c5bd29d2f53ed5f88f6d1260c395e0f60e76ff7b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          ewitab;
86     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
87     real             *ewtab;
88     __m128d          dummy_mask,cutoff_mask;
89     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
90     __m128d          one     = _mm_set1_pd(1.0);
91     __m128d          two     = _mm_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
110     ewtab            = fr->ic->tabq_coul_FDV0;
111     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
112     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
117     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
118     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_pd(rcutoff_scalar);
124     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
125
126     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
127     rvdw             = _mm_set1_pd(fr->rvdw);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
153                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158         fix1             = _mm_setzero_pd();
159         fiy1             = _mm_setzero_pd();
160         fiz1             = _mm_setzero_pd();
161         fix2             = _mm_setzero_pd();
162         fiy2             = _mm_setzero_pd();
163         fiz2             = _mm_setzero_pd();
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_pd(ix0,jx0);
185             dy00             = _mm_sub_pd(iy0,jy0);
186             dz00             = _mm_sub_pd(iz0,jz0);
187             dx10             = _mm_sub_pd(ix1,jx0);
188             dy10             = _mm_sub_pd(iy1,jy0);
189             dz10             = _mm_sub_pd(iz1,jz0);
190             dx20             = _mm_sub_pd(ix2,jx0);
191             dy20             = _mm_sub_pd(iy2,jy0);
192             dz20             = _mm_sub_pd(iz2,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198
199             rinv00           = gmx_mm_invsqrt_pd(rsq00);
200             rinv10           = gmx_mm_invsqrt_pd(rsq10);
201             rinv20           = gmx_mm_invsqrt_pd(rsq20);
202
203             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
204             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
205             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211
212             fjx0             = _mm_setzero_pd();
213             fjy0             = _mm_setzero_pd();
214             fjz0             = _mm_setzero_pd();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (gmx_mm_any_lt(rsq00,rcutoff2))
221             {
222
223             r00              = _mm_mul_pd(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_pd(iq0,jq0);
227             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
229
230             /* EWALD ELECTROSTATICS */
231
232             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
233             ewrt             = _mm_mul_pd(r00,ewtabscale);
234             ewitab           = _mm_cvttpd_epi32(ewrt);
235             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
236             ewitab           = _mm_slli_epi32(ewitab,2);
237             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
238             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
239             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
240             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
241             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
243             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
244             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
245             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
246             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
252             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
253             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
254                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
255             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
256
257             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velec            = _mm_and_pd(velec,cutoff_mask);
261             velecsum         = _mm_add_pd(velecsum,velec);
262             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
263             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
264
265             fscal            = _mm_add_pd(felec,fvdw);
266
267             fscal            = _mm_and_pd(fscal,cutoff_mask);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_pd(fscal,dx00);
271             ty               = _mm_mul_pd(fscal,dy00);
272             tz               = _mm_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_pd(fix0,tx);
276             fiy0             = _mm_add_pd(fiy0,ty);
277             fiz0             = _mm_add_pd(fiz0,tz);
278
279             fjx0             = _mm_add_pd(fjx0,tx);
280             fjy0             = _mm_add_pd(fjy0,ty);
281             fjz0             = _mm_add_pd(fjz0,tz);
282
283             }
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             if (gmx_mm_any_lt(rsq10,rcutoff2))
290             {
291
292             r10              = _mm_mul_pd(rsq10,rinv10);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm_mul_pd(iq1,jq0);
296
297             /* EWALD ELECTROSTATICS */
298
299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
300             ewrt             = _mm_mul_pd(r10,ewtabscale);
301             ewitab           = _mm_cvttpd_epi32(ewrt);
302             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
303             ewitab           = _mm_slli_epi32(ewitab,2);
304             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
305             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
306             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
307             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
308             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
309             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
310             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
311             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
312             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
313             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
314
315             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_and_pd(velec,cutoff_mask);
319             velecsum         = _mm_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             fscal            = _mm_and_pd(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx10);
327             ty               = _mm_mul_pd(fscal,dy10);
328             tz               = _mm_mul_pd(fscal,dz10);
329
330             /* Update vectorial force */
331             fix1             = _mm_add_pd(fix1,tx);
332             fiy1             = _mm_add_pd(fiy1,ty);
