
732
733         /* Increment number of inner iterations */
734         inneriter                  += j_index_end - j_index_start;
735
736         /* Outer loop uses 26 flops */
737     }
738
739     /* Increment number of outer iterations */
740     outeriter        += nri;
741
742     /* Update outer/inner flops */
743
744     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*182);
745 }
746 /*
747  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse4_1_double
748  * Electrostatics interaction: Ewald
749  * VdW interaction:            LennardJones
750  * Geometry:                   Water4-Particle
751  * Calculate force/pot:        Force
752  */
753 void
754 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse4_1_double
755                     (t_nblist * gmx_restrict                nlist,
756                      rvec * gmx_restrict                    xx,
757                      rvec * gmx_restrict                    ff,
758                      t_forcerec * gmx_restrict              fr,
759                      t_mdatoms * gmx_restrict               mdatoms,
760                      nb_kernel_data_t * gmx_restrict        kernel_data,
761                      t_nrnb * gmx_restrict                  nrnb)
762 {
763     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
764      * just 0 for non-waters.
765      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
766      * jnr indices corresponding to data put in the four positions in the SIMD register.
767      */
768     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
769     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
770     int              jnrA,jnrB;
771     int              j_coord_offsetA,j_coord_offsetB;
772     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
773     real             rcutoff_scalar;
774     real             *shiftvec,*fshift,*x,*f;
775     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
776     int              vdwioffset0;
777     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
778     int              vdwioffset1;
779     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
780     int              vdwioffset2;
781     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
782     int              vdwioffset3;
783     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
784     int              vdwjidx0A,vdwjidx0B;
785     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
786     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
787     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
788     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
789     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
790     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
791     real             *charge;
792     int              nvdwtype;
793     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
794     int              *vdwtype;
795     real             *vdwparam;
796     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
797     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
798     __m128i          ewitab;
799     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
800     real             *ewtab;
801     __m128d          dummy_mask,cutoff_mask;
802     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
803     __m128d          one     = _mm_set1_pd(1.0);
804     __m128d          two     = _mm_set1_pd(2.0);
805     x                = xx[0];
806     f                = ff[0];
807
808     nri              = nlist->nri;
809     iinr             = nlist->iinr;
810     jindex           = nlist->jindex;
811     jjnr             = nlist->jjnr;
812     shiftidx         = nlist->shift;
813     gid              = nlist->gid;
814     shiftvec         = fr->shift_vec[0];
815     fshift           = fr->fshift[0];
816     facel            = _mm_set1_pd(fr->epsfac);
817     charge           = mdatoms->chargeA;
818     nvdwtype         = fr->ntype;
819     vdwparam         = fr->nbfp;
820     vdwtype          = mdatoms->typeA;
821
822     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
823     ewtab            = fr->ic->tabq_coul_F;
824     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
825     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
826
827     /* Setup water-specific parameters */
828     inr              = nlist->iinr[0];
829     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
830     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
831     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
832     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
833
834     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
835     rcutoff_scalar   = fr->rcoulomb;
836     rcutoff          = _mm_set1_pd(rcutoff_scalar);
837     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
838
839     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
840     rvdw             = _mm_set1_pd(fr->rvdw);
841
842     /* Avoid stupid compiler warnings */
843     jnrA = jnrB = 0;
