Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_pd(rcutoff_scalar);
125     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
128     rvdw             = _mm_set1_pd(fr->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_pd(rsq00);
190
191             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_mm_any_lt(rsq00,rcutoff2))
203             {
204
205             r00              = _mm_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             /* EWALD ELECTROSTATICS */
213
214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215             ewrt             = _mm_mul_pd(r00,ewtabscale);
216             ewitab           = _mm_cvttpd_epi32(ewrt);
217             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
218             ewitab           = _mm_slli_epi32(ewitab,2);
219             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
220             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
221             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
222             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
223             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
225             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
226             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
227             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
228             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
229
230             /* LENNARD-JONES DISPERSION/REPULSION */
231
232             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
233             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
234             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
235             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
236                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
237             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
238
239             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             velec            = _mm_and_pd(velec,cutoff_mask);
243             velecsum         = _mm_add_pd(velecsum,velec);
244             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
245             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
246
247             fscal            = _mm_add_pd(felec,fvdw);
248
249             fscal            = _mm_and_pd(fscal,cutoff_mask);
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_pd(fscal,dx00);
253             ty               = _mm_mul_pd(fscal,dy00);
254             tz               = _mm_mul_pd(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm_add_pd(fix0,tx);
258             fiy0             = _mm_add_pd(fiy0,ty);
259             fiz0             = _mm_add_pd(fiz0,tz);
260
261             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
262
263             }
264
265             /* Inner loop uses 64 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_pd(ix0,jx0);
280             dy00             = _mm_sub_pd(iy0,jy0);
281             dz00             = _mm_sub_pd(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
285
286             rinv00           = gmx_mm_invsqrt_pd(rsq00);
287
288             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _mm_load_sd(charge+jnrA+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq00,rcutoff2))
299             {
300
301             r00              = _mm_mul_pd(rsq00,rinv00);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm_mul_pd(iq0,jq0);
305             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r00,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_setzero_pd();
316             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
317             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
318             ewtabFn          = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
320             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
321             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
322             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
323             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
324
325             /* LENNARD-JONES DISPERSION/REPULSION */
326
327             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
328             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
329             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
330             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
331                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
332             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
333
334             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_pd(velec,cutoff_mask);
338             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
339             velecsum         = _mm_add_pd(velecsum,velec);
340             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
341             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
342             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
343
344             fscal            = _mm_add_pd(felec,fvdw);
345
346             fscal            = _mm_and_pd(fscal,cutoff_mask);
347
348             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_pd(fscal,dx00);
352             ty               = _mm_mul_pd(fscal,dy00);
353             tz               = _mm_mul_pd(fscal,dz00);
354
355             /* Update vectorial force */
356             fix0             = _mm_add_pd(fix0,tx);
357             fiy0             = _mm_add_pd(fiy0,ty);
358             fiz0             = _mm_add_pd(fiz0,tz);
359
360             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
361
362             }
363
364             /* Inner loop uses 64 flops */
365         }
366
367         /* End of innermost loop */
368
369         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
370                                               f+i_coord_offset,fshift+i_shift_offset);
371
372         ggid                        = gid[iidx];
373         /* Update potential energies */
374         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
375         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
376
377         /* Increment number of inner iterations */
378         inneriter                  += j_index_end - j_index_start;
379
380         /* Outer loop uses 9 flops */
381     }
382
383     /* Increment number of outer iterations */
384     outeriter        += nri;
385
386     /* Update outer/inner flops */
387
388     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
389 }
390 /*
391  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_double
392  * Electrostatics interaction: Ewald
393  * VdW interaction:            LennardJones
394  * Geometry:                   Particle-Particle
395  * Calculate force/pot:        Force
396  */
397 void
398 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_double
399                     (t_nblist                    * gmx_restrict       nlist,
400                      rvec                        * gmx_restrict          xx,
401                      rvec                        * gmx_restrict          ff,
402                      t_forcerec                  * gmx_restrict          fr,
403                      t_mdatoms                   * gmx_restrict     mdatoms,
404                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
405                      t_nrnb                      * gmx_restrict        nrnb)
406 {
407     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
408      * just 0 for non-waters.
409      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
410      * jnr indices corresponding to data put in the four positions in the SIMD register.