333             fiz1             = _mm_add_pd(fiz1,tz);
334
335             fjx0             = _mm_add_pd(fjx0,tx);
336             fjy0             = _mm_add_pd(fjy0,ty);
337             fjz0             = _mm_add_pd(fjz0,tz);
338
339             }
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm_any_lt(rsq20,rcutoff2))
346             {
347
348             r20              = _mm_mul_pd(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_pd(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm_mul_pd(r20,ewtabscale);
357             ewitab           = _mm_cvttpd_epi32(ewrt);
358             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
359             ewitab           = _mm_slli_epi32(ewitab,2);
360             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
361             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
362             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
363             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
364             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
365             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
366             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
367             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
368             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
369             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
370
371             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _mm_and_pd(velec,cutoff_mask);
375             velecsum         = _mm_add_pd(velecsum,velec);
376
377             fscal            = felec;
378
379             fscal            = _mm_and_pd(fscal,cutoff_mask);
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm_mul_pd(fscal,dx20);
383             ty               = _mm_mul_pd(fscal,dy20);
384             tz               = _mm_mul_pd(fscal,dz20);
385
386             /* Update vectorial force */
387             fix2             = _mm_add_pd(fix2,tx);
388             fiy2             = _mm_add_pd(fiy2,ty);
389             fiz2             = _mm_add_pd(fiz2,tz);
390
391             fjx0             = _mm_add_pd(fjx0,tx);
392             fjy0             = _mm_add_pd(fjy0,ty);
393             fjz0             = _mm_add_pd(fjz0,tz);
394
395             }
396
397             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
398
399             /* Inner loop uses 159 flops */
400         }
401
402         if(jidx<j_index_end)
403         {
404
405             jnrA             = jjnr[jidx];
406             j_coord_offsetA  = DIM*jnrA;
407
408             /* load j atom coordinates */
409             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
410                                               &jx0,&jy0,&jz0);
411
412             /* Calculate displacement vector */
413             dx00             = _mm_sub_pd(ix0,jx0);
414             dy00             = _mm_sub_pd(iy0,jy0);
415             dz00             = _mm_sub_pd(iz0,jz0);
416             dx10             = _mm_sub_pd(ix1,jx0);
417             dy10             = _mm_sub_pd(iy1,jy0);
418             dz10             = _mm_sub_pd(iz1,jz0);
419             dx20             = _mm_sub_pd(ix2,jx0);
420             dy20             = _mm_sub_pd(iy2,jy0);
421             dz20             = _mm_sub_pd(iz2,jz0);
422
423             /* Calculate squared distance and things based on it */
424             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
425             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
426             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
427
428             rinv00           = gmx_mm_invsqrt_pd(rsq00);
429             rinv10           = gmx_mm_invsqrt_pd(rsq10);
430             rinv20           = gmx_mm_invsqrt_pd(rsq20);
431
432             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
433             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
434             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
435
436             /* Load parameters for j particles */
437             jq0              = _mm_load_sd(charge+jnrA+0);
438             vdwjidx0A        = 2*vdwtype[jnrA+0];
439
440             fjx0             = _mm_setzero_pd();
441             fjy0             = _mm_setzero_pd();
442             fjz0             = _mm_setzero_pd();
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             if (gmx_mm_any_lt(rsq00,rcutoff2))
449             {
450
451             r00              = _mm_mul_pd(rsq00,rinv00);
452
453             /* Compute parameters for interactions between i and j atoms */
454             qq00             = _mm_mul_pd(iq0,jq0);
455             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
456
457             /* EWALD ELECTROSTATICS */
458
459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
460             ewrt             = _mm_mul_pd(r00,ewtabscale);
461             ewitab           = _mm_cvttpd_epi32(ewrt);
462             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
463             ewitab           = _mm_slli_epi32(ewitab,2);
464             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
465             ewtabD           = _mm_setzero_pd();
466             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
467             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
468             ewtabFn          = _mm_setzero_pd();
469             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
470             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
471             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
472             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
473             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
474
475             /* LENNARD-JONES DISPERSION/REPULSION */
476
477             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
478             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
479             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
480             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
481                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
482             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
483
484             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_and_pd(velec,cutoff_mask);
488             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
489             velecsum         = _mm_add_pd(velecsum,velec);
490             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
491             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
492             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
493
494             fscal            = _mm_add_pd(felec,fvdw);
495
496             fscal            = _mm_and_pd(fscal,cutoff_mask);
497
498             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
499