844     j_coord_offsetA = 0;
845     j_coord_offsetB = 0;
846
847     outeriter        = 0;
848     inneriter        = 0;
849
850     /* Start outer loop over neighborlists */
851     for(iidx=0; iidx<nri; iidx++)
852     {
853         /* Load shift vector for this list */
854         i_shift_offset   = DIM*shiftidx[iidx];
855
856         /* Load limits for loop over neighbors */
857         j_index_start    = jindex[iidx];
858         j_index_end      = jindex[iidx+1];
859
860         /* Get outer coordinate index */
861         inr              = iinr[iidx];
862         i_coord_offset   = DIM*inr;
863
864         /* Load i particle coords and add shift vector */
865         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
866                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
867
868         fix0             = _mm_setzero_pd();
869         fiy0             = _mm_setzero_pd();
870         fiz0             = _mm_setzero_pd();
871         fix1             = _mm_setzero_pd();
872         fiy1             = _mm_setzero_pd();
873         fiz1             = _mm_setzero_pd();
874         fix2             = _mm_setzero_pd();
875         fiy2             = _mm_setzero_pd();
876         fiz2             = _mm_setzero_pd();
877         fix3             = _mm_setzero_pd();
878         fiy3             = _mm_setzero_pd();
879         fiz3             = _mm_setzero_pd();
880
881         /* Start inner kernel loop */
882         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
883         {
884
885             /* Get j neighbor index, and coordinate index */
886             jnrA             = jjnr[jidx];
887             jnrB             = jjnr[jidx+1];
888             j_coord_offsetA  = DIM*jnrA;
889             j_coord_offsetB  = DIM*jnrB;
890
891             /* load j atom coordinates */
892             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
893                                               &jx0,&jy0,&jz0);
894
895             /* Calculate displacement vector */
896             dx00             = _mm_sub_pd(ix0,jx0);
897             dy00             = _mm_sub_pd(iy0,jy0);
898             dz00             = _mm_sub_pd(iz0,jz0);
899             dx10             = _mm_sub_pd(ix1,jx0);
900             dy10             = _mm_sub_pd(iy1,jy0);
901             dz10             = _mm_sub_pd(iz1,jz0);
902             dx20             = _mm_sub_pd(ix2,jx0);
903             dy20             = _mm_sub_pd(iy2,jy0);
904             dz20             = _mm_sub_pd(iz2,jz0);
905             dx30             = _mm_sub_pd(ix3,jx0);
906             dy30             = _mm_sub_pd(iy3,jy0);
907             dz30             = _mm_sub_pd(iz3,jz0);
908
909             /* Calculate squared distance and things based on it */
910             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
911             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
912             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
913             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
914
915             rinv10           = gmx_mm_invsqrt_pd(rsq10);
916             rinv20           = gmx_mm_invsqrt_pd(rsq20);
917             rinv30           = gmx_mm_invsqrt_pd(rsq30);
918
919             rinvsq00         = gmx_mm_inv_pd(rsq00);
920             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
921             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
922             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
923
924             /* Load parameters for j particles */
925             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
926             vdwjidx0A        = 2*vdwtype[jnrA+0];
927             vdwjidx0B        = 2*vdwtype[jnrB+0];
928
929             fjx0             = _mm_setzero_pd();
930             fjy0             = _mm_setzero_pd();
931             fjz0             = _mm_setzero_pd();
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             if (gmx_mm_any_lt(rsq00,rcutoff2))
938             {
939
940             /* Compute parameters for interactions between i and j atoms */
941             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
942                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
943
944             /* LENNARD-JONES DISPERSION/REPULSION */
945
946             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
947             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
948
949             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
950
951             fscal            = fvdw;
952
953             fscal            = _mm_and_pd(fscal,cutoff_mask);
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_pd(fscal,dx00);
957             ty               = _mm_mul_pd(fscal,dy00);
958             tz               = _mm_mul_pd(fscal,dz00);
959
960             /* Update vectorial force */
961             fix0             = _mm_add_pd(fix0,tx);
962             fiy0             = _mm_add_pd(fiy0,ty);
