7c8e3e57cb909e6bf79e115aeeae9029a119019f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     int              nvdwtype;
104     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
105     int              *vdwtype;
106     real             *vdwparam;
107     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
108     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
109     __m128i          ewitab;
110     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128d          dummy_mask,cutoff_mask;
113     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114     __m128d          one     = _mm_set1_pd(1.0);
115     __m128d          two     = _mm_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_pd(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
141     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
142     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     jq0              = _mm_set1_pd(charge[inr+0]);
146     jq1              = _mm_set1_pd(charge[inr+1]);
147     jq2              = _mm_set1_pd(charge[inr+2]);
148     vdwjidx0A        = 2*vdwtype[inr+0];
149     qq00             = _mm_mul_pd(iq0,jq0);
150     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
151     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
152     qq01             = _mm_mul_pd(iq0,jq1);
153     qq02             = _mm_mul_pd(iq0,jq2);
154     qq10             = _mm_mul_pd(iq1,jq0);
155     qq11             = _mm_mul_pd(iq1,jq1);
156     qq12             = _mm_mul_pd(iq1,jq2);
157     qq20             = _mm_mul_pd(iq2,jq0);
158     qq21             = _mm_mul_pd(iq2,jq1);
159     qq22             = _mm_mul_pd(iq2,jq2);
160
161     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
162     rcutoff_scalar   = fr->rcoulomb;
163     rcutoff          = _mm_set1_pd(rcutoff_scalar);
164     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
165
166     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
167     rvdw             = _mm_set1_pd(fr->rvdw);
168
169     /* Avoid stupid compiler warnings */
170     jnrA = jnrB = 0;
171     j_coord_offsetA = 0;
172     j_coord_offsetB = 0;
173
174     outeriter        = 0;
175     inneriter        = 0;
176
177     /* Start outer loop over neighborlists */
178     for(iidx=0; iidx<nri; iidx++)
179     {
180         /* Load shift vector for this list */
181         i_shift_offset   = DIM*shiftidx[iidx];
182
183         /* Load limits for loop over neighbors */
184         j_index_start    = jindex[iidx];
185         j_index_end      = jindex[iidx+1];
186
187         /* Get outer coordinate index */
188         inr              = iinr[iidx];
189         i_coord_offset   = DIM*inr;
190
191         /* Load i particle coords and add shift vector */
192         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
193                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
194
195         fix0             = _mm_setzero_pd();
196         fiy0             = _mm_setzero_pd();
197         fiz0             = _mm_setzero_pd();
198         fix1             = _mm_setzero_pd();
199         fiy1             = _mm_setzero_pd();
200         fiz1             = _mm_setzero_pd();
201         fix2             = _mm_setzero_pd();
202         fiy2             = _mm_setzero_pd();
203         fiz2             = _mm_setzero_pd();
204
205         /* Reset potential sums */
206         velecsum         = _mm_setzero_pd();
207         vvdwsum          = _mm_setzero_pd();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218
219             /* load j atom coordinates */
220             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
221                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_pd(ix0,jx0);
225             dy00             = _mm_sub_pd(iy0,jy0);
226             dz00             = _mm_sub_pd(iz0,jz0);
227             dx01             = _mm_sub_pd(ix0,jx1);
228             dy01             = _mm_sub_pd(iy0,jy1);
229             dz01             = _mm_sub_pd(iz0,jz1);
230             dx02             = _mm_sub_pd(ix0,jx2);
231             dy02             = _mm_sub_pd(iy0,jy2);
232             dz02             = _mm_sub_pd(iz0,jz2);
233             dx10             = _mm_sub_pd(ix1,jx0);
234             dy10             = _mm_sub_pd(iy1,jy0);
235             dz10             = _mm_sub_pd(iz1,jz0);
236             dx11             = _mm_sub_pd(ix1,jx1);
237             dy11             = _mm_sub_pd(iy1,jy1);
238             dz11             = _mm_sub_pd(iz1,jz1);
239             dx12             = _mm_sub_pd(ix1,jx2);
240             dy12             = _mm_sub_pd(iy1,jy2);
241             dz12             = _mm_sub_pd(iz1,jz2);
242             dx20             = _mm_sub_pd(ix2,jx0);
243             dy20             = _mm_sub_pd(iy2,jy0);
244             dz20             = _mm_sub_pd(iz2,jz0);
245             dx21             = _mm_sub_pd(ix2,jx1);
246             dy21             = _mm_sub_pd(iy2,jy1);
247             dz21             = _mm_sub_pd(iz2,jz1);
248             dx22             = _mm_sub_pd(ix2,jx2);
249             dy22             = _mm_sub_pd(iy2,jy2);
250             dz22             = _mm_sub_pd(iz2,jz2);
251
252             /* Calculate squared distance and things based on it */
253             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
254             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
255             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
256             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
257             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
258             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
259             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
260             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
261             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
262
263             rinv00           = gmx_mm_invsqrt_pd(rsq00);
264             rinv01           = gmx_mm_invsqrt_pd(rsq01);
265             rinv02           = gmx_mm_invsqrt_pd(rsq02);
266             rinv10           = gmx_mm_invsqrt_pd(rsq10);
267             rinv11           = gmx_mm_invsqrt_pd(rsq11);
268             rinv12           = gmx_mm_invsqrt_pd(rsq12);
269             rinv20           = gmx_mm_invsqrt_pd(rsq20);
270             rinv21           = gmx_mm_invsqrt_pd(rsq21);
271             rinv22           = gmx_mm_invsqrt_pd(rsq22);
272
273             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
274             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
275             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
276             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
277             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
278             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
279             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
280             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
281             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
282
283             fjx0             = _mm_setzero_pd();
284             fjy0             = _mm_setzero_pd();
285             fjz0             = _mm_setzero_pd();
286             fjx1             = _mm_setzero_pd();
287             fjy1             = _mm_setzero_pd();
288             fjz1             = _mm_setzero_pd();
289             fjx2             = _mm_setzero_pd();
290             fjy2             = _mm_setzero_pd();
291             fjz2             = _mm_setzero_pd();
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             if (gmx_mm_any_lt(rsq00,rcutoff2))
298             {
299
300             r00              = _mm_mul_pd(rsq00,rinv00);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
305             ewrt             = _mm_mul_pd(r00,ewtabscale);
306             ewitab           = _mm_cvttpd_epi32(ewrt);
307             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
308             ewitab           = _mm_slli_epi32(ewitab,2);
309             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
310             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
311             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
312             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
313             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
314             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
315             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
316             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
317             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
318             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
319
320             /* LENNARD-JONES DISPERSION/REPULSION */
321
322             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
323             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
324             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
325             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
326                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
327             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
328
329             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velec            = _mm_and_pd(velec,cutoff_mask);
333             velecsum         = _mm_add_pd(velecsum,velec);
334             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
335             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
336
337             fscal            = _mm_add_pd(felec,fvdw);
338
339             fscal            = _mm_and_pd(fscal,cutoff_mask);
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm_mul_pd(fscal,dx00);
343             ty               = _mm_mul_pd(fscal,dy00);
344             tz               = _mm_mul_pd(fscal,dz00);
345
346             /* Update vectorial force */
347             fix0             = _mm_add_pd(fix0,tx);
348             fiy0             = _mm_add_pd(fiy0,ty);
349             fiz0             = _mm_add_pd(fiz0,tz);
350
351             fjx0             = _mm_add_pd(fjx0,tx);
352             fjy0             = _mm_add_pd(fjy0,ty);
353             fjz0             = _mm_add_pd(fjz0,tz);
354
355             }
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             if (gmx_mm_any_lt(rsq01,rcutoff2))
362             {
363
364             r01              = _mm_mul_pd(rsq01,rinv01);
365
366             /* EWALD ELECTROSTATICS */
367
368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
369             ewrt             = _mm_mul_pd(r01,ewtabscale);
370             ewitab           = _mm_cvttpd_epi32(ewrt);
371             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
372             ewitab           = _mm_slli_epi32(ewitab,2);
373             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
374             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
375             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
376             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
377             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
378             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
379             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
380             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
381             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
382             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
383
384             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm_and_pd(velec,cutoff_mask);
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             fscal            = _mm_and_pd(fscal,cutoff_mask);
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_pd(fscal,dx01);
396             ty               = _mm_mul_pd(fscal,dy01);
397             tz               = _mm_mul_pd(fscal,dz01);
398
399             /* Update vectorial force */
400             fix0             = _mm_add_pd(fix0,tx);
401             fiy0             = _mm_add_pd(fiy0,ty);
402             fiz0             = _mm_add_pd(fiz0,tz);
403
404             fjx1             = _mm_add_pd(fjx1,tx);
405             fjy1             = _mm_add_pd(fjy1,ty);
406             fjz1             = _mm_add_pd(fjz1,tz);
407
408             }
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             if (gmx_mm_any_lt(rsq02,rcutoff2))
415             {
416
417             r02              = _mm_mul_pd(rsq02,rinv02);
418
419             /* EWALD ELECTROSTATICS */
420
421             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
422             ewrt             = _mm_mul_pd(r02,ewtabscale);
423             ewitab           = _mm_cvttpd_epi32(ewrt);
424             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
425             ewitab           = _mm_slli_epi32(ewitab,2);
426             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
427             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
428             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
429             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
430             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
431             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
432             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
433             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
434             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
435             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
436
437             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
438
439             /* Update potential sum for this i atom from the interaction with this j atom. */
440             velec            = _mm_and_pd(velec,cutoff_mask);
441             velecsum         = _mm_add_pd(velecsum,velec);
442
443             fscal            = felec;
444
445             fscal            = _mm_and_pd(fscal,cutoff_mask);
446
447             /* Calculate temporary vectorial force */
448             tx               = _mm_mul_pd(fscal,dx02);