500             /* Calculate temporary vectorial force */
501             tx               = _mm_mul_pd(fscal,dx00);
502             ty               = _mm_mul_pd(fscal,dy00);
503             tz               = _mm_mul_pd(fscal,dz00);
504
505             /* Update vectorial force */
506             fix0             = _mm_add_pd(fix0,tx);
507             fiy0             = _mm_add_pd(fiy0,ty);
508             fiz0             = _mm_add_pd(fiz0,tz);
509
510             fjx0             = _mm_add_pd(fjx0,tx);
511             fjy0             = _mm_add_pd(fjy0,ty);
512             fjz0             = _mm_add_pd(fjz0,tz);
513
514             }
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             if (gmx_mm_any_lt(rsq10,rcutoff2))
521             {
522
523             r10              = _mm_mul_pd(rsq10,rinv10);
524
525             /* Compute parameters for interactions between i and j atoms */
526             qq10             = _mm_mul_pd(iq1,jq0);
527
528             /* EWALD ELECTROSTATICS */
529
530             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
531             ewrt             = _mm_mul_pd(r10,ewtabscale);
532             ewitab           = _mm_cvttpd_epi32(ewrt);
533             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
534             ewitab           = _mm_slli_epi32(ewitab,2);
535             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
536             ewtabD           = _mm_setzero_pd();
537             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
538             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
539             ewtabFn          = _mm_setzero_pd();
540             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
541             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
542             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
543             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
544             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
545
546             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_and_pd(velec,cutoff_mask);
550             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
551             velecsum         = _mm_add_pd(velecsum,velec);
552
553             fscal            = felec;
554
555             fscal            = _mm_and_pd(fscal,cutoff_mask);
556
557             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_pd(fscal,dx10);
561             ty               = _mm_mul_pd(fscal,dy10);
562             tz               = _mm_mul_pd(fscal,dz10);
563
564             /* Update vectorial force */
565             fix1             = _mm_add_pd(fix1,tx);
566             fiy1             = _mm_add_pd(fiy1,ty);
567             fiz1             = _mm_add_pd(fiz1,tz);
568
569             fjx0             = _mm_add_pd(fjx0,tx);
570             fjy0             = _mm_add_pd(fjy0,ty);
571             fjz0             = _mm_add_pd(fjz0,tz);
572
573             }
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq20,rcutoff2))
580             {
581
582             r20              = _mm_mul_pd(rsq20,rinv20);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm_mul_pd(iq2,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590             ewrt             = _mm_mul_pd(r20,ewtabscale);
591             ewitab           = _mm_cvttpd_epi32(ewrt);
592             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
593             ewitab           = _mm_slli_epi32(ewitab,2);
594             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
595             ewtabD           = _mm_setzero_pd();
596             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
597             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
598             ewtabFn          = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
600             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
601             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
602             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
603             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
604
605             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_and_pd(velec,cutoff_mask);
609             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
610             velecsum         = _mm_add_pd(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_and_pd(fscal,cutoff_mask);
615
616             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm_mul_pd(fscal,dx20);
620             ty               = _mm_mul_pd(fscal,dy20);
621             tz               = _mm_mul_pd(fscal,dz20);
622
623             /* Update vectorial force */
624             fix2             = _mm_add_pd(fix2,tx);
625             fiy2             = _mm_add_pd(fiy2,ty);
626             fiz2             = _mm_add_pd(fiz2,tz);
627
628             fjx0             = _mm_add_pd(fjx0,tx);
629             fjy0             = _mm_add_pd(fjy0,ty);
630             fjz0             = _mm_add_pd(fjz0,tz);
631
632             }
633
634             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
635
636             /* Inner loop uses 159 flops */
637         }
638
639         /* End of innermost loop */
640
641         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
642                                               f+i_coord_offset,fshift+i_shift_offset);
643
644         ggid                        = gid[iidx];
645         /* Update potential energies */
646         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
647         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
648
649         /* Increment number of inner iterations */
650         inneriter                  += j_index_end - j_index_start;
651
652         /* Outer loop uses 20 flops */
653     }
654
655     /* Increment number of outer iterations */
656     outeriter        += nri;
657
658     /* Update outer/inner flops */
659
660     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
661 }
662 /*
663  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_double
664  * Electrostatics interaction: Ewald
665  * VdW interaction:            LennardJones
666  * Geometry:                   Water3-Particle
667  * Calculate force/pot:        Force
668  */
669 void
670 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_double
671                     (t_nblist * gmx_restrict                nlist,
672                      rvec * gmx_restrict                    xx,
673                      rvec * gmx_restrict                    ff,
674                      t_forcerec * gmx_restrict              fr,
675                      t_mdatoms * gmx_restrict               mdatoms,
676                      nb_kernel_data_t * gmx_restrict        kernel_data,
677                      t_nrnb * gmx_restrict                  nrnb)
678 {
679     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
680      * just 0 for non-waters.
