Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->ic->rcoulomb;
123     rcutoff          = _mm_set1_pd(rcutoff_scalar);
124     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
125
126     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
127     rvdw             = _mm_set1_pd(fr->ic->rvdw);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = sse41_invsqrt_d(rsq00);
189
190             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             if (gmx_mm_any_lt(rsq00,rcutoff2))
202             {
203
204             r00              = _mm_mul_pd(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm_mul_pd(iq0,jq0);
208             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* EWALD ELECTROSTATICS */
212
213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
214             ewrt             = _mm_mul_pd(r00,ewtabscale);
215             ewitab           = _mm_cvttpd_epi32(ewrt);
216             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
217             ewitab           = _mm_slli_epi32(ewitab,2);
218             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
219             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
220             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
221             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
222             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
223             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
224             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
225             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
226             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
227             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
233             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
234             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
235                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
236             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
237
238             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velec            = _mm_and_pd(velec,cutoff_mask);
242             velecsum         = _mm_add_pd(velecsum,velec);
243             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
244             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
245
246             fscal            = _mm_add_pd(felec,fvdw);
247
248             fscal            = _mm_and_pd(fscal,cutoff_mask);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx00);
252             ty               = _mm_mul_pd(fscal,dy00);
253             tz               = _mm_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_pd(fix0,tx);
257             fiy0             = _mm_add_pd(fiy0,ty);
258             fiz0             = _mm_add_pd(fiz0,tz);
259
260             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
261
262             }
263
264             /* Inner loop uses 64 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             jnrA             = jjnr[jidx];
271             j_coord_offsetA  = DIM*jnrA;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
275                                               &jx0,&jy0,&jz0);
276
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_pd(ix0,jx0);
279             dy00             = _mm_sub_pd(iy0,jy0);
280             dz00             = _mm_sub_pd(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
284
285             rinv00           = sse41_invsqrt_d(rsq00);
286
287             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
288
289             /* Load parameters for j particles */
290             jq0              = _mm_load_sd(charge+jnrA+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             if (gmx_mm_any_lt(rsq00,rcutoff2))
298             {
299
300             r00              = _mm_mul_pd(rsq00,rinv00);
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq00             = _mm_mul_pd(iq0,jq0);
304             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r00,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
312             ewitab           = _mm_slli_epi32(ewitab,2);
313             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
314             ewtabD           = _mm_setzero_pd();
315             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
316             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
317             ewtabFn          = _mm_setzero_pd();
318             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
319             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
320             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
321             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
322             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
323
324             /* LENNARD-JONES DISPERSION/REPULSION */
325
326             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
327             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
328             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
329             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
330                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
331             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
332
333             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _mm_and_pd(velec,cutoff_mask);
337             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
338             velecsum         = _mm_add_pd(velecsum,velec);
339             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
340             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
341             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
342
343             fscal            = _mm_add_pd(felec,fvdw);
344
345             fscal            = _mm_and_pd(fscal,cutoff_mask);
346
347             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx00);
351             ty               = _mm_mul_pd(fscal,dy00);
352             tz               = _mm_mul_pd(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm_add_pd(fix0,tx);
356             fiy0             = _mm_add_pd(fiy0,ty);
357             fiz0             = _mm_add_pd(fiz0,tz);
358
359             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
360
361             }
362
363             /* Inner loop uses 64 flops */
364         }
365
366         /* End of innermost loop */
367
368         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
369                                               f+i_coord_offset,fshift+i_shift_offset);
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
374         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
375
376         /* Increment number of inner iterations */
377         inneriter                  += j_index_end - j_index_start;
378
379         /* Outer loop uses 9 flops */
380     }
381
382     /* Increment number of outer iterations */
383     outeriter        += nri;
384
385     /* Update outer/inner flops */
386
387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
388 }
389 /*
390  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_double
391  * Electrostatics interaction: Ewald
392  * VdW interaction:            LennardJones
393  * Geometry:                   Particle-Particle
394  * Calculate force/pot:        Force
395  */
396 void
397 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_double
398                     (t_nblist                    * gmx_restrict       nlist,
399                      rvec                        * gmx_restrict          xx,
400                      rvec                        * gmx_restrict          ff,
401                      struct t_forcerec           * gmx_restrict          fr,
402                      t_mdatoms                   * gmx_restrict     mdatoms,
403                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
404                      t_nrnb                      * gmx_restrict        nrnb)
405 {
406     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
407      * just 0 for non-waters.
