16cabe91050bd437749305dd685099a6d31f8c8e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
107
108     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
109     rcutoff_scalar   = fr->rcoulomb;
110     rcutoff          = _mm_set1_pd(rcutoff_scalar);
111     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
112
113     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
114     rvdw             = _mm_set1_pd(fr->rvdw);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
140
141         fix0             = _mm_setzero_pd();
142         fiy0             = _mm_setzero_pd();
143         fiz0             = _mm_setzero_pd();
144
145         /* Load parameters for i particles */
146         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
147         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149         /* Reset potential sums */
150         velecsum         = _mm_setzero_pd();
151         vvdwsum          = _mm_setzero_pd();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_pd(ix0,jx0);
169             dy00             = _mm_sub_pd(iy0,jy0);
170             dz00             = _mm_sub_pd(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_pd(rsq00);
176
177             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
181             vdwjidx0A        = 2*vdwtype[jnrA+0];
182             vdwjidx0B        = 2*vdwtype[jnrB+0];
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             if (gmx_mm_any_lt(rsq00,rcutoff2))
189             {
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
197
198             /* EWALD ELECTROSTATICS */
199
200             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
201             ewrt             = _mm_mul_pd(r00,ewtabscale);
202             ewitab           = _mm_cvttpd_epi32(ewrt);
203             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
204             ewitab           = _mm_slli_epi32(ewitab,2);
205             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
206             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
207             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
208             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
209             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
210             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
211             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
212             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
213             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
214             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
215
216             /* LENNARD-JONES DISPERSION/REPULSION */
217
218             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
219             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
220             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
221             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
222                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
223             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
224
225             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velec            = _mm_and_pd(velec,cutoff_mask);
229             velecsum         = _mm_add_pd(velecsum,velec);
230             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
231             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
232
233             fscal            = _mm_add_pd(felec,fvdw);
234
235             fscal            = _mm_and_pd(fscal,cutoff_mask);
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm_mul_pd(fscal,dx00);
239             ty               = _mm_mul_pd(fscal,dy00);
240             tz               = _mm_mul_pd(fscal,dz00);
241
242             /* Update vectorial force */
243             fix0             = _mm_add_pd(fix0,tx);
244             fiy0             = _mm_add_pd(fiy0,ty);
245             fiz0             = _mm_add_pd(fiz0,tz);
246
247             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
248
249             }
250
251             /* Inner loop uses 64 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             jnrA             = jjnr[jidx];
258             j_coord_offsetA  = DIM*jnrA;
259
260             /* load j atom coordinates */
261             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
262                                               &jx0,&jy0,&jz0);
263
264             /* Calculate displacement vector */
265             dx00             = _mm_sub_pd(ix0,jx0);
266             dy00             = _mm_sub_pd(iy0,jy0);
267             dz00             = _mm_sub_pd(iz0,jz0);
268
269             /* Calculate squared distance and things based on it */
270             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
271
272             rinv00           = gmx_mm_invsqrt_pd(rsq00);
273
274             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
275
276             /* Load parameters for j particles */
277             jq0              = _mm_load_sd(charge+jnrA+0);
278             vdwjidx0A        = 2*vdwtype[jnrA+0];
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             if (gmx_mm_any_lt(rsq00,rcutoff2))
285             {
286
287             r00              = _mm_mul_pd(rsq00,rinv00);
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq00             = _mm_mul_pd(iq0,jq0);
291             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
292
293             /* EWALD ELECTROSTATICS */
294
295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296             ewrt             = _mm_mul_pd(r00,ewtabscale);
297             ewitab           = _mm_cvttpd_epi32(ewrt);
298             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
299             ewitab           = _mm_slli_epi32(ewitab,2);
300             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
301             ewtabD           = _mm_setzero_pd();
302             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
303             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
304             ewtabFn          = _mm_setzero_pd();
305             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
306             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
307             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
308             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
309             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
310
311             /* LENNARD-JONES DISPERSION/REPULSION */
312
313             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
314             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