681      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
682      * jnr indices corresponding to data put in the four positions in the SIMD register.
683      */
684     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
685     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
686     int              jnrA,jnrB;
687     int              j_coord_offsetA,j_coord_offsetB;
688     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
689     real             rcutoff_scalar;
690     real             *shiftvec,*fshift,*x,*f;
691     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
692     int              vdwioffset0;
693     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694     int              vdwioffset1;
695     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696     int              vdwioffset2;
697     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698     int              vdwjidx0A,vdwjidx0B;
699     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
701     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
702     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
703     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
704     real             *charge;
705     int              nvdwtype;
706     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
707     int              *vdwtype;
708     real             *vdwparam;
709     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
710     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
711     __m128i          ewitab;
712     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
713     real             *ewtab;
714     __m128d          dummy_mask,cutoff_mask;
715     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
716     __m128d          one     = _mm_set1_pd(1.0);
717     __m128d          two     = _mm_set1_pd(2.0);
718     x                = xx[0];
719     f                = ff[0];
720
721     nri              = nlist->nri;
722     iinr             = nlist->iinr;
723     jindex           = nlist->jindex;
724     jjnr             = nlist->jjnr;
725     shiftidx         = nlist->shift;
726     gid              = nlist->gid;
727     shiftvec         = fr->shift_vec[0];
728     fshift           = fr->fshift[0];
729     facel            = _mm_set1_pd(fr->epsfac);
730     charge           = mdatoms->chargeA;
731     nvdwtype         = fr->ntype;
732     vdwparam         = fr->nbfp;
733     vdwtype          = mdatoms->typeA;
734
735     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
736     ewtab            = fr->ic->tabq_coul_F;
737     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
738     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
739
740     /* Setup water-specific parameters */
741     inr              = nlist->iinr[0];
742     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
743     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
744     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
745     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
746
747     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
748     rcutoff_scalar   = fr->rcoulomb;
749     rcutoff          = _mm_set1_pd(rcutoff_scalar);
750     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
751
752     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
753     rvdw             = _mm_set1_pd(fr->rvdw);
754
755     /* Avoid stupid compiler warnings */
756     jnrA = jnrB = 0;
757     j_coord_offsetA = 0;
758     j_coord_offsetB = 0;
759
760     outeriter        = 0;
761     inneriter        = 0;
762
763     /* Start outer loop over neighborlists */
764     for(iidx=0; iidx<nri; iidx++)
765     {
766         /* Load shift vector for this list */
767         i_shift_offset   = DIM*shiftidx[iidx];
768
769         /* Load limits for loop over neighbors */
770         j_index_start    = jindex[iidx];
771         j_index_end      = jindex[iidx+1];
772
773         /* Get outer coordinate index */
774         inr              = iinr[iidx];
775         i_coord_offset   = DIM*inr;
776
777         /* Load i particle coords and add shift vector */
778         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
779                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
780
781         fix0             = _mm_setzero_pd();
782         fiy0             = _mm_setzero_pd();
783         fiz0             = _mm_setzero_pd();
784         fix1             = _mm_setzero_pd();
785         fiy1             = _mm_setzero_pd();
786         fiz1             = _mm_setzero_pd();
787         fix2             = _mm_setzero_pd();
788         fiy2             = _mm_setzero_pd();
789         fiz2             = _mm_setzero_pd();
790
791         /* Start inner kernel loop */
792         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
793         {
794
795             /* Get j neighbor index, and coordinate index */
796             jnrA             = jjnr[jidx];
797             jnrB             = jjnr[jidx+1];
798             j_coord_offsetA  = DIM*jnrA;
799             j_coord_offsetB  = DIM*jnrB;
800
801             /* load j atom coordinates */