963             fiz0             = _mm_add_pd(fiz0,tz);
964
965             fjx0             = _mm_add_pd(fjx0,tx);
966             fjy0             = _mm_add_pd(fjy0,ty);
967             fjz0             = _mm_add_pd(fjz0,tz);
968
969             }
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             if (gmx_mm_any_lt(rsq10,rcutoff2))
976             {
977
978             r10              = _mm_mul_pd(rsq10,rinv10);
979
980             /* Compute parameters for interactions between i and j atoms */
981             qq10             = _mm_mul_pd(iq1,jq0);
982
983             /* EWALD ELECTROSTATICS */
984
985             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
986             ewrt             = _mm_mul_pd(r10,ewtabscale);
987             ewitab           = _mm_cvttpd_epi32(ewrt);
988             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
989             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
990                                          &ewtabF,&ewtabFn);
991             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
992             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
993
994             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
995
996             fscal            = felec;
997
998             fscal            = _mm_and_pd(fscal,cutoff_mask);
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm_mul_pd(fscal,dx10);
1002             ty               = _mm_mul_pd(fscal,dy10);
1003             tz               = _mm_mul_pd(fscal,dz10);
1004
1005             /* Update vectorial force */
1006             fix1             = _mm_add_pd(fix1,tx);
1007             fiy1             = _mm_add_pd(fiy1,ty);
1008             fiz1             = _mm_add_pd(fiz1,tz);
1009
1010             fjx0             = _mm_add_pd(fjx0,tx);
1011             fjy0             = _mm_add_pd(fjy0,ty);
1012             fjz0             = _mm_add_pd(fjz0,tz);
1013
1014             }
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             if (gmx_mm_any_lt(rsq20,rcutoff2))
1021             {
1022
1023             r20              = _mm_mul_pd(rsq20,rinv20);
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq20             = _mm_mul_pd(iq2,jq0);
1027
1028             /* EWALD ELECTROSTATICS */
1029
1030             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1031             ewrt             = _mm_mul_pd(r20,ewtabscale);
1032             ewitab           = _mm_cvttpd_epi32(ewrt);
1033             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1034             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1035                                          &ewtabF,&ewtabFn);
1036             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1037             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1038
1039             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1040
1041             fscal            = felec;
1042
1043             fscal            = _mm_and_pd(fscal,cutoff_mask);
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_pd(fscal,dx20);
1047             ty               = _mm_mul_pd(fscal,dy20);
1048             tz               = _mm_mul_pd(fscal,dz20);
1049
1050             /* Update vectorial force */
1051             fix2             = _mm_add_pd(fix2,tx);
1052             fiy2             = _mm_add_pd(fiy2,ty);
1053             fiz2             = _mm_add_pd(fiz2,tz);
1054
1055             fjx0             = _mm_add_pd(fjx0,tx);
1056             fjy0             = _mm_add_pd(fjy0,ty);
1057             fjz0             = _mm_add_pd(fjz0,tz);
1058
1059             }
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             if (gmx_mm_any_lt(rsq30,rcutoff2))
1066             {
1067
1068             r30              = _mm_mul_pd(rsq30,rinv30);
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq30             = _mm_mul_pd(iq3,jq0);
1072
1073             /* EWALD ELECTROSTATICS */
1074
1075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076             ewrt             = _mm_mul_pd(r30,ewtabscale);
1077             ewitab           = _mm_cvttpd_epi32(ewrt);
1078             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1079             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1080                                          &ewtabF,&ewtabFn);
1081             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1082             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1083
1084             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1085
1086             fscal            = felec;
1087
1088             fscal            = _mm_and_pd(fscal,cutoff_mask);
1089
1090             /* Calculate temporary vectorial force */
1091             tx               = _mm_mul_pd(fscal,dx30);
1092             ty               = _mm_mul_pd(fscal,dy30);
1093             tz               = _mm_mul_pd(fscal,dz30);
1094
1095             /* Update vectorial force */
1096             fix3             = _mm_add_pd(fix3,tx);