449             ty               = _mm_mul_pd(fscal,dy02);
450             tz               = _mm_mul_pd(fscal,dz02);
451
452             /* Update vectorial force */
453             fix0             = _mm_add_pd(fix0,tx);
454             fiy0             = _mm_add_pd(fiy0,ty);
455             fiz0             = _mm_add_pd(fiz0,tz);
456
457             fjx2             = _mm_add_pd(fjx2,tx);
458             fjy2             = _mm_add_pd(fjy2,ty);
459             fjz2             = _mm_add_pd(fjz2,tz);
460
461             }
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             if (gmx_mm_any_lt(rsq10,rcutoff2))
468             {
469
470             r10              = _mm_mul_pd(rsq10,rinv10);
471
472             /* EWALD ELECTROSTATICS */
473
474             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
475             ewrt             = _mm_mul_pd(r10,ewtabscale);
476             ewitab           = _mm_cvttpd_epi32(ewrt);
477             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
478             ewitab           = _mm_slli_epi32(ewitab,2);
479             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
480             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
481             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
482             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
483             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
484             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
485             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
486             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
487             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
488             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
489
490             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _mm_and_pd(velec,cutoff_mask);
494             velecsum         = _mm_add_pd(velecsum,velec);
495
496             fscal            = felec;
497
498             fscal            = _mm_and_pd(fscal,cutoff_mask);
499
500             /* Calculate temporary vectorial force */
501             tx               = _mm_mul_pd(fscal,dx10);
502             ty               = _mm_mul_pd(fscal,dy10);
503             tz               = _mm_mul_pd(fscal,dz10);
504
505             /* Update vectorial force */
506             fix1             = _mm_add_pd(fix1,tx);
507             fiy1             = _mm_add_pd(fiy1,ty);
508             fiz1             = _mm_add_pd(fiz1,tz);
509
510             fjx0             = _mm_add_pd(fjx0,tx);
511             fjy0             = _mm_add_pd(fjy0,ty);
512             fjz0             = _mm_add_pd(fjz0,tz);
513
514             }
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             if (gmx_mm_any_lt(rsq11,rcutoff2))
521             {
522
523             r11              = _mm_mul_pd(rsq11,rinv11);
524
525             /* EWALD ELECTROSTATICS */
526
527             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
528             ewrt             = _mm_mul_pd(r11,ewtabscale);
529             ewitab           = _mm_cvttpd_epi32(ewrt);
530             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
531             ewitab           = _mm_slli_epi32(ewitab,2);
532             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
533             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
534             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
535             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
536             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
537             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
538             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
539             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
540             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
541             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
542
543             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
544
545             /* Update potential sum for this i atom from the interaction with this j atom. */
546             velec            = _mm_and_pd(velec,cutoff_mask);
547             velecsum         = _mm_add_pd(velecsum,velec);
548
549             fscal            = felec;
550
551             fscal            = _mm_and_pd(fscal,cutoff_mask);
552
553             /* Calculate temporary vectorial force */
554             tx               = _mm_mul_pd(fscal,dx11);
555             ty               = _mm_mul_pd(fscal,dy11);
556             tz               = _mm_mul_pd(fscal,dz11);
557
558             /* Update vectorial force */
559             fix1             = _mm_add_pd(fix1,tx);
560             fiy1             = _mm_add_pd(fiy1,ty);
561             fiz1             = _mm_add_pd(fiz1,tz);
562
563             fjx1             = _mm_add_pd(fjx1,tx);
564             fjy1             = _mm_add_pd(fjy1,ty);
565             fjz1             = _mm_add_pd(fjz1,tz);
566
567             }
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             if (gmx_mm_any_lt(rsq12,rcutoff2))
574             {
575
576             r12              = _mm_mul_pd(rsq12,rinv12);
577
578             /* EWALD ELECTROSTATICS */
579
580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
581             ewrt             = _mm_mul_pd(r12,ewtabscale);
582             ewitab           = _mm_cvttpd_epi32(ewrt);
583             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
584             ewitab           = _mm_slli_epi32(ewitab,2);
585             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
586             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
587             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
588             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
589             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
590             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
591             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
592             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
593             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
594             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
595
596             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velec            = _mm_and_pd(velec,cutoff_mask);
600             velecsum         = _mm_add_pd(velecsum,velec);
601
602             fscal            = felec;
603
604             fscal            = _mm_and_pd(fscal,cutoff_mask);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm_mul_pd(fscal,dx12);
608             ty               = _mm_mul_pd(fscal,dy12);
609             tz               = _mm_mul_pd(fscal,dz12);
610
611             /* Update vectorial force */
612             fix1             = _mm_add_pd(fix1,tx);
613             fiy1             = _mm_add_pd(fiy1,ty);
614             fiz1             = _mm_add_pd(fiz1,tz);
615
616             fjx2             = _mm_add_pd(fjx2,tx);
617             fjy2             = _mm_add_pd(fjy2,ty);
618             fjz2             = _mm_add_pd(fjz2,tz);
619
620             }
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm_any_lt(rsq20,rcutoff2))
627             {
628
629             r20              = _mm_mul_pd(rsq20,rinv20);
630
631             /* EWALD ELECTROSTATICS */
632
633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634             ewrt             = _mm_mul_pd(r20,ewtabscale);
635             ewitab           = _mm_cvttpd_epi32(ewrt);
636             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
637             ewitab           = _mm_slli_epi32(ewitab,2);
638             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
639             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
640             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
641             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
642             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
643             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
644             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
645             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
646             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
647             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
648
649             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm_and_pd(velec,cutoff_mask);
653             velecsum         = _mm_add_pd(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_pd(fscal,cutoff_mask);
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm_mul_pd(fscal,dx20);
661             ty               = _mm_mul_pd(fscal,dy20);
662             tz               = _mm_mul_pd(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm_add_pd(fix2,tx);
666             fiy2             = _mm_add_pd(fiy2,ty);
667             fiz2             = _mm_add_pd(fiz2,tz);
668
669             fjx0             = _mm_add_pd(fjx0,tx);
670             fjy0             = _mm_add_pd(fjy0,ty);
671             fjz0             = _mm_add_pd(fjz0,tz);
672
673             }
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             if (gmx_mm_any_lt(rsq21,rcutoff2))
680             {
681
682             r21              = _mm_mul_pd(rsq21,rinv21);
683
684             /* EWALD ELECTROSTATICS */
685
686             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
687             ewrt             = _mm_mul_pd(r21,ewtabscale);
688             ewitab           = _mm_cvttpd_epi32(ewrt);
689             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
690             ewitab           = _mm_slli_epi32(ewitab,2);
691             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
692             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
693             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
694             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
695             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
696             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
697             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
698             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
699             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
700             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
701
702             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
703
704             /* Update potential sum for this i atom from the interaction with this j atom. */
705             velec            = _mm_and_pd(velec,cutoff_mask);
706             velecsum         = _mm_add_pd(velecsum,velec);
707
708             fscal            = felec;
709
710             fscal            = _mm_and_pd(fscal,cutoff_mask);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm_mul_pd(fscal,dx21);
714             ty               = _mm_mul_pd(fscal,dy21);
715             tz               = _mm_mul_pd(fscal,dz21);
716
717             /* Update vectorial force */
718             fix2             = _mm_add_pd(fix2,tx);
719             fiy2             = _mm_add_pd(fiy2,ty);
720             fiz2             = _mm_add_pd(fiz2,tz);
721
722             fjx1             = _mm_add_pd(fjx1,tx);
723             fjy1             = _mm_add_pd(fjy1,ty);
724             fjz1             = _mm_add_pd(fjz1,tz);
725
726             }
727
728             /**************************
729              * CALCULATE INTERACTIONS *
730              **************************/
731
732             if (gmx_mm_any_lt(rsq22,rcutoff2))
733             {
734
735             r22              = _mm_mul_pd(rsq22,rinv22);
736
737             /* EWALD ELECTROSTATICS */
738
739             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
740             ewrt             = _mm_mul_pd(r22,ewtabscale);
741             ewitab           = _mm_cvttpd_epi32(ewrt);
742             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
743             ewitab           = _mm_slli_epi32(ewitab,2);
744             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
745             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
746             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
747             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
748             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
749             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
750             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
751             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
752             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
753             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
754
755             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
756
757             /* Update potential sum for this i atom from the interaction with this j atom. */
758             velec            = _mm_and_pd(velec,cutoff_mask);
759             velecsum         = _mm_add_pd(velecsum,velec);
760
761             fscal            = felec;
762
763             fscal            = _mm_and_pd(fscal,cutoff_mask);
764
765             /* Calculate temporary vectorial force */
766             tx               = _mm_mul_pd(fscal,dx22);
767             ty               = _mm_mul_pd(fscal,dy22);
768             tz               = _mm_mul_pd(fscal,dz22);
769
770             /* Update vectorial force */
771             fix2             = _mm_add_pd(fix2,tx);
772             fiy2             = _mm_add_pd(fiy2,ty);
773             fiz2             = _mm_add_pd(fiz2,tz);
774
775             fjx2             = _mm_add_pd(fjx2,tx);
776             fjy2             = _mm_add_pd(fjy2,ty);
777             fjz2             = _mm_add_pd(fjz2,tz);
778
779             }
780
781             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
782
783             /* Inner loop uses 432 flops */
784         }
785
786         if(jidx<j_index_end)
787         {
788
789             jnrA             = jjnr[jidx];
790             j_coord_offsetA  = DIM*jnrA;
791