802             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
803                                               &jx0,&jy0,&jz0);
804
805             /* Calculate displacement vector */
806             dx00             = _mm_sub_pd(ix0,jx0);
807             dy00             = _mm_sub_pd(iy0,jy0);
808             dz00             = _mm_sub_pd(iz0,jz0);
809             dx10             = _mm_sub_pd(ix1,jx0);
810             dy10             = _mm_sub_pd(iy1,jy0);
811             dz10             = _mm_sub_pd(iz1,jz0);
812             dx20             = _mm_sub_pd(ix2,jx0);
813             dy20             = _mm_sub_pd(iy2,jy0);
814             dz20             = _mm_sub_pd(iz2,jz0);
815
816             /* Calculate squared distance and things based on it */
817             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
818             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
819             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
820
821             rinv00           = gmx_mm_invsqrt_pd(rsq00);
822             rinv10           = gmx_mm_invsqrt_pd(rsq10);
823             rinv20           = gmx_mm_invsqrt_pd(rsq20);
824
825             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
826             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
827             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
828
829             /* Load parameters for j particles */
830             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
831             vdwjidx0A        = 2*vdwtype[jnrA+0];
832             vdwjidx0B        = 2*vdwtype[jnrB+0];
833
834             fjx0             = _mm_setzero_pd();
835             fjy0             = _mm_setzero_pd();
836             fjz0             = _mm_setzero_pd();
837
838             /**************************
839              * CALCULATE INTERACTIONS *
840              **************************/
841
842             if (gmx_mm_any_lt(rsq00,rcutoff2))
843             {
844
845             r00              = _mm_mul_pd(rsq00,rinv00);
846
847             /* Compute parameters for interactions between i and j atoms */
848             qq00             = _mm_mul_pd(iq0,jq0);
849             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
850                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
851
852             /* EWALD ELECTROSTATICS */
853
854             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
855             ewrt             = _mm_mul_pd(r00,ewtabscale);
856             ewitab           = _mm_cvttpd_epi32(ewrt);
857             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
858             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
859                                          &ewtabF,&ewtabFn);
860             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
861             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
862
863             /* LENNARD-JONES DISPERSION/REPULSION */
864
865             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
866             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
867
868             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
869
870             fscal            = _mm_add_pd(felec,fvdw);
871
872             fscal            = _mm_and_pd(fscal,cutoff_mask);
873
874             /* Calculate temporary vectorial force */
875             tx               = _mm_mul_pd(fscal,dx00);
876             ty               = _mm_mul_pd(fscal,dy00);
877             tz               = _mm_mul_pd(fscal,dz00);
878
879             /* Update vectorial force */
880             fix0             = _mm_add_pd(fix0,tx);
881             fiy0             = _mm_add_pd(fiy0,ty);
882             fiz0             = _mm_add_pd(fiz0,tz);
883
884             fjx0             = _mm_add_pd(fjx0,tx);
885             fjy0             = _mm_add_pd(fjy0,ty);
886             fjz0             = _mm_add_pd(fjz0,tz);
887
888             }
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             if (gmx_mm_any_lt(rsq10,rcutoff2))
895             {
896
897             r10              = _mm_mul_pd(rsq10,rinv10);
898
899             /* Compute parameters for interactions between i and j atoms */
900             qq10             = _mm_mul_pd(iq1,jq0);
901
902             /* EWALD ELECTROSTATICS */
903
904             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
905             ewrt             = _mm_mul_pd(r10,ewtabscale);
906             ewitab           = _mm_cvttpd_epi32(ewrt);
907             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
908             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
909                                          &ewtabF,&ewtabFn);
910             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
911             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
912
913             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
914
915             fscal            = felec;
916
917             fscal            = _mm_and_pd(fscal,cutoff_mask);