315             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
316             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
317                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
318             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
319
320             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velec            = _mm_and_pd(velec,cutoff_mask);
324             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
325             velecsum         = _mm_add_pd(velecsum,velec);
326             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
327             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
328             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
329
330             fscal            = _mm_add_pd(felec,fvdw);
331
332             fscal            = _mm_and_pd(fscal,cutoff_mask);
333
334             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm_mul_pd(fscal,dx00);
338             ty               = _mm_mul_pd(fscal,dy00);
339             tz               = _mm_mul_pd(fscal,dz00);
340
341             /* Update vectorial force */
342             fix0             = _mm_add_pd(fix0,tx);
343             fiy0             = _mm_add_pd(fiy0,ty);
344             fiz0             = _mm_add_pd(fiz0,tz);
345
346             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
347
348             }
349
350             /* Inner loop uses 64 flops */
351         }
352
353         /* End of innermost loop */
354
355         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
356                                               f+i_coord_offset,fshift+i_shift_offset);
357
358         ggid                        = gid[iidx];
359         /* Update potential energies */
360         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
361         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
362
363         /* Increment number of inner iterations */
364         inneriter                  += j_index_end - j_index_start;
365
366         /* Outer loop uses 9 flops */
367     }
368
369     /* Increment number of outer iterations */
370     outeriter        += nri;
371
372     /* Update outer/inner flops */
373
374     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
375 }
376 /*
377  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_double
378  * Electrostatics interaction: Ewald
379  * VdW interaction:            LennardJones
380  * Geometry:                   Particle-Particle
381  * Calculate force/pot:        Force
382  */
383 void
384 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_double
385                     (t_nblist * gmx_restrict                nlist,
386                      rvec * gmx_restrict                    xx,
387                      rvec * gmx_restrict                    ff,
388                      t_forcerec * gmx_restrict              fr,
389                      t_mdatoms * gmx_restrict               mdatoms,
390                      nb_kernel_data_t * gmx_restrict        kernel_data,
391                      t_nrnb * gmx_restrict                  nrnb)
392 {
393     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
394      * just 0 for non-waters.
395      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
396      * jnr indices corresponding to data put in the four positions in the SIMD register.
397      */
398     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
399     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
400     int              jnrA,jnrB;
401     int              j_coord_offsetA,j_coord_offsetB;
402     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
403     real             rcutoff_scalar;
404     real             *shiftvec,*fshift,*x,*f;
405     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
406     int              vdwioffset0;
407     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
408     int              vdwjidx0A,vdwjidx0B;
409     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
410     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
411     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
412     real             *charge;
413     int              nvdwtype;
414     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
415     int              *vdwtype;
416     real             *vdwparam;
417     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
418     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
419     __m128i          ewitab;
420     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
421     real             *ewtab;
422     __m128d          dummy_mask,cutoff_mask;
423     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
424     __m128d          one     = _mm_set1_pd(1.0);
425     __m128d          two     = _mm_set1_pd(2.0);
426     x                = xx[0];
427     f                = ff[0];
428
429     nri              = nlist->nri;
430     iinr             = nlist->iinr;
431     jindex           = nlist->jindex;
432     jjnr             = nlist->jjnr;
433     shiftidx         = nlist->shift;
434     gid              = nlist->gid;
435     shiftvec         = fr->shift_vec[0];
436     fshift           = fr->fshift[0];
437     facel            = _mm_set1_pd(fr->epsfac);
438     charge           = mdatoms->chargeA;
439     nvdwtype         = fr->ntype;
440     vdwparam         = fr->nbfp;
441     vdwtype          = mdatoms->typeA;
442
443     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
444     ewtab            = fr->ic->tabq_coul_F;
445     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
446     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
447
448     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
449     rcutoff_scalar   = fr->rcoulomb;
450     rcutoff          = _mm_set1_pd(rcutoff_scalar);
451     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
452
453     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
454     rvdw             = _mm_set1_pd(fr->rvdw);
455
456     /* Avoid stupid compiler warnings */
457     jnrA = jnrB = 0;
458     j_coord_offsetA = 0;
459     j_coord_offsetB = 0;
460
461     outeriter        = 0;
462     inneriter        = 0;
463
464     /* Start outer loop over neighborlists */
465     for(iidx=0; iidx<nri; iidx++)
466     {
467         /* Load shift vector for this list */
468         i_shift_offset   = DIM*shiftidx[iidx];
469
470         /* Load limits for loop over neighbors */
471         j_index_start    = jindex[iidx];
472         j_index_end      = jindex[iidx+1];
473
474         /* Get outer coordinate index */
475         inr              = iinr[iidx];
476         i_coord_offset   = DIM*inr;
477
478         /* Load i particle coords and add shift vector */