792             /* load j atom coordinates */
793             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
794                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
795
796             /* Calculate displacement vector */
797             dx00             = _mm_sub_pd(ix0,jx0);
798             dy00             = _mm_sub_pd(iy0,jy0);
799             dz00             = _mm_sub_pd(iz0,jz0);
800             dx01             = _mm_sub_pd(ix0,jx1);
801             dy01             = _mm_sub_pd(iy0,jy1);
802             dz01             = _mm_sub_pd(iz0,jz1);
803             dx02             = _mm_sub_pd(ix0,jx2);
804             dy02             = _mm_sub_pd(iy0,jy2);
805             dz02             = _mm_sub_pd(iz0,jz2);
806             dx10             = _mm_sub_pd(ix1,jx0);
807             dy10             = _mm_sub_pd(iy1,jy0);
808             dz10             = _mm_sub_pd(iz1,jz0);
809             dx11             = _mm_sub_pd(ix1,jx1);
810             dy11             = _mm_sub_pd(iy1,jy1);
811             dz11             = _mm_sub_pd(iz1,jz1);
812             dx12             = _mm_sub_pd(ix1,jx2);
813             dy12             = _mm_sub_pd(iy1,jy2);
814             dz12             = _mm_sub_pd(iz1,jz2);
815             dx20             = _mm_sub_pd(ix2,jx0);
816             dy20             = _mm_sub_pd(iy2,jy0);
817             dz20             = _mm_sub_pd(iz2,jz0);
818             dx21             = _mm_sub_pd(ix2,jx1);
819             dy21             = _mm_sub_pd(iy2,jy1);
820             dz21             = _mm_sub_pd(iz2,jz1);
821             dx22             = _mm_sub_pd(ix2,jx2);
822             dy22             = _mm_sub_pd(iy2,jy2);
823             dz22             = _mm_sub_pd(iz2,jz2);
824
825             /* Calculate squared distance and things based on it */
826             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
827             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
828             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
829             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
830             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
831             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
832             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
833             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
834             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
835
836             rinv00           = gmx_mm_invsqrt_pd(rsq00);
837             rinv01           = gmx_mm_invsqrt_pd(rsq01);
838             rinv02           = gmx_mm_invsqrt_pd(rsq02);
839             rinv10           = gmx_mm_invsqrt_pd(rsq10);
840             rinv11           = gmx_mm_invsqrt_pd(rsq11);
841             rinv12           = gmx_mm_invsqrt_pd(rsq12);
842             rinv20           = gmx_mm_invsqrt_pd(rsq20);
843             rinv21           = gmx_mm_invsqrt_pd(rsq21);
844             rinv22           = gmx_mm_invsqrt_pd(rsq22);
845
846             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
847             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
848             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
849             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
850             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
851             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
852             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
853             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
854             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
855
856             fjx0             = _mm_setzero_pd();
857             fjy0             = _mm_setzero_pd();
858             fjz0             = _mm_setzero_pd();
859             fjx1             = _mm_setzero_pd();
860             fjy1             = _mm_setzero_pd();
861             fjz1             = _mm_setzero_pd();
862             fjx2             = _mm_setzero_pd();
863             fjy2             = _mm_setzero_pd();
864             fjz2             = _mm_setzero_pd();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             if (gmx_mm_any_lt(rsq00,rcutoff2))
871             {
872
873             r00              = _mm_mul_pd(rsq00,rinv00);
874
875             /* EWALD ELECTROSTATICS */
876
877             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
878             ewrt             = _mm_mul_pd(r00,ewtabscale);
879             ewitab           = _mm_cvttpd_epi32(ewrt);
880             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
881             ewitab           = _mm_slli_epi32(ewitab,2);
882             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
883             ewtabD           = _mm_setzero_pd();
884             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
885             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
886             ewtabFn          = _mm_setzero_pd();
887             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
888             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
889             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
890             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
891             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
892
893             /* LENNARD-JONES DISPERSION/REPULSION */
894
895             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
896             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
897             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
898             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
899                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
900             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
901
902             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
903
904             /* Update potential sum for this i atom from the interaction with this j atom. */
905             velec            = _mm_and_pd(velec,cutoff_mask);
906             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
907             velecsum         = _mm_add_pd(velecsum,velec);
908             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
909             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
910             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
911
912             fscal            = _mm_add_pd(felec,fvdw);
913
914             fscal            = _mm_and_pd(fscal,cutoff_mask);
915
916             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm_mul_pd(fscal,dx00);
920             ty               = _mm_mul_pd(fscal,dy00);
921             tz               = _mm_mul_pd(fscal,dz00);
922
923             /* Update vectorial force */
924             fix0             = _mm_add_pd(fix0,tx);
925             fiy0             = _mm_add_pd(fiy0,ty);
926             fiz0             = _mm_add_pd(fiz0,tz);
927
928             fjx0             = _mm_add_pd(fjx0,tx);
929             fjy0             = _mm_add_pd(fjy0,ty);
930             fjz0             = _mm_add_pd(fjz0,tz);
931
932             }
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             if (gmx_mm_any_lt(rsq01,rcutoff2))
939             {
940
941             r01              = _mm_mul_pd(rsq01,rinv01);
942
943             /* EWALD ELECTROSTATICS */
944
945             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
946             ewrt             = _mm_mul_pd(r01,ewtabscale);
947             ewitab           = _mm_cvttpd_epi32(ewrt);
948             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
949             ewitab           = _mm_slli_epi32(ewitab,2);
950             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
951             ewtabD           = _mm_setzero_pd();
952             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
953             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
954             ewtabFn          = _mm_setzero_pd();
955             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
956             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
957             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
958             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
959             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
960
961             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
962
963             /* Update potential sum for this i atom from the interaction with this j atom. */
964             velec            = _mm_and_pd(velec,cutoff_mask);
965             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
966             velecsum         = _mm_add_pd(velecsum,velec);
967
968             fscal            = felec;
969
970             fscal            = _mm_and_pd(fscal,cutoff_mask);
971
972             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_pd(fscal,dx01);
976             ty               = _mm_mul_pd(fscal,dy01);
977             tz               = _mm_mul_pd(fscal,dz01);
978
979             /* Update vectorial force */
980             fix0             = _mm_add_pd(fix0,tx);
981             fiy0             = _mm_add_pd(fiy0,ty);
982             fiz0             = _mm_add_pd(fiz0,tz);
983
984             fjx1             = _mm_add_pd(fjx1,tx);
985             fjy1             = _mm_add_pd(fjy1,ty);
986             fjz1             = _mm_add_pd(fjz1,tz);
987
988             }
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             if (gmx_mm_any_lt(rsq02,rcutoff2))
995             {
996
997             r02              = _mm_mul_pd(rsq02,rinv02);
998
999             /* EWALD ELECTROSTATICS */
1000
1001             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1002             ewrt             = _mm_mul_pd(r02,ewtabscale);
1003             ewitab           = _mm_cvttpd_epi32(ewrt);
1004             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1005             ewitab           = _mm_slli_epi32(ewitab,2);
1006             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1007             ewtabD           = _mm_setzero_pd();
1008             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1009             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1010             ewtabFn          = _mm_setzero_pd();
1011             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1012             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1013             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1014             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
1015             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1016
1017             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1018
1019             /* Update potential sum for this i atom from the interaction with this j atom. */
1020             velec            = _mm_and_pd(velec,cutoff_mask);
1021             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1022             velecsum         = _mm_add_pd(velecsum,velec);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm_and_pd(fscal,cutoff_mask);
1027
1028             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1029
1030             /* Calculate temporary vectorial force */
1031             tx               = _mm_mul_pd(fscal,dx02);
1032             ty               = _mm_mul_pd(fscal,dy02);
1033             tz               = _mm_mul_pd(fscal,dz02);
1034
1035             /* Update vectorial force */
1036             fix0             = _mm_add_pd(fix0,tx);
1037             fiy0             = _mm_add_pd(fiy0,ty);
1038             fiz0             = _mm_add_pd(fiz0,tz);
1039
1040             fjx2             = _mm_add_pd(fjx2,tx);
1041             fjy2             = _mm_add_pd(fjy2,ty);
1042             fjz2             = _mm_add_pd(fjz2,tz);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_mm_any_lt(rsq10,rcutoff2))
1051             {
1052
1053             r10              = _mm_mul_pd(rsq10,rinv10);
1054
1055             /* EWALD ELECTROSTATICS */
1056
1057             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1058             ewrt             = _mm_mul_pd(r10,ewtabscale);
1059             ewitab           = _mm_cvttpd_epi32(ewrt);
1060             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1061             ewitab           = _mm_slli_epi32(ewitab,2);
1062             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1063             ewtabD           = _mm_setzero_pd();
1064             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1065             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1066             ewtabFn          = _mm_setzero_pd();
1067             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1068             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1069             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1070             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1071             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1072
1073             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1074
1075             /* Update potential sum for this i atom from the interaction with this j atom. */
1076             velec            = _mm_and_pd(velec,cutoff_mask);
1077             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1078             velecsum         = _mm_add_pd(velecsum,velec);
1079
1080             fscal            = felec;
1081
1082             fscal            = _mm_and_pd(fscal,cutoff_mask);
1083
1084             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1085
1086             /* Calculate temporary vectorial force */
1087             tx               = _mm_mul_pd(fscal,dx10);
1088             ty               = _mm_mul_pd(fscal,dy10);
1089             tz               = _mm_mul_pd(fscal,dz10);
1090
1091             /* Update vectorial force */
1092             fix1             = _mm_add_pd(fix1,tx);
1093             fiy1             = _mm_add_pd(fiy1,ty);
1094             fiz1             = _mm_add_pd(fiz1,tz);
1095