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx10);
921             ty               = _mm_mul_pd(fscal,dy10);
922             tz               = _mm_mul_pd(fscal,dz10);
923
924             /* Update vectorial force */
925             fix1             = _mm_add_pd(fix1,tx);
926             fiy1             = _mm_add_pd(fiy1,ty);
927             fiz1             = _mm_add_pd(fiz1,tz);
928
929             fjx0             = _mm_add_pd(fjx0,tx);
930             fjy0             = _mm_add_pd(fjy0,ty);
931             fjz0             = _mm_add_pd(fjz0,tz);
932
933             }
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             if (gmx_mm_any_lt(rsq20,rcutoff2))
940             {
941
942             r20              = _mm_mul_pd(rsq20,rinv20);
943
944             /* Compute parameters for interactions between i and j atoms */
945             qq20             = _mm_mul_pd(iq2,jq0);
946
947             /* EWALD ELECTROSTATICS */
948
949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
950             ewrt             = _mm_mul_pd(r20,ewtabscale);
951             ewitab           = _mm_cvttpd_epi32(ewrt);
952             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
953             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
954                                          &ewtabF,&ewtabFn);
955             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
956             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
957
958             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
959
960             fscal            = felec;
961
962             fscal            = _mm_and_pd(fscal,cutoff_mask);
963
964             /* Calculate temporary vectorial force */
965             tx               = _mm_mul_pd(fscal,dx20);
966             ty               = _mm_mul_pd(fscal,dy20);
967             tz               = _mm_mul_pd(fscal,dz20);
968
969             /* Update vectorial force */
970             fix2             = _mm_add_pd(fix2,tx);
971             fiy2             = _mm_add_pd(fiy2,ty);
972             fiz2             = _mm_add_pd(fiz2,tz);
973
974             fjx0             = _mm_add_pd(fjx0,tx);
975             fjy0             = _mm_add_pd(fjy0,ty);
976             fjz0             = _mm_add_pd(fjz0,tz);
977
978             }
979
980             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
981
982             /* Inner loop uses 127 flops */
983         }
984
985         if(jidx<j_index_end)
986         {
987
988             jnrA             = jjnr[jidx];
989             j_coord_offsetA  = DIM*jnrA;
990
991             /* load j atom coordinates */
992             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
993                                               &jx0,&jy0,&jz0);
994
995             /* Calculate displacement vector */
996             dx00             = _mm_sub_pd(ix0,jx0);
997             dy00             = _mm_sub_pd(iy0,jy0);
998             dz00             = _mm_sub_pd(iz0,jz0);
999             dx10             = _mm_sub_pd(ix1,jx0);
1000             dy10             = _mm_sub_pd(iy1,jy0);
1001             dz10             = _mm_sub_pd(iz1,jz0);
1002             dx20             = _mm_sub_pd(ix2,jx0);
1003             dy20             = _mm_sub_pd(iy2,jy0);
1004             dz20             = _mm_sub_pd(iz2,jz0);
1005
1006             /* Calculate squared distance and things based on it */
1007             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1008             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1009             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1010
1011             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1012             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1013             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1014
1015             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1016             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1017             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1018
1019             /* Load parameters for j particles */
1020             jq0              = _mm_load_sd(charge+jnrA+0);
1021             vdwjidx0A        = 2*vdwtype[jnrA+0];
1022
1023             fjx0             = _mm_setzero_pd();
1024             fjy0             = _mm_setzero_pd();
1025             fjz0             = _mm_setzero_pd();
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             if (gmx_mm_any_lt(rsq00,rcutoff2))
1032             {
1033
1034             r00              = _mm_mul_pd(rsq00,rinv00);
1035
1036             /* Compute parameters for interactions between i and j atoms */
1037             qq00             = _mm_mul_pd(iq0,jq0);
1038             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1039
1040             /* EWALD ELECTROSTATICS */
1041
1042             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1043             ewrt             = _mm_mul_pd(r00,ewtabscale);
1044             ewitab           = _mm_cvttpd_epi32(ewrt);