411      */
412     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
413     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
414     int              jnrA,jnrB;
415     int              j_coord_offsetA,j_coord_offsetB;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             rcutoff_scalar;
418     real             *shiftvec,*fshift,*x,*f;
419     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
420     int              vdwioffset0;
421     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422     int              vdwjidx0A,vdwjidx0B;
423     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
424     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
425     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
426     real             *charge;
427     int              nvdwtype;
428     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
429     int              *vdwtype;
430     real             *vdwparam;
431     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
432     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
433     __m128i          ewitab;
434     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
435     real             *ewtab;
436     __m128d          dummy_mask,cutoff_mask;
437     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
438     __m128d          one     = _mm_set1_pd(1.0);
439     __m128d          two     = _mm_set1_pd(2.0);
440     x                = xx[0];
441     f                = ff[0];
442
443     nri              = nlist->nri;
444     iinr             = nlist->iinr;
445     jindex           = nlist->jindex;
446     jjnr             = nlist->jjnr;
447     shiftidx         = nlist->shift;
448     gid              = nlist->gid;
449     shiftvec         = fr->shift_vec[0];
450     fshift           = fr->fshift[0];
451     facel            = _mm_set1_pd(fr->epsfac);
452     charge           = mdatoms->chargeA;
453     nvdwtype         = fr->ntype;
454     vdwparam         = fr->nbfp;
455     vdwtype          = mdatoms->typeA;
456
457     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
458     ewtab            = fr->ic->tabq_coul_F;
459     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
460     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
461
462     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
463     rcutoff_scalar   = fr->rcoulomb;
464     rcutoff          = _mm_set1_pd(rcutoff_scalar);
465     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
466
467     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
468     rvdw             = _mm_set1_pd(fr->rvdw);
469
470     /* Avoid stupid compiler warnings */
471     jnrA = jnrB = 0;
472     j_coord_offsetA = 0;
473     j_coord_offsetB = 0;
474
475     outeriter        = 0;
476     inneriter        = 0;
477
478     /* Start outer loop over neighborlists */
479     for(iidx=0; iidx<nri; iidx++)
480     {
481         /* Load shift vector for this list */
482         i_shift_offset   = DIM*shiftidx[iidx];
483
484         /* Load limits for loop over neighbors */
485         j_index_start    = jindex[iidx];
486         j_index_end      = jindex[iidx+1];
487
488         /* Get outer coordinate index */
489         inr              = iinr[iidx];
490         i_coord_offset   = DIM*inr;
491
492         /* Load i particle coords and add shift vector */
493         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
494
495         fix0             = _mm_setzero_pd();
496         fiy0             = _mm_setzero_pd();
497         fiz0             = _mm_setzero_pd();
498
499         /* Load parameters for i particles */
500         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
501         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
502
503         /* Start inner kernel loop */
504         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
505         {
506
507             /* Get j neighbor index, and coordinate index */
508             jnrA             = jjnr[jidx];
509             jnrB             = jjnr[jidx+1];
510             j_coord_offsetA  = DIM*jnrA;
511             j_coord_offsetB  = DIM*jnrB;
512
513             /* load j atom coordinates */
514             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
515                                               &jx0,&jy0,&jz0);
516
517             /* Calculate displacement vector */
518             dx00             = _mm_sub_pd(ix0,jx0);
519             dy00             = _mm_sub_pd(iy0,jy0);
520             dz00             = _mm_sub_pd(iz0,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
524
525             rinv00           = gmx_mm_invsqrt_pd(rsq00);
526
527             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
528
529             /* Load parameters for j particles */
530             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
531             vdwjidx0A        = 2*vdwtype[jnrA+0];
532             vdwjidx0B        = 2*vdwtype[jnrB+0];
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             if (gmx_mm_any_lt(rsq00,rcutoff2))
539             {
540
541             r00              = _mm_mul_pd(rsq00,rinv00);
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq00             = _mm_mul_pd(iq0,jq0);
545             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
546                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
547
548             /* EWALD ELECTROSTATICS */
549
550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
551             ewrt             = _mm_mul_pd(r00,ewtabscale);
552             ewitab           = _mm_cvttpd_epi32(ewrt);
553             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
554             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
555                                          &ewtabF,&ewtabFn);
556             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
558
559             /* LENNARD-JONES DISPERSION/REPULSION */
560
561             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
562             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
563
564             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
565
566             fscal            = _mm_add_pd(felec,fvdw);
567
568             fscal            = _mm_and_pd(fscal,cutoff_mask);
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm_mul_pd(fscal,dx00);
572             ty               = _mm_mul_pd(fscal,dy00);
573             tz               = _mm_mul_pd(fscal,dz00);
574
575             /* Update vectorial force */
576             fix0             = _mm_add_pd(fix0,tx);
577             fiy0             = _mm_add_pd(fiy0,ty);
578             fiz0             = _mm_add_pd(fiz0,tz);
579
580             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
581
582             }
583
584             /* Inner loop uses 46 flops */
585         }
586
587         if(jidx<j_index_end)
588         {
589
590             jnrA             = jjnr[jidx];
591             j_coord_offsetA  = DIM*jnrA;
592
593             /* load j atom coordinates */
594             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
595                                               &jx0,&jy0,&jz0);
596
597             /* Calculate displacement vector */
598             dx00             = _mm_sub_pd(ix0,jx0);
599             dy00             = _mm_sub_pd(iy0,jy0);
600             dz00             = _mm_sub_pd(iz0,jz0);
601
602             /* Calculate squared distance and things based on it */
603             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
604
605             rinv00           = gmx_mm_invsqrt_pd(rsq00);
606
607             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
608
609             /* Load parameters for j particles */
610             jq0              = _mm_load_sd(charge+jnrA+0);
611             vdwjidx0A        = 2*vdwtype[jnrA+0];
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             if (gmx_mm_any_lt(rsq00,rcutoff2))
618             {
619
620             r00              = _mm_mul_pd(rsq00,rinv00);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm_mul_pd(iq0,jq0);
624             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_pd(r00,ewtabscale);
630             ewitab           = _mm_cvttpd_epi32(ewrt);
631             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
632             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
633             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
634             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
635
636             /* LENNARD-JONES DISPERSION/REPULSION */
637
638             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
639             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
640
641             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
642
643             fscal            = _mm_add_pd(felec,fvdw);
644
645             fscal            = _mm_and_pd(fscal,cutoff_mask);
646
647             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm_mul_pd(fscal,dx00);
651             ty               = _mm_mul_pd(fscal,dy00);
652             tz               = _mm_mul_pd(fscal,dz00);
653
654             /* Update vectorial force */
655             fix0             = _mm_add_pd(fix0,tx);
656             fiy0             = _mm_add_pd(fiy0,ty);
657             fiz0             = _mm_add_pd(fiz0,tz);
658
659             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
660
661             }
662
663             /* Inner loop uses 46 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         /* Increment number of inner iterations */
672         inneriter                  += j_index_end - j_index_start;
673
674         /* Outer loop uses 7 flops */
675     }
676
677     /* Increment number of outer iterations */
678     outeriter        += nri;
679
680     /* Update outer/inner flops */
681
682     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
683 }