408      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
409      * jnr indices corresponding to data put in the four positions in the SIMD register.
410      */
411     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
412     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
413     int              jnrA,jnrB;
414     int              j_coord_offsetA,j_coord_offsetB;
415     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
416     real             rcutoff_scalar;
417     real             *shiftvec,*fshift,*x,*f;
418     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     int              vdwioffset0;
420     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B;
422     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
425     real             *charge;
426     int              nvdwtype;
427     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
428     int              *vdwtype;
429     real             *vdwparam;
430     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
431     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
432     __m128i          ewitab;
433     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
434     real             *ewtab;
435     __m128d          dummy_mask,cutoff_mask;
436     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
437     __m128d          one     = _mm_set1_pd(1.0);
438     __m128d          two     = _mm_set1_pd(2.0);
439     x                = xx[0];
440     f                = ff[0];
441
442     nri              = nlist->nri;
443     iinr             = nlist->iinr;
444     jindex           = nlist->jindex;
445     jjnr             = nlist->jjnr;
446     shiftidx         = nlist->shift;
447     gid              = nlist->gid;
448     shiftvec         = fr->shift_vec[0];
449     fshift           = fr->fshift[0];
450     facel            = _mm_set1_pd(fr->ic->epsfac);
451     charge           = mdatoms->chargeA;
452     nvdwtype         = fr->ntype;
453     vdwparam         = fr->nbfp;
454     vdwtype          = mdatoms->typeA;
455
456     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
457     ewtab            = fr->ic->tabq_coul_F;
458     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
459     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
460
461     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
462     rcutoff_scalar   = fr->ic->rcoulomb;
463     rcutoff          = _mm_set1_pd(rcutoff_scalar);
464     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
465
466     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
467     rvdw             = _mm_set1_pd(fr->ic->rvdw);
468
469     /* Avoid stupid compiler warnings */
470     jnrA = jnrB = 0;
471     j_coord_offsetA = 0;
472     j_coord_offsetB = 0;
473
474     outeriter        = 0;
475     inneriter        = 0;
476
477     /* Start outer loop over neighborlists */
478     for(iidx=0; iidx<nri; iidx++)
479     {
480         /* Load shift vector for this list */
481         i_shift_offset   = DIM*shiftidx[iidx];
482
483         /* Load limits for loop over neighbors */
484         j_index_start    = jindex[iidx];
485         j_index_end      = jindex[iidx+1];
486
487         /* Get outer coordinate index */
488         inr              = iinr[iidx];
489         i_coord_offset   = DIM*inr;
490
491         /* Load i particle coords and add shift vector */
492         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
493
494         fix0             = _mm_setzero_pd();
495         fiy0             = _mm_setzero_pd();
496         fiz0             = _mm_setzero_pd();
497
498         /* Load parameters for i particles */
499         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
500         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
501
502         /* Start inner kernel loop */
503         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
504         {
505
506             /* Get j neighbor index, and coordinate index */
507             jnrA             = jjnr[jidx];
508             jnrB             = jjnr[jidx+1];
509             j_coord_offsetA  = DIM*jnrA;
510             j_coord_offsetB  = DIM*jnrB;
511
512             /* load j atom coordinates */
513             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
514                                               &jx0,&jy0,&jz0);
515
516             /* Calculate displacement vector */
517             dx00             = _mm_sub_pd(ix0,jx0);
518             dy00             = _mm_sub_pd(iy0,jy0);
519             dz00             = _mm_sub_pd(iz0,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
523
524             rinv00           = sse41_invsqrt_d(rsq00);
525
526             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
527
528             /* Load parameters for j particles */
529             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
530             vdwjidx0A        = 2*vdwtype[jnrA+0];
531             vdwjidx0B        = 2*vdwtype[jnrB+0];
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             if (gmx_mm_any_lt(rsq00,rcutoff2))
538             {
539