1097             fiy3             = _mm_add_pd(fiy3,ty);
1098             fiz3             = _mm_add_pd(fiz3,tz);
1099
1100             fjx0             = _mm_add_pd(fjx0,tx);
1101             fjy0             = _mm_add_pd(fjy0,ty);
1102             fjz0             = _mm_add_pd(fjz0,tz);
1103
1104             }
1105
1106             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1107
1108             /* Inner loop uses 150 flops */
1109         }
1110
1111         if(jidx<j_index_end)
1112         {
1113
1114             jnrA             = jjnr[jidx];
1115             j_coord_offsetA  = DIM*jnrA;
1116
1117             /* load j atom coordinates */
1118             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1119                                               &jx0,&jy0,&jz0);
1120
1121             /* Calculate displacement vector */
1122             dx00             = _mm_sub_pd(ix0,jx0);
1123             dy00             = _mm_sub_pd(iy0,jy0);
1124             dz00             = _mm_sub_pd(iz0,jz0);
1125             dx10             = _mm_sub_pd(ix1,jx0);
1126             dy10             = _mm_sub_pd(iy1,jy0);
1127             dz10             = _mm_sub_pd(iz1,jz0);
1128             dx20             = _mm_sub_pd(ix2,jx0);
1129             dy20             = _mm_sub_pd(iy2,jy0);
1130             dz20             = _mm_sub_pd(iz2,jz0);
1131             dx30             = _mm_sub_pd(ix3,jx0);
1132             dy30             = _mm_sub_pd(iy3,jy0);
1133             dz30             = _mm_sub_pd(iz3,jz0);
1134
1135             /* Calculate squared distance and things based on it */
1136             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1137             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1138             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1139             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1140
1141             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1142             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1143             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1144
1145             rinvsq00         = gmx_mm_inv_pd(rsq00);
1146             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1147             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1148             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1149
1150             /* Load parameters for j particles */
1151             jq0              = _mm_load_sd(charge+jnrA+0);
1152             vdwjidx0A        = 2*vdwtype[jnrA+0];
1153
1154             fjx0             = _mm_setzero_pd();
1155             fjy0             = _mm_setzero_pd();
1156             fjz0             = _mm_setzero_pd();
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             if (gmx_mm_any_lt(rsq00,rcutoff2))
1163             {
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1167
1168             /* LENNARD-JONES DISPERSION/REPULSION */
1169
1170             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1171             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1172
1173             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1174
1175             fscal            = fvdw;
1176
1177             fscal            = _mm_and_pd(fscal,cutoff_mask);
1178
1179             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1180
1181             /* Calculate temporary vectorial force */
1182             tx               = _mm_mul_pd(fscal,dx00);
1183             ty               = _mm_mul_pd(fscal,dy00);
1184             tz               = _mm_mul_pd(fscal,dz00);
1185
1186             /* Update vectorial force */
1187             fix0             = _mm_add_pd(fix0,tx);
1188             fiy0             = _mm_add_pd(fiy0,ty);
1189             fiz0             = _mm_add_pd(fiz0,tz);
1190
1191             fjx0             = _mm_add_pd(fjx0,tx);
1192             fjy0             = _mm_add_pd(fjy0,ty);
1193             fjz0             = _mm_add_pd(fjz0,tz);
1194
1195             }
1196
1197             /**************************
1198              * CALCULATE INTERACTIONS *
1199              **************************/
1200
1201             if (gmx_mm_any_lt(rsq10,rcutoff2))
1202             {
1203
1204             r10              = _mm_mul_pd(rsq10,rinv10);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq10             = _mm_mul_pd(iq1,jq0);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212             ewrt             = _mm_mul_pd(r10,ewtabscale);
1213             ewitab           = _mm_cvttpd_epi32(ewrt);
1214             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1215             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1216             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1217             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1218
1219             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm_and_pd(fscal,cutoff_mask);
1224