1096             fjx0             = _mm_add_pd(fjx0,tx);
1097             fjy0             = _mm_add_pd(fjy0,ty);
1098             fjz0             = _mm_add_pd(fjz0,tz);
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (gmx_mm_any_lt(rsq11,rcutoff2))
1107             {
1108
1109             r11              = _mm_mul_pd(rsq11,rinv11);
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = _mm_mul_pd(r11,ewtabscale);
1115             ewitab           = _mm_cvttpd_epi32(ewrt);
1116             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1117             ewitab           = _mm_slli_epi32(ewitab,2);
1118             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1119             ewtabD           = _mm_setzero_pd();
1120             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1121             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1122             ewtabFn          = _mm_setzero_pd();
1123             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1124             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1125             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1126             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1127             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1128
1129             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1130
1131             /* Update potential sum for this i atom from the interaction with this j atom. */
1132             velec            = _mm_and_pd(velec,cutoff_mask);
1133             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1134             velecsum         = _mm_add_pd(velecsum,velec);
1135
1136             fscal            = felec;
1137
1138             fscal            = _mm_and_pd(fscal,cutoff_mask);
1139
1140             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm_mul_pd(fscal,dx11);
1144             ty               = _mm_mul_pd(fscal,dy11);
1145             tz               = _mm_mul_pd(fscal,dz11);
1146
1147             /* Update vectorial force */
1148             fix1             = _mm_add_pd(fix1,tx);
1149             fiy1             = _mm_add_pd(fiy1,ty);
1150             fiz1             = _mm_add_pd(fiz1,tz);
1151
1152             fjx1             = _mm_add_pd(fjx1,tx);
1153             fjy1             = _mm_add_pd(fjy1,ty);
1154             fjz1             = _mm_add_pd(fjz1,tz);
1155
1156             }
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             if (gmx_mm_any_lt(rsq12,rcutoff2))
1163             {
1164
1165             r12              = _mm_mul_pd(rsq12,rinv12);
1166
1167             /* EWALD ELECTROSTATICS */
1168
1169             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1170             ewrt             = _mm_mul_pd(r12,ewtabscale);
1171             ewitab           = _mm_cvttpd_epi32(ewrt);
1172             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1173             ewitab           = _mm_slli_epi32(ewitab,2);
1174             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1175             ewtabD           = _mm_setzero_pd();
1176             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1177             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1178             ewtabFn          = _mm_setzero_pd();
1179             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1180             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1181             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1182             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1183             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1184
1185             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1186
1187             /* Update potential sum for this i atom from the interaction with this j atom. */
1188             velec            = _mm_and_pd(velec,cutoff_mask);
1189             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1190             velecsum         = _mm_add_pd(velecsum,velec);
1191
1192             fscal            = felec;
1193
1194             fscal            = _mm_and_pd(fscal,cutoff_mask);
1195
1196             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm_mul_pd(fscal,dx12);
1200             ty               = _mm_mul_pd(fscal,dy12);
1201             tz               = _mm_mul_pd(fscal,dz12);
1202
1203             /* Update vectorial force */
1204             fix1             = _mm_add_pd(fix1,tx);
1205             fiy1             = _mm_add_pd(fiy1,ty);
1206             fiz1             = _mm_add_pd(fiz1,tz);
1207
1208             fjx2             = _mm_add_pd(fjx2,tx);
1209             fjy2             = _mm_add_pd(fjy2,ty);
1210             fjz2             = _mm_add_pd(fjz2,tz);
1211
1212             }
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             if (gmx_mm_any_lt(rsq20,rcutoff2))
1219             {
1220
1221             r20              = _mm_mul_pd(rsq20,rinv20);
1222
1223             /* EWALD ELECTROSTATICS */
1224
1225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1226             ewrt             = _mm_mul_pd(r20,ewtabscale);
1227             ewitab           = _mm_cvttpd_epi32(ewrt);
1228             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1229             ewitab           = _mm_slli_epi32(ewitab,2);
1230             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1231             ewtabD           = _mm_setzero_pd();
1232             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1233             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1234             ewtabFn          = _mm_setzero_pd();
1235             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1236             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1237             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1238             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1239             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1240
1241             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1242
1243             /* Update potential sum for this i atom from the interaction with this j atom. */
1244             velec            = _mm_and_pd(velec,cutoff_mask);
1245             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1246             velecsum         = _mm_add_pd(velecsum,velec);
1247
1248             fscal            = felec;
1249
1250             fscal            = _mm_and_pd(fscal,cutoff_mask);
1251
1252             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm_mul_pd(fscal,dx20);
1256             ty               = _mm_mul_pd(fscal,dy20);
1257             tz               = _mm_mul_pd(fscal,dz20);
1258
1259             /* Update vectorial force */
1260             fix2             = _mm_add_pd(fix2,tx);
1261             fiy2             = _mm_add_pd(fiy2,ty);
1262             fiz2             = _mm_add_pd(fiz2,tz);
1263
1264             fjx0             = _mm_add_pd(fjx0,tx);
1265             fjy0             = _mm_add_pd(fjy0,ty);
1266             fjz0             = _mm_add_pd(fjz0,tz);
1267
1268             }
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             if (gmx_mm_any_lt(rsq21,rcutoff2))
1275             {
1276
1277             r21              = _mm_mul_pd(rsq21,rinv21);
1278
1279             /* EWALD ELECTROSTATICS */
1280
1281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1282             ewrt             = _mm_mul_pd(r21,ewtabscale);
1283             ewitab           = _mm_cvttpd_epi32(ewrt);
1284             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1285             ewitab           = _mm_slli_epi32(ewitab,2);
1286             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1287             ewtabD           = _mm_setzero_pd();
1288             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1289             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1290             ewtabFn          = _mm_setzero_pd();
1291             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1292             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1293             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1294             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1295             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1296
1297             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1298
1299             /* Update potential sum for this i atom from the interaction with this j atom. */
1300             velec            = _mm_and_pd(velec,cutoff_mask);
1301             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1302             velecsum         = _mm_add_pd(velecsum,velec);
1303
1304             fscal            = felec;
1305
1306             fscal            = _mm_and_pd(fscal,cutoff_mask);
1307
1308             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1309
1310             /* Calculate temporary vectorial force */
1311             tx               = _mm_mul_pd(fscal,dx21);
1312             ty               = _mm_mul_pd(fscal,dy21);
1313             tz               = _mm_mul_pd(fscal,dz21);
1314
1315             /* Update vectorial force */
1316             fix2             = _mm_add_pd(fix2,tx);
1317             fiy2             = _mm_add_pd(fiy2,ty);
1318             fiz2             = _mm_add_pd(fiz2,tz);
1319
1320             fjx1             = _mm_add_pd(fjx1,tx);
1321             fjy1             = _mm_add_pd(fjy1,ty);
1322             fjz1             = _mm_add_pd(fjz1,tz);
1323
1324             }
1325
1326             /**************************
1327              * CALCULATE INTERACTIONS *
1328              **************************/
1329
1330             if (gmx_mm_any_lt(rsq22,rcutoff2))
1331             {
1332
1333             r22              = _mm_mul_pd(rsq22,rinv22);
1334
1335             /* EWALD ELECTROSTATICS */
1336
1337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1338             ewrt             = _mm_mul_pd(r22,ewtabscale);
1339             ewitab           = _mm_cvttpd_epi32(ewrt);
1340             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1341             ewitab           = _mm_slli_epi32(ewitab,2);
1342             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1343             ewtabD           = _mm_setzero_pd();
1344             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1345             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1346             ewtabFn          = _mm_setzero_pd();
1347             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1348             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1349             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1350             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1351             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1352
1353             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1354
1355             /* Update potential sum for this i atom from the interaction with this j atom. */
1356             velec            = _mm_and_pd(velec,cutoff_mask);
1357             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1358             velecsum         = _mm_add_pd(velecsum,velec);
1359
1360             fscal            = felec;
1361
1362             fscal            = _mm_and_pd(fscal,cutoff_mask);
1363
1364             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1365
1366             /* Calculate temporary vectorial force */
1367             tx               = _mm_mul_pd(fscal,dx22);
1368             ty               = _mm_mul_pd(fscal,dy22);
1369             tz               = _mm_mul_pd(fscal,dz22);
1370
1371             /* Update vectorial force */
1372             fix2             = _mm_add_pd(fix2,tx);
1373             fiy2             = _mm_add_pd(fiy2,ty);
1374             fiz2             = _mm_add_pd(fiz2,tz);
1375
1376             fjx2             = _mm_add_pd(fjx2,tx);
1377             fjy2             = _mm_add_pd(fjy2,ty);
1378             fjz2             = _mm_add_pd(fjz2,tz);
1379
1380             }
1381
1382             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1383
1384             /* Inner loop uses 432 flops */
1385         }
1386
1387         /* End of innermost loop */
1388
1389         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1390                                               f+i_coord_offset,fshift+i_shift_offset);
1391
1392         ggid                        = gid[iidx];
1393         /* Update potential energies */
1394         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1395         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1396
1397         /* Increment number of inner iterations */
1398         inneriter                  += j_index_end - j_index_start;
1399
1400         /* Outer loop uses 20 flops */
1401     }
1402
1403     /* Increment number of outer iterations */
1404     outeriter        += nri;
1405
1406     /* Update outer/inner flops */
1407
1408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*432);
1409 }
1410 /*
1411  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_sse4_1_double
1412  * Electrostatics interaction: Ewald
1413  * VdW interaction:            LennardJones
1414  * Geometry:                   Water3-Water3
1415  * Calculate force/pot:        Force
1416  */
1417 void
1418 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_sse4_1_double
1419                     (t_nblist                    * gmx_restrict       nlist,
1420                      rvec                        * gmx_restrict          xx,
1421                      rvec                        * gmx_restrict          ff,
1422                      t_forcerec                  * gmx_restrict          fr,
1423                      t_mdatoms                   * gmx_restrict     mdatoms,
1424                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1425                      t_nrnb                      * gmx_restrict        nrnb)
1426 {
1427     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1428      * just 0 for non-waters.