479         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
480
481         fix0             = _mm_setzero_pd();
482         fiy0             = _mm_setzero_pd();
483         fiz0             = _mm_setzero_pd();
484
485         /* Load parameters for i particles */
486         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
487         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
488
489         /* Start inner kernel loop */
490         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
491         {
492
493             /* Get j neighbor index, and coordinate index */
494             jnrA             = jjnr[jidx];
495             jnrB             = jjnr[jidx+1];
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498
499             /* load j atom coordinates */
500             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
501                                               &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm_sub_pd(ix0,jx0);
505             dy00             = _mm_sub_pd(iy0,jy0);
506             dz00             = _mm_sub_pd(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
510
511             rinv00           = gmx_mm_invsqrt_pd(rsq00);
512
513             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
514
515             /* Load parameters for j particles */
516             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
517             vdwjidx0A        = 2*vdwtype[jnrA+0];
518             vdwjidx0B        = 2*vdwtype[jnrB+0];
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             if (gmx_mm_any_lt(rsq00,rcutoff2))
525             {
526
527             r00              = _mm_mul_pd(rsq00,rinv00);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq00             = _mm_mul_pd(iq0,jq0);
531             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
532                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
533
534             /* EWALD ELECTROSTATICS */
535
536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
537             ewrt             = _mm_mul_pd(r00,ewtabscale);
538             ewitab           = _mm_cvttpd_epi32(ewrt);
539             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
540             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
541                                          &ewtabF,&ewtabFn);
542             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
543             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
544
545             /* LENNARD-JONES DISPERSION/REPULSION */
546
547             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
548             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
549
550             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
551
552             fscal            = _mm_add_pd(felec,fvdw);
553
554             fscal            = _mm_and_pd(fscal,cutoff_mask);
555
556             /* Calculate temporary vectorial force */
557             tx               = _mm_mul_pd(fscal,dx00);
558             ty               = _mm_mul_pd(fscal,dy00);
559             tz               = _mm_mul_pd(fscal,dz00);
560
561             /* Update vectorial force */
562             fix0             = _mm_add_pd(fix0,tx);
563             fiy0             = _mm_add_pd(fiy0,ty);
564             fiz0             = _mm_add_pd(fiz0,tz);
565
566             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
567
568             }
569
570             /* Inner loop uses 46 flops */
571         }
572
573         if(jidx<j_index_end)
574         {
575
576             jnrA             = jjnr[jidx];
577             j_coord_offsetA  = DIM*jnrA;
578
579             /* load j atom coordinates */
580             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
581                                               &jx0,&jy0,&jz0);
582
583             /* Calculate displacement vector */
584             dx00             = _mm_sub_pd(ix0,jx0);
585             dy00             = _mm_sub_pd(iy0,jy0);
586             dz00             = _mm_sub_pd(iz0,jz0);
587
588             /* Calculate squared distance and things based on it */
589             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
590
591             rinv00           = gmx_mm_invsqrt_pd(rsq00);
592
593             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
594
595             /* Load parameters for j particles */
596             jq0              = _mm_load_sd(charge+jnrA+0);
597             vdwjidx0A        = 2*vdwtype[jnrA+0];
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_mm_any_lt(rsq00,rcutoff2))
604             {
605
606             r00              = _mm_mul_pd(rsq00,rinv00);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq00             = _mm_mul_pd(iq0,jq0);
610             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
611
612             /* EWALD ELECTROSTATICS */
613
614             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
615             ewrt             = _mm_mul_pd(r00,ewtabscale);
616             ewitab           = _mm_cvttpd_epi32(ewrt);
617             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
618             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
619             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
620             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
621
622             /* LENNARD-JONES DISPERSION/REPULSION */
623
624             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
625             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
626
627             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
628
629             fscal            = _mm_add_pd(felec,fvdw);
630
631             fscal            = _mm_and_pd(fscal,cutoff_mask);
632
633             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm_mul_pd(fscal,dx00);
637             ty               = _mm_mul_pd(fscal,dy00);
638             tz               = _mm_mul_pd(fscal,dz00);
639
640             /* Update vectorial force */
641             fix0             = _mm_add_pd(fix0,tx);
642             fiy0             = _mm_add_pd(fiy0,ty);
643             fiz0             = _mm_add_pd(fiz0,tz);
644
645             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
646
647             }
648
649             /* Inner loop uses 46 flops */
650         }
651
652         /* End of innermost loop */
653
654         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
655                                               f+i_coord_offset,fshift+i_shift_offset);
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 7 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
669 }