1045             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1046             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1047             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1048             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1049
1050             /* LENNARD-JONES DISPERSION/REPULSION */
1051
1052             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1053             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1054
1055             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1056
1057             fscal            = _mm_add_pd(felec,fvdw);
1058
1059             fscal            = _mm_and_pd(fscal,cutoff_mask);
1060
1061             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1062
1063             /* Calculate temporary vectorial force */
1064             tx               = _mm_mul_pd(fscal,dx00);
1065             ty               = _mm_mul_pd(fscal,dy00);
1066             tz               = _mm_mul_pd(fscal,dz00);
1067
1068             /* Update vectorial force */
1069             fix0             = _mm_add_pd(fix0,tx);
1070             fiy0             = _mm_add_pd(fiy0,ty);
1071             fiz0             = _mm_add_pd(fiz0,tz);
1072
1073             fjx0             = _mm_add_pd(fjx0,tx);
1074             fjy0             = _mm_add_pd(fjy0,ty);
1075             fjz0             = _mm_add_pd(fjz0,tz);
1076
1077             }
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             if (gmx_mm_any_lt(rsq10,rcutoff2))
1084             {
1085
1086             r10              = _mm_mul_pd(rsq10,rinv10);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq10             = _mm_mul_pd(iq1,jq0);
1090
1091             /* EWALD ELECTROSTATICS */
1092
1093             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1094             ewrt             = _mm_mul_pd(r10,ewtabscale);
1095             ewitab           = _mm_cvttpd_epi32(ewrt);
1096             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1097             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1098             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1099             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1100
1101             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1102
1103             fscal            = felec;
1104
1105             fscal            = _mm_and_pd(fscal,cutoff_mask);
1106
1107             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_pd(fscal,dx10);
1111             ty               = _mm_mul_pd(fscal,dy10);
1112             tz               = _mm_mul_pd(fscal,dz10);
1113
1114             /* Update vectorial force */
1115             fix1             = _mm_add_pd(fix1,tx);
1116             fiy1             = _mm_add_pd(fiy1,ty);
1117             fiz1             = _mm_add_pd(fiz1,tz);
1118
1119             fjx0             = _mm_add_pd(fjx0,tx);
1120             fjy0             = _mm_add_pd(fjy0,ty);
1121             fjz0             = _mm_add_pd(fjz0,tz);
1122
1123             }
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq20,rcutoff2))
1130             {
1131
1132             r20              = _mm_mul_pd(rsq20,rinv20);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq20             = _mm_mul_pd(iq2,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_pd(r20,ewtabscale);
1141             ewitab           = _mm_cvttpd_epi32(ewrt);
1142             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1143             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1144             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1145             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1146
1147             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_and_pd(fscal,cutoff_mask);
1152
1153             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm_mul_pd(fscal,dx20);
1157             ty               = _mm_mul_pd(fscal,dy20);
1158             tz               = _mm_mul_pd(fscal,dz20);
1159
1160             /* Update vectorial force */
1161             fix2             = _mm_add_pd(fix2,tx);
1162             fiy2             = _mm_add_pd(fiy2,ty);
1163             fiz2             = _mm_add_pd(fiz2,tz);
1164
1165             fjx0             = _mm_add_pd(fjx0,tx);
1166             fjy0             = _mm_add_pd(fjy0,ty);
1167             fjz0             = _mm_add_pd(fjz0,tz);
1168
1169             }
1170
1171             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1172
1173             /* Inner loop uses 127 flops */
1174         }
1175
1176         /* End of innermost loop */
1177
1178         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1179                                               f+i_coord_offset,fshift+i_shift_offset);
1180
1181         /* Increment number of inner iterations */
1182         inneriter                  += j_index_end - j_index_start;
1183
1184         /* Outer loop uses 18 flops */
1185     }
1186
1187     /* Increment number of outer iterations */
1188     outeriter        += nri;
1189
1190     /* Update outer/inner flops */
1191
1192     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1193 }