1429      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1430      * jnr indices corresponding to data put in the four positions in the SIMD register.
1431      */
1432     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1433     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1434     int              jnrA,jnrB;
1435     int              j_coord_offsetA,j_coord_offsetB;
1436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1437     real             rcutoff_scalar;
1438     real             *shiftvec,*fshift,*x,*f;
1439     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1440     int              vdwioffset0;
1441     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1442     int              vdwioffset1;
1443     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1444     int              vdwioffset2;
1445     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1446     int              vdwjidx0A,vdwjidx0B;
1447     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1448     int              vdwjidx1A,vdwjidx1B;
1449     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1450     int              vdwjidx2A,vdwjidx2B;
1451     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1452     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1453     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1454     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1455     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1456     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1457     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1458     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1459     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1460     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1461     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1462     real             *charge;
1463     int              nvdwtype;
1464     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1465     int              *vdwtype;
1466     real             *vdwparam;
1467     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1468     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1469     __m128i          ewitab;
1470     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1471     real             *ewtab;
1472     __m128d          dummy_mask,cutoff_mask;
1473     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1474     __m128d          one     = _mm_set1_pd(1.0);
1475     __m128d          two     = _mm_set1_pd(2.0);
1476     x                = xx[0];
1477     f                = ff[0];
1478
1479     nri              = nlist->nri;
1480     iinr             = nlist->iinr;
1481     jindex           = nlist->jindex;
1482     jjnr             = nlist->jjnr;
1483     shiftidx         = nlist->shift;
1484     gid              = nlist->gid;
1485     shiftvec         = fr->shift_vec[0];
1486     fshift           = fr->fshift[0];
1487     facel            = _mm_set1_pd(fr->epsfac);
1488     charge           = mdatoms->chargeA;
1489     nvdwtype         = fr->ntype;
1490     vdwparam         = fr->nbfp;
1491     vdwtype          = mdatoms->typeA;
1492
1493     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1494     ewtab            = fr->ic->tabq_coul_F;
1495     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1496     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1497
1498     /* Setup water-specific parameters */
1499     inr              = nlist->iinr[0];
1500     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1501     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1502     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1503     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1504
1505     jq0              = _mm_set1_pd(charge[inr+0]);
1506     jq1              = _mm_set1_pd(charge[inr+1]);
1507     jq2              = _mm_set1_pd(charge[inr+2]);
1508     vdwjidx0A        = 2*vdwtype[inr+0];
1509     qq00             = _mm_mul_pd(iq0,jq0);
1510     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1511     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1512     qq01             = _mm_mul_pd(iq0,jq1);
1513     qq02             = _mm_mul_pd(iq0,jq2);
1514     qq10             = _mm_mul_pd(iq1,jq0);
1515     qq11             = _mm_mul_pd(iq1,jq1);
1516     qq12             = _mm_mul_pd(iq1,jq2);
1517     qq20             = _mm_mul_pd(iq2,jq0);
1518     qq21             = _mm_mul_pd(iq2,jq1);
1519     qq22             = _mm_mul_pd(iq2,jq2);
1520
1521     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1522     rcutoff_scalar   = fr->rcoulomb;
1523     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1524     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1525
1526     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
1527     rvdw             = _mm_set1_pd(fr->rvdw);
1528
1529     /* Avoid stupid compiler warnings */
1530     jnrA = jnrB = 0;
1531     j_coord_offsetA = 0;
1532     j_coord_offsetB = 0;
1533
1534     outeriter        = 0;
1535     inneriter        = 0;
1536
1537     /* Start outer loop over neighborlists */
1538     for(iidx=0; iidx<nri; iidx++)
1539     {
1540         /* Load shift vector for this list */
1541         i_shift_offset   = DIM*shiftidx[iidx];
1542
1543         /* Load limits for loop over neighbors */
1544         j_index_start    = jindex[iidx];
1545         j_index_end      = jindex[iidx+1];
1546
1547         /* Get outer coordinate index */
1548         inr              = iinr[iidx];
1549         i_coord_offset   = DIM*inr;
1550
1551         /* Load i particle coords and add shift vector */
1552         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1553                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1554
1555         fix0             = _mm_setzero_pd();
1556         fiy0             = _mm_setzero_pd();
1557         fiz0             = _mm_setzero_pd();
1558         fix1             = _mm_setzero_pd();
1559         fiy1             = _mm_setzero_pd();
1560         fiz1             = _mm_setzero_pd();
1561         fix2             = _mm_setzero_pd();
1562         fiy2             = _mm_setzero_pd();
1563         fiz2             = _mm_setzero_pd();
1564
1565         /* Start inner kernel loop */
1566         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1567         {
1568
1569             /* Get j neighbor index, and coordinate index */
1570             jnrA             = jjnr[jidx];
1571             jnrB             = jjnr[jidx+1];
1572             j_coord_offsetA  = DIM*jnrA;
1573             j_coord_offsetB  = DIM*jnrB;
1574
1575             /* load j atom coordinates */
1576             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1577                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1578
1579             /* Calculate displacement vector */
1580             dx00             = _mm_sub_pd(ix0,jx0);
1581             dy00             = _mm_sub_pd(iy0,jy0);
1582             dz00             = _mm_sub_pd(iz0,jz0);
1583             dx01             = _mm_sub_pd(ix0,jx1);
1584             dy01             = _mm_sub_pd(iy0,jy1);
1585             dz01             = _mm_sub_pd(iz0,jz1);
1586             dx02             = _mm_sub_pd(ix0,jx2);
1587             dy02             = _mm_sub_pd(iy0,jy2);
1588             dz02             = _mm_sub_pd(iz0,jz2);
1589             dx10             = _mm_sub_pd(ix1,jx0);
1590             dy10             = _mm_sub_pd(iy1,jy0);
1591             dz10             = _mm_sub_pd(iz1,jz0);
1592             dx11             = _mm_sub_pd(ix1,jx1);
1593             dy11             = _mm_sub_pd(iy1,jy1);
1594             dz11             = _mm_sub_pd(iz1,jz1);
1595             dx12             = _mm_sub_pd(ix1,jx2);
1596             dy12             = _mm_sub_pd(iy1,jy2);
1597             dz12             = _mm_sub_pd(iz1,jz2);
1598             dx20             = _mm_sub_pd(ix2,jx0);
1599             dy20             = _mm_sub_pd(iy2,jy0);
1600             dz20             = _mm_sub_pd(iz2,jz0);
1601             dx21             = _mm_sub_pd(ix2,jx1);
1602             dy21             = _mm_sub_pd(iy2,jy1);
1603             dz21             = _mm_sub_pd(iz2,jz1);
1604             dx22             = _mm_sub_pd(ix2,jx2);
1605             dy22             = _mm_sub_pd(iy2,jy2);
1606             dz22             = _mm_sub_pd(iz2,jz2);
1607
1608             /* Calculate squared distance and things based on it */
1609             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1610             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1611             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1612             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1613             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1614             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1615             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1616             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1617             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1618
1619             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1620             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1621             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1622             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1623             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1624             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1625             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1626             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1627             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1628
1629             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1630             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1631             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1632             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1633             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1634             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1635             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1636             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1637             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1638
1639             fjx0             = _mm_setzero_pd();
1640             fjy0             = _mm_setzero_pd();
1641             fjz0             = _mm_setzero_pd();
1642             fjx1             = _mm_setzero_pd();
1643             fjy1             = _mm_setzero_pd();
1644             fjz1             = _mm_setzero_pd();
1645             fjx2             = _mm_setzero_pd();
1646             fjy2             = _mm_setzero_pd();
1647             fjz2             = _mm_setzero_pd();
1648
1649             /**************************
1650              * CALCULATE INTERACTIONS *
1651              **************************/
1652
1653             if (gmx_mm_any_lt(rsq00,rcutoff2))
1654             {
1655
1656             r00              = _mm_mul_pd(rsq00,rinv00);
1657
1658             /* EWALD ELECTROSTATICS */
1659
1660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1661             ewrt             = _mm_mul_pd(r00,ewtabscale);
1662             ewitab           = _mm_cvttpd_epi32(ewrt);
1663             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1664             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1665                                          &ewtabF,&ewtabFn);
1666             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1667             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1668
1669             /* LENNARD-JONES DISPERSION/REPULSION */
1670
1671             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1672             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1673