540             r00              = _mm_mul_pd(rsq00,rinv00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq00             = _mm_mul_pd(iq0,jq0);
544             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
545                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
546
547             /* EWALD ELECTROSTATICS */
548
549             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
550             ewrt             = _mm_mul_pd(r00,ewtabscale);
551             ewitab           = _mm_cvttpd_epi32(ewrt);
552             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
553             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
554                                          &ewtabF,&ewtabFn);
555             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
556             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
557
558             /* LENNARD-JONES DISPERSION/REPULSION */
559
560             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
561             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
562
563             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
564
565             fscal            = _mm_add_pd(felec,fvdw);
566
567             fscal            = _mm_and_pd(fscal,cutoff_mask);
568
569             /* Calculate temporary vectorial force */
570             tx               = _mm_mul_pd(fscal,dx00);
571             ty               = _mm_mul_pd(fscal,dy00);
572             tz               = _mm_mul_pd(fscal,dz00);
573
574             /* Update vectorial force */
575             fix0             = _mm_add_pd(fix0,tx);
576             fiy0             = _mm_add_pd(fiy0,ty);
577             fiz0             = _mm_add_pd(fiz0,tz);
578
579             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
580
581             }
582
583             /* Inner loop uses 46 flops */
584         }
585
586         if(jidx<j_index_end)
587         {
588
589             jnrA             = jjnr[jidx];
590             j_coord_offsetA  = DIM*jnrA;
591
592             /* load j atom coordinates */
593             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
594                                               &jx0,&jy0,&jz0);
595
596             /* Calculate displacement vector */
597             dx00             = _mm_sub_pd(ix0,jx0);
598             dy00             = _mm_sub_pd(iy0,jy0);
599             dz00             = _mm_sub_pd(iz0,jz0);
600
601             /* Calculate squared distance and things based on it */
602             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
603
604             rinv00           = sse41_invsqrt_d(rsq00);
605
606             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
607
608             /* Load parameters for j particles */
609             jq0              = _mm_load_sd(charge+jnrA+0);
610             vdwjidx0A        = 2*vdwtype[jnrA+0];
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             if (gmx_mm_any_lt(rsq00,rcutoff2))
617             {
618
619             r00              = _mm_mul_pd(rsq00,rinv00);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq00             = _mm_mul_pd(iq0,jq0);
623             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = _mm_mul_pd(r00,ewtabscale);
629             ewitab           = _mm_cvttpd_epi32(ewrt);
630             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
631             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
632             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
633             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
634
635             /* LENNARD-JONES DISPERSION/REPULSION */
636
637             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
638             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
639
640             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
641
642             fscal            = _mm_add_pd(felec,fvdw);
643
644             fscal            = _mm_and_pd(fscal,cutoff_mask);
645
646             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm_mul_pd(fscal,dx00);
650             ty               = _mm_mul_pd(fscal,dy00);
651             tz               = _mm_mul_pd(fscal,dz00);
652
653             /* Update vectorial force */
654             fix0             = _mm_add_pd(fix0,tx);
655             fiy0             = _mm_add_pd(fiy0,ty);
656             fiz0             = _mm_add_pd(fiz0,tz);
657
658             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
659
660             }
661
662             /* Inner loop uses 46 flops */
663         }
664
665         /* End of innermost loop */
666
667         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
668                                               f+i_coord_offset,fshift+i_shift_offset);
669
670         /* Increment number of inner iterations */
671         inneriter                  += j_index_end - j_index_start;
672
673         /* Outer loop uses 7 flops */
674     }
675
676     /* Increment number of outer iterations */
677     outeriter        += nri;
678
679     /* Update outer/inner flops */
680
681     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
682 }