1225             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm_mul_pd(fscal,dx10);
1229             ty               = _mm_mul_pd(fscal,dy10);
1230             tz               = _mm_mul_pd(fscal,dz10);
1231
1232             /* Update vectorial force */
1233             fix1             = _mm_add_pd(fix1,tx);
1234             fiy1             = _mm_add_pd(fiy1,ty);
1235             fiz1             = _mm_add_pd(fiz1,tz);
1236
1237             fjx0             = _mm_add_pd(fjx0,tx);
1238             fjy0             = _mm_add_pd(fjy0,ty);
1239             fjz0             = _mm_add_pd(fjz0,tz);
1240
1241             }
1242
1243             /**************************
1244              * CALCULATE INTERACTIONS *
1245              **************************/
1246
1247             if (gmx_mm_any_lt(rsq20,rcutoff2))
1248             {
1249
1250             r20              = _mm_mul_pd(rsq20,rinv20);
1251
1252             /* Compute parameters for interactions between i and j atoms */
1253             qq20             = _mm_mul_pd(iq2,jq0);
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = _mm_mul_pd(r20,ewtabscale);
1259             ewitab           = _mm_cvttpd_epi32(ewrt);
1260             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1261             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1262             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1263             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1264
1265             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1266
1267             fscal            = felec;
1268
1269             fscal            = _mm_and_pd(fscal,cutoff_mask);
1270
1271             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1272
1273             /* Calculate temporary vectorial force */
1274             tx               = _mm_mul_pd(fscal,dx20);
1275             ty               = _mm_mul_pd(fscal,dy20);
1276             tz               = _mm_mul_pd(fscal,dz20);
1277
1278             /* Update vectorial force */
1279             fix2             = _mm_add_pd(fix2,tx);
1280             fiy2             = _mm_add_pd(fiy2,ty);
1281             fiz2             = _mm_add_pd(fiz2,tz);
1282
1283             fjx0             = _mm_add_pd(fjx0,tx);
1284             fjy0             = _mm_add_pd(fjy0,ty);
1285             fjz0             = _mm_add_pd(fjz0,tz);
1286
1287             }
1288
1289             /**************************
1290              * CALCULATE INTERACTIONS *
1291              **************************/
1292
1293             if (gmx_mm_any_lt(rsq30,rcutoff2))
1294             {
1295
1296             r30              = _mm_mul_pd(rsq30,rinv30);
1297
1298             /* Compute parameters for interactions between i and j atoms */
1299             qq30             = _mm_mul_pd(iq3,jq0);
1300
1301             /* EWALD ELECTROSTATICS */
1302
1303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1304             ewrt             = _mm_mul_pd(r30,ewtabscale);
1305             ewitab           = _mm_cvttpd_epi32(ewrt);
1306             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1307             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1308             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1309             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1310
1311             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1312
1313             fscal            = felec;
1314
1315             fscal            = _mm_and_pd(fscal,cutoff_mask);
1316
1317             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1318
1319             /* Calculate temporary vectorial force */
1320             tx               = _mm_mul_pd(fscal,dx30);
1321             ty               = _mm_mul_pd(fscal,dy30);
1322             tz               = _mm_mul_pd(fscal,dz30);
1323
1324             /* Update vectorial force */
1325             fix3             = _mm_add_pd(fix3,tx);
1326             fiy3             = _mm_add_pd(fiy3,ty);
1327             fiz3             = _mm_add_pd(fiz3,tz);
1328
1329             fjx0             = _mm_add_pd(fjx0,tx);
1330             fjy0             = _mm_add_pd(fjy0,ty);
1331             fjz0             = _mm_add_pd(fjz0,tz);
1332
1333             }
1334
1335             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1336
1337             /* Inner loop uses 150 flops */
1338         }
1339
1340         /* End of innermost loop */
1341
1342         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1343                                               f+i_coord_offset,fshift+i_shift_offset);
1344
1345         /* Increment number of inner iterations */
1346         inneriter                  += j_index_end - j_index_start;
1347
1348         /* Outer loop uses 24 flops */
1349     }
1350
1351     /* Increment number of outer iterations */
1352     outeriter        += nri;
1353
1354     /* Update outer/inner flops */
1355
1356     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1357 }