1674             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1675
1676             fscal            = _mm_add_pd(felec,fvdw);
1677
1678             fscal            = _mm_and_pd(fscal,cutoff_mask);
1679
1680             /* Calculate temporary vectorial force */
1681             tx               = _mm_mul_pd(fscal,dx00);
1682             ty               = _mm_mul_pd(fscal,dy00);
1683             tz               = _mm_mul_pd(fscal,dz00);
1684
1685             /* Update vectorial force */
1686             fix0             = _mm_add_pd(fix0,tx);
1687             fiy0             = _mm_add_pd(fiy0,ty);
1688             fiz0             = _mm_add_pd(fiz0,tz);
1689
1690             fjx0             = _mm_add_pd(fjx0,tx);
1691             fjy0             = _mm_add_pd(fjy0,ty);
1692             fjz0             = _mm_add_pd(fjz0,tz);
1693
1694             }
1695
1696             /**************************
1697              * CALCULATE INTERACTIONS *
1698              **************************/
1699
1700             if (gmx_mm_any_lt(rsq01,rcutoff2))
1701             {
1702
1703             r01              = _mm_mul_pd(rsq01,rinv01);
1704
1705             /* EWALD ELECTROSTATICS */
1706
1707             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1708             ewrt             = _mm_mul_pd(r01,ewtabscale);
1709             ewitab           = _mm_cvttpd_epi32(ewrt);
1710             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1711             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1712                                          &ewtabF,&ewtabFn);
1713             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1714             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1715
1716             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1717
1718             fscal            = felec;
1719
1720             fscal            = _mm_and_pd(fscal,cutoff_mask);
1721
1722             /* Calculate temporary vectorial force */
1723             tx               = _mm_mul_pd(fscal,dx01);
1724             ty               = _mm_mul_pd(fscal,dy01);
1725             tz               = _mm_mul_pd(fscal,dz01);
1726
1727             /* Update vectorial force */
1728             fix0             = _mm_add_pd(fix0,tx);
1729             fiy0             = _mm_add_pd(fiy0,ty);
1730             fiz0             = _mm_add_pd(fiz0,tz);
1731
1732             fjx1             = _mm_add_pd(fjx1,tx);
1733             fjy1             = _mm_add_pd(fjy1,ty);
1734             fjz1             = _mm_add_pd(fjz1,tz);
1735
1736             }
1737
1738             /**************************
1739              * CALCULATE INTERACTIONS *
1740              **************************/
1741
1742             if (gmx_mm_any_lt(rsq02,rcutoff2))
1743             {
1744
1745             r02              = _mm_mul_pd(rsq02,rinv02);
1746
1747             /* EWALD ELECTROSTATICS */
1748
1749             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1750             ewrt             = _mm_mul_pd(r02,ewtabscale);
1751             ewitab           = _mm_cvttpd_epi32(ewrt);
1752             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1753             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1754                                          &ewtabF,&ewtabFn);
1755             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1756             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1757
1758             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1759
1760             fscal            = felec;
1761
1762             fscal            = _mm_and_pd(fscal,cutoff_mask);
1763
1764             /* Calculate temporary vectorial force */
1765             tx               = _mm_mul_pd(fscal,dx02);
1766             ty               = _mm_mul_pd(fscal,dy02);
1767             tz               = _mm_mul_pd(fscal,dz02);
1768
1769             /* Update vectorial force */
1770             fix0             = _mm_add_pd(fix0,tx);
1771             fiy0             = _mm_add_pd(fiy0,ty);
1772             fiz0             = _mm_add_pd(fiz0,tz);
1773
1774             fjx2             = _mm_add_pd(fjx2,tx);
1775             fjy2             = _mm_add_pd(fjy2,ty);
1776             fjz2             = _mm_add_pd(fjz2,tz);
1777
1778             }
1779
1780             /**************************
1781              * CALCULATE INTERACTIONS *
1782              **************************/
1783
1784             if (gmx_mm_any_lt(rsq10,rcutoff2))
1785             {
1786
1787             r10              = _mm_mul_pd(rsq10,rinv10);
1788
1789             /* EWALD ELECTROSTATICS */
1790
1791             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1792             ewrt             = _mm_mul_pd(r10,ewtabscale);
1793             ewitab           = _mm_cvttpd_epi32(ewrt);
1794             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1795             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1796                                          &ewtabF,&ewtabFn);
1797             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1798             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1799
1800             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1801
1802             fscal            = felec;
1803
1804             fscal            = _mm_and_pd(fscal,cutoff_mask);
1805
1806             /* Calculate temporary vectorial force */
1807             tx               = _mm_mul_pd(fscal,dx10);
1808             ty               = _mm_mul_pd(fscal,dy10);
1809             tz               = _mm_mul_pd(fscal,dz10);
1810
1811             /* Update vectorial force */
1812             fix1             = _mm_add_pd(fix1,tx);
1813             fiy1             = _mm_add_pd(fiy1,ty);
1814             fiz1             = _mm_add_pd(fiz1,tz);
1815
1816             fjx0             = _mm_add_pd(fjx0,tx);
1817             fjy0             = _mm_add_pd(fjy0,ty);
1818             fjz0             = _mm_add_pd(fjz0,tz);
1819
1820             }
1821
1822             /**************************
1823              * CALCULATE INTERACTIONS *
1824              **************************/
1825
1826             if (gmx_mm_any_lt(rsq11,rcutoff2))
1827             {
1828
1829             r11              = _mm_mul_pd(rsq11,rinv11);
1830
1831             /* EWALD ELECTROSTATICS */
1832
1833             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1834             ewrt             = _mm_mul_pd(r11,ewtabscale);
1835             ewitab           = _mm_cvttpd_epi32(ewrt);
1836             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1837             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1838                                          &ewtabF,&ewtabFn);
1839             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1840             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1841
1842             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1843
1844             fscal            = felec;
1845
1846             fscal            = _mm_and_pd(fscal,cutoff_mask);
1847
1848             /* Calculate temporary vectorial force */
1849             tx               = _mm_mul_pd(fscal,dx11);
1850             ty               = _mm_mul_pd(fscal,dy11);
1851             tz               = _mm_mul_pd(fscal,dz11);
1852
1853             /* Update vectorial force */
1854             fix1             = _mm_add_pd(fix1,tx);
1855             fiy1             = _mm_add_pd(fiy1,ty);
1856             fiz1             = _mm_add_pd(fiz1,tz);
1857
1858             fjx1             = _mm_add_pd(fjx1,tx);
1859             fjy1             = _mm_add_pd(fjy1,ty);
1860             fjz1             = _mm_add_pd(fjz1,tz);
1861
1862             }
1863
1864             /**************************
1865              * CALCULATE INTERACTIONS *
1866              **************************/
1867
1868             if (gmx_mm_any_lt(rsq12,rcutoff2))
1869             {
1870
1871             r12              = _mm_mul_pd(rsq12,rinv12);
1872
1873             /* EWALD ELECTROSTATICS */
1874
1875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1876             ewrt             = _mm_mul_pd(r12,ewtabscale);
1877             ewitab           = _mm_cvttpd_epi32(ewrt);
1878             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1879             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1880                                          &ewtabF,&ewtabFn);
1881             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1882             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1883
1884             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1885
1886             fscal            = felec;
1887
1888             fscal            = _mm_and_pd(fscal,cutoff_mask);
1889
1890             /* Calculate temporary vectorial force */
1891             tx               = _mm_mul_pd(fscal,dx12);
1892             ty               = _mm_mul_pd(fscal,dy12);
1893             tz               = _mm_mul_pd(fscal,dz12);
1894
1895             /* Update vectorial force */
1896             fix1             = _mm_add_pd(fix1,tx);
1897             fiy1             = _mm_add_pd(fiy1,ty);
1898             fiz1             = _mm_add_pd(fiz1,tz);
1899
1900             fjx2             = _mm_add_pd(fjx2,tx);
1901             fjy2             = _mm_add_pd(fjy2,ty);
1902             fjz2             = _mm_add_pd(fjz2,tz);
1903
1904             }
1905
1906             /**************************
1907              * CALCULATE INTERACTIONS *
1908              **************************/
1909
1910             if (gmx_mm_any_lt(rsq20,rcutoff2))
1911             {
1912
1913             r20              = _mm_mul_pd(rsq20,rinv20);
1914
1915             /* EWALD ELECTROSTATICS */
1916
1917             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1918             ewrt             = _mm_mul_pd(r20,ewtabscale);
1919             ewitab           = _mm_cvttpd_epi32(ewrt);
1920             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1921             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1922                                          &ewtabF,&ewtabFn);
1923             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1924             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1925
1926             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1927
1928             fscal            = felec;
1929
1930             fscal            = _mm_and_pd(fscal,cutoff_mask);
1931
1932             /* Calculate temporary vectorial force */
1933             tx               = _mm_mul_pd(fscal,dx20);
1934             ty               = _mm_mul_pd(fscal,dy20);
1935             tz               = _mm_mul_pd(fscal,dz20);
1936
1937             /* Update vectorial force */
1938             fix2             = _mm_add_pd(fix2,tx);
1939             fiy2             = _mm_add_pd(fiy2,ty);
1940             fiz2             = _mm_add_pd(fiz2,tz);
1941
1942             fjx0             = _mm_add_pd(fjx0,tx);
1943             fjy0             = _mm_add_pd(fjy0,ty);
1944             fjz0             = _mm_add_pd(fjz0,tz);
1945
1946             }
1947
1948             /**************************
1949              * CALCULATE INTERACTIONS *
1950              **************************/
1951
1952             if (gmx_mm_any_lt(rsq21,rcutoff2))
1953             {
1954
1955             r21              = _mm_mul_pd(rsq21,rinv21);
1956
1957             /* EWALD ELECTROSTATICS */
1958
1959             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1960             ewrt             = _mm_mul_pd(r21,ewtabscale);
1961             ewitab           = _mm_cvttpd_epi32(ewrt);
1962             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1963             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1964                                          &ewtabF,&ewtabFn);
1965             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1966             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1967
1968             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1969
1970             fscal            = felec;
1971
1972             fscal            = _mm_and_pd(fscal,cutoff_mask);
1973
1974             /* Calculate temporary vectorial force */
1975             tx               = _mm_mul_pd(fscal,dx21);
1976             ty               = _mm_mul_pd(fscal,dy21);
1977             tz               = _mm_mul_pd(fscal,dz21);
1978
1979             /* Update vectorial force */
1980             fix2             = _mm_add_pd(fix2,tx);
1981             fiy2             = _mm_add_pd(fiy2,ty);
1982             fiz2             = _mm_add_pd(fiz2,tz);
1983
1984             fjx1             = _mm_add_pd(fjx1,tx);
1985             fjy1             = _mm_add_pd(fjy1,ty);
1986             fjz1             = _mm_add_pd(fjz1,tz);
1987
1988             }
1989
1990             /**************************
1991              * CALCULATE INTERACTIONS *
1992              **************************/
1993
1994             if (gmx_mm_any_lt(rsq22,rcutoff2))
1995             {
1996
1997             r22              = _mm_mul_pd(rsq22,rinv22);
1998
1999             /* EWALD ELECTROSTATICS */
2000
2001             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2002             ewrt             = _mm_mul_pd(r22,ewtabscale);
2003             ewitab           = _mm_cvttpd_epi32(ewrt);
2004             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2005             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2006                                          &ewtabF,&ewtabFn);
2007             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2008             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2009
2010             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2011
2012             fscal            = felec;
2013
2014             fscal            = _mm_and_pd(fscal,cutoff_mask);
2015
2016             /* Calculate temporary vectorial force */
2017             tx               = _mm_mul_pd(fscal,dx22);
2018             ty               = _mm_mul_pd(fscal,dy22);
2019             tz               = _mm_mul_pd(fscal,dz22);
2020
2021             /* Update vectorial force */
2022             fix2             = _mm_add_pd(fix2,tx);
2023             fiy2             = _mm_add_pd(fiy2,ty);
2024             fiz2             = _mm_add_pd(fiz2,tz);
2025
2026             fjx2             = _mm_add_pd(fjx2,tx);
2027             fjy2             = _mm_add_pd(fjy2,ty);
2028             fjz2             = _mm_add_pd(fjz2,tz);
2029
2030             }
2031
2032             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2033
2034             /* Inner loop uses 358 flops */
2035         }
2036
2037         if(jidx<j_index_end)
2038         {
2039
2040             jnrA             = jjnr[jidx];
2041             j_coord_offsetA  = DIM*jnrA;
2042
2043             /* load j atom coordinates */
2044             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2045                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2046
2047             /* Calculate displacement vector */
2048             dx00             = _mm_sub_pd(ix0,jx0);
2049             dy00             = _mm_sub_pd(iy0,jy0);
2050             dz00             = _mm_sub_pd(iz0,jz0);
2051             dx01             = _mm_sub_pd(ix0,jx1);
2052             dy01             = _mm_sub_pd(iy0,jy1);
2053             dz01             = _mm_sub_pd(iz0,jz1);
2054             dx02             = _mm_sub_pd(ix0,jx2);
2055             dy02             = _mm_sub_pd(iy0,jy2);
2056             dz02             = _mm_sub_pd(iz0,jz2);
2057             dx10             = _mm_sub_pd(ix1,jx0);
2058             dy10             = _mm_sub_pd(iy1,jy0);
2059             dz10             = _mm_sub_pd(iz1,jz0);
2060             dx11             = _mm_sub_pd(ix1,jx1);
2061             dy11             = _mm_sub_pd(iy1,jy1);
2062             dz11             = _mm_sub_pd(iz1,jz1);
2063             dx12             = _mm_sub_pd(ix1,jx2);
2064             dy12             = _mm_sub_pd(iy1,jy2);
2065             dz12             = _mm_sub_pd(iz1,jz2);
2066             dx20             = _mm_sub_pd(ix2,jx0);
2067             dy20             = _mm_sub_pd(iy2,jy0);
2068             dz20             = _mm_sub_pd(iz2,jz0);
2069             dx21             = _mm_sub_pd(ix2,jx1);
2070             dy21             = _mm_sub_pd(iy2,jy1);
2071             dz21             = _mm_sub_pd(iz2,jz1);
2072             dx22             = _mm_sub_pd(ix2,jx2);
2073             dy22             = _mm_sub_pd(iy2,jy2);
2074             dz22             = _mm_sub_pd(iz2,jz2);
2075
2076             /* Calculate squared distance and things based on it */
2077             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2078             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2079             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2080             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2081             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2082             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2083             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2084             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2085             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2086
2087             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2088             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2089             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2090             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2091             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2092             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2093             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2094             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2095             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2096
2097             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2098             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2099             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2100             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2101             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2102             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2103             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2104             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2105             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2106
2107             fjx0             = _mm_setzero_pd();
2108             fjy0             = _mm_setzero_pd();
2109             fjz0             = _mm_setzero_pd();
2110             fjx1             = _mm_setzero_pd();
2111             fjy1             = _mm_setzero_pd();
2112             fjz1             = _mm_setzero_pd();
2113             fjx2             = _mm_setzero_pd();
2114             fjy2             = _mm_setzero_pd();
2115             fjz2             = _mm_setzero_pd();
2116
2117             /**************************
2118              * CALCULATE INTERACTIONS *
2119              **************************/
2120
2121             if (gmx_mm_any_lt(rsq00,rcutoff2))
2122             {
2123
2124             r00              = _mm_mul_pd(rsq00,rinv00);
2125
2126             /* EWALD ELECTROSTATICS */
2127
2128             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2129             ewrt             = _mm_mul_pd(r00,ewtabscale);
2130             ewitab           = _mm_cvttpd_epi32(ewrt);
2131             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2132             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2133             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2134             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2135
2136             /* LENNARD-JONES DISPERSION/REPULSION */
2137
2138             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2139             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
2140
2141             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2142
2143             fscal            = _mm_add_pd(felec,fvdw);
2144
2145             fscal            = _mm_and_pd(fscal,cutoff_mask);
2146
2147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2148
2149             /* Calculate temporary vectorial force */
2150             tx               = _mm_mul_pd(fscal,dx00);
2151             ty               = _mm_mul_pd(fscal,dy00);
2152             tz               = _mm_mul_pd(fscal,dz00);
2153
2154             /* Update vectorial force */
2155             fix0             = _mm_add_pd(fix0,tx);
2156             fiy0             = _mm_add_pd(fiy0,ty);
2157             fiz0             = _mm_add_pd(fiz0,tz);
2158
2159             fjx0             = _mm_add_pd(fjx0,tx);
2160             fjy0             = _mm_add_pd(fjy0,ty);
2161             fjz0             = _mm_add_pd(fjz0,tz);
2162
2163             }
2164
2165             /**************************
2166              * CALCULATE INTERACTIONS *
2167              **************************/
2168
2169             if (gmx_mm_any_lt(rsq01,rcutoff2))
2170             {
2171
2172             r01              = _mm_mul_pd(rsq01,rinv01);
2173
2174             /* EWALD ELECTROSTATICS */
2175
2176             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2177             ewrt             = _mm_mul_pd(r01,ewtabscale);
2178             ewitab           = _mm_cvttpd_epi32(ewrt);
2179             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2180             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2181             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2182             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2183
2184             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2185
2186             fscal            = felec;
2187
2188             fscal            = _mm_and_pd(fscal,cutoff_mask);
2189
2190             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2191
2192             /* Calculate temporary vectorial force */
2193             tx               = _mm_mul_pd(fscal,dx01);
2194             ty               = _mm_mul_pd(fscal,dy01);
2195             tz               = _mm_mul_pd(fscal,dz01);
2196
2197             /* Update vectorial force */
2198             fix0             = _mm_add_pd(fix0,tx);
2199             fiy0             = _mm_add_pd(fiy0,ty);
2200             fiz0             = _mm_add_pd(fiz0,tz);
2201
2202             fjx1             = _mm_add_pd(fjx1,tx);
2203             fjy1             = _mm_add_pd(fjy1,ty);
2204             fjz1             = _mm_add_pd(fjz1,tz);
2205
2206             }
2207
2208             /**************************
2209              * CALCULATE INTERACTIONS *
2210              **************************/
2211
2212             if (gmx_mm_any_lt(rsq02,rcutoff2))
2213             {
2214
2215             r02              = _mm_mul_pd(rsq02,rinv02);
2216
2217             /* EWALD ELECTROSTATICS */
2218
2219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2220             ewrt             = _mm_mul_pd(r02,ewtabscale);
2221             ewitab           = _mm_cvttpd_epi32(ewrt);
2222             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2223             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2224             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2225             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2226
2227             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2228
2229             fscal            = felec;
2230
2231             fscal            = _mm_and_pd(fscal,cutoff_mask);
2232
2233             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2234
2235             /* Calculate temporary vectorial force */
2236             tx               = _mm_mul_pd(fscal,dx02);
2237             ty               = _mm_mul_pd(fscal,dy02);
2238             tz               = _mm_mul_pd(fscal,dz02);
2239
2240             /* Update vectorial force */
2241             fix0             = _mm_add_pd(fix0,tx);
2242             fiy0             = _mm_add_pd(fiy0,ty);
2243             fiz0             = _mm_add_pd(fiz0,tz);
2244
2245             fjx2             = _mm_add_pd(fjx2,tx);
2246             fjy2             = _mm_add_pd(fjy2,ty);
2247             fjz2             = _mm_add_pd(fjz2,tz);
2248
2249             }
2250
2251             /**************************
2252              * CALCULATE INTERACTIONS *
2253              **************************/
2254
2255             if (gmx_mm_any_lt(rsq10,rcutoff2))
2256             {
2257
2258             r10              = _mm_mul_pd(rsq10,rinv10);
2259
2260             /* EWALD ELECTROSTATICS */
2261
2262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2263             ewrt             = _mm_mul_pd(r10,ewtabscale);
2264             ewitab           = _mm_cvttpd_epi32(ewrt);
2265             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2266             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2267             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2268             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2269
2270             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2271
2272             fscal            = felec;
2273
2274             fscal            = _mm_and_pd(fscal,cutoff_mask);
2275
2276             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2277
2278             /* Calculate temporary vectorial force */
2279             tx               = _mm_mul_pd(fscal,dx10);
2280             ty               = _mm_mul_pd(fscal,dy10);
2281             tz               = _mm_mul_pd(fscal,dz10);
2282
2283             /* Update vectorial force */
2284             fix1             = _mm_add_pd(fix1,tx);
2285             fiy1             = _mm_add_pd(fiy1,ty);
2286             fiz1             = _mm_add_pd(fiz1,tz);
2287
2288             fjx0             = _mm_add_pd(fjx0,tx);
2289             fjy0             = _mm_add_pd(fjy0,ty);
2290             fjz0             = _mm_add_pd(fjz0,tz);
2291
2292             }
2293
2294             /**************************
2295              * CALCULATE INTERACTIONS *
2296              **************************/
2297
2298             if (gmx_mm_any_lt(rsq11,rcutoff2))
2299             {
2300
2301             r11              = _mm_mul_pd(rsq11,rinv11);
2302
2303             /* EWALD ELECTROSTATICS */
2304
2305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2306             ewrt             = _mm_mul_pd(r11,ewtabscale);
2307             ewitab           = _mm_cvttpd_epi32(ewrt);
2308             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2309             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2310             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2311             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2312
2313             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2314
2315             fscal            = felec;
2316
2317             fscal            = _mm_and_pd(fscal,cutoff_mask);
2318
2319             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2320
2321             /* Calculate temporary vectorial force */
2322             tx               = _mm_mul_pd(fscal,dx11);
2323             ty               = _mm_mul_pd(fscal,dy11);
2324             tz               = _mm_mul_pd(fscal,dz11);
2325
2326             /* Update vectorial force */
2327             fix1             = _mm_add_pd(fix1,tx);
2328             fiy1             = _mm_add_pd(fiy1,ty);
2329             fiz1             = _mm_add_pd(fiz1,tz);
2330
2331             fjx1             = _mm_add_pd(fjx1,tx);
2332             fjy1             = _mm_add_pd(fjy1,ty);
2333             fjz1             = _mm_add_pd(fjz1,tz);
2334
2335             }
2336
2337             /**************************
2338              * CALCULATE INTERACTIONS *
2339              **************************/
2340
2341             if (gmx_mm_any_lt(rsq12,rcutoff2))
2342             {
2343
2344             r12              = _mm_mul_pd(rsq12,rinv12);
2345
2346             /* EWALD ELECTROSTATICS */
2347
2348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2349             ewrt             = _mm_mul_pd(r12,ewtabscale);
2350             ewitab           = _mm_cvttpd_epi32(ewrt);
2351             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2352             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2353             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2354             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2355
2356             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2357
2358             fscal            = felec;
2359
2360             fscal            = _mm_and_pd(fscal,cutoff_mask);
2361
2362             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2363
2364             /* Calculate temporary vectorial force */
2365             tx               = _mm_mul_pd(fscal,dx12);
2366             ty               = _mm_mul_pd(fscal,dy12);
2367             tz               = _mm_mul_pd(fscal,dz12);
2368
2369             /* Update vectorial force */
2370             fix1             = _mm_add_pd(fix1,tx);
2371             fiy1             = _mm_add_pd(fiy1,ty);
2372             fiz1             = _mm_add_pd(fiz1,tz);
2373
2374             fjx2             = _mm_add_pd(fjx2,tx);
2375             fjy2             = _mm_add_pd(fjy2,ty);
2376             fjz2             = _mm_add_pd(fjz2,tz);
2377
2378             }
2379
2380             /**************************
2381              * CALCULATE INTERACTIONS *
2382              **************************/
2383
2384             if (gmx_mm_any_lt(rsq20,rcutoff2))
2385             {
2386
2387             r20              = _mm_mul_pd(rsq20,rinv20);
2388
2389             /* EWALD ELECTROSTATICS */
2390
2391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2392             ewrt             = _mm_mul_pd(r20,ewtabscale);
2393             ewitab           = _mm_cvttpd_epi32(ewrt);
2394             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2395             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2396             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2397             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2398
2399             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2400
2401             fscal            = felec;
2402
2403             fscal            = _mm_and_pd(fscal,cutoff_mask);
2404
2405             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2406
2407             /* Calculate temporary vectorial force */
2408             tx               = _mm_mul_pd(fscal,dx20);
2409             ty               = _mm_mul_pd(fscal,dy20);
2410             tz               = _mm_mul_pd(fscal,dz20);
2411
2412             /* Update vectorial force */
2413             fix2             = _mm_add_pd(fix2,tx);
2414             fiy2             = _mm_add_pd(fiy2,ty);
2415             fiz2             = _mm_add_pd(fiz2,tz);
2416
2417             fjx0             = _mm_add_pd(fjx0,tx);
2418             fjy0             = _mm_add_pd(fjy0,ty);
2419             fjz0             = _mm_add_pd(fjz0,tz);
2420
2421             }
2422
2423             /**************************
2424              * CALCULATE INTERACTIONS *
2425              **************************/
2426
2427             if (gmx_mm_any_lt(rsq21,rcutoff2))
2428             {
2429
2430             r21              = _mm_mul_pd(rsq21,rinv21);
2431
2432             /* EWALD ELECTROSTATICS */
2433
2434             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2435             ewrt             = _mm_mul_pd(r21,ewtabscale);
2436             ewitab           = _mm_cvttpd_epi32(ewrt);
2437             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2438             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2439             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2440             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2441
2442             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2443
2444             fscal            = felec;
2445
2446             fscal            = _mm_and_pd(fscal,cutoff_mask);
2447
2448             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2449
2450             /* Calculate temporary vectorial force */
2451             tx               = _mm_mul_pd(fscal,dx21);
2452             ty               = _mm_mul_pd(fscal,dy21);
2453             tz               = _mm_mul_pd(fscal,dz21);
2454
2455             /* Update vectorial force */
2456             fix2             = _mm_add_pd(fix2,tx);
2457             fiy2             = _mm_add_pd(fiy2,ty);
2458             fiz2             = _mm_add_pd(fiz2,tz);
2459
2460             fjx1             = _mm_add_pd(fjx1,tx);
2461             fjy1             = _mm_add_pd(fjy1,ty);
2462             fjz1             = _mm_add_pd(fjz1,tz);
2463
2464             }
2465
2466             /**************************
2467              * CALCULATE INTERACTIONS *
2468              **************************/
2469
2470             if (gmx_mm_any_lt(rsq22,rcutoff2))
2471             {
2472
2473             r22              = _mm_mul_pd(rsq22,rinv22);
2474
2475             /* EWALD ELECTROSTATICS */
2476
2477             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2478             ewrt             = _mm_mul_pd(r22,ewtabscale);
2479             ewitab           = _mm_cvttpd_epi32(ewrt);
2480             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2481             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2482             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2483             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2484
2485             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2486
2487             fscal            = felec;
2488
2489             fscal            = _mm_and_pd(fscal,cutoff_mask);
2490
2491             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2492
2493             /* Calculate temporary vectorial force */
2494             tx               = _mm_mul_pd(fscal,dx22);
2495             ty               = _mm_mul_pd(fscal,dy22);
2496             tz               = _mm_mul_pd(fscal,dz22);
2497
2498             /* Update vectorial force */
2499             fix2             = _mm_add_pd(fix2,tx);
2500             fiy2             = _mm_add_pd(fiy2,ty);
2501             fiz2             = _mm_add_pd(fiz2,tz);
2502
2503             fjx2             = _mm_add_pd(fjx2,tx);
2504             fjy2             = _mm_add_pd(fjy2,ty);
2505             fjz2             = _mm_add_pd(fjz2,tz);
2506
2507             }
2508
2509             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2510
2511             /* Inner loop uses 358 flops */
2512         }
2513
2514         /* End of innermost loop */
2515
2516         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2517                                               f+i_coord_offset,fshift+i_shift_offset);
2518
2519         /* Increment number of inner iterations */
2520         inneriter                  += j_index_end - j_index_start;
2521
2522         /* Outer loop uses 18 flops */
2523     }
2524
2525     /* Increment number of outer iterations */
2526     outeriter        += nri;
2527
2528     /* Update outer/inner flops */
2529
2530     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*358);
2531 }