389179124a33d3b016446674baf403d458ffcdc5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Water4
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     int              vdwjidx3A,vdwjidx3B;
95     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
96     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
98     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
99     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
100     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
101     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
102     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
103     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
104     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
105     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
106     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
107     real             *charge;
108     int              nvdwtype;
109     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
110     int              *vdwtype;
111     real             *vdwparam;
112     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
113     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
114     __m128d           c6grid_00;
115     __m128d           c6grid_11;
116     __m128d           c6grid_12;
117     __m128d           c6grid_13;
118     __m128d           c6grid_21;
119     __m128d           c6grid_22;
120     __m128d           c6grid_23;
121     __m128d           c6grid_31;
122     __m128d           c6grid_32;
123     __m128d           c6grid_33;
124     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
125     real             *vdwgridparam;
126     __m128d           one_half = _mm_set1_pd(0.5);
127     __m128d           minus_one = _mm_set1_pd(-1.0);
128     __m128i          ewitab;
129     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
130     real             *ewtab;
131     __m128d          dummy_mask,cutoff_mask;
132     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
133     __m128d          one     = _mm_set1_pd(1.0);
134     __m128d          two     = _mm_set1_pd(2.0);
135     x                = xx[0];
136     f                = ff[0];
137
138     nri              = nlist->nri;
139     iinr             = nlist->iinr;
140     jindex           = nlist->jindex;
141     jjnr             = nlist->jjnr;
142     shiftidx         = nlist->shift;
143     gid              = nlist->gid;
144     shiftvec         = fr->shift_vec[0];
145     fshift           = fr->fshift[0];
146     facel            = _mm_set1_pd(fr->epsfac);
147     charge           = mdatoms->chargeA;
148     nvdwtype         = fr->ntype;
149     vdwparam         = fr->nbfp;
150     vdwtype          = mdatoms->typeA;
151     vdwgridparam     = fr->ljpme_c6grid;
152     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
153     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
154     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
155
156     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
157     ewtab            = fr->ic->tabq_coul_FDV0;
158     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
159     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
160
161     /* Setup water-specific parameters */
162     inr              = nlist->iinr[0];
163     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
164     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
165     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
166     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
167
168     jq1              = _mm_set1_pd(charge[inr+1]);
169     jq2              = _mm_set1_pd(charge[inr+2]);
170     jq3              = _mm_set1_pd(charge[inr+3]);
171     vdwjidx0A        = 2*vdwtype[inr+0];
172     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
173     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
174     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
175     qq11             = _mm_mul_pd(iq1,jq1);
176     qq12             = _mm_mul_pd(iq1,jq2);
177     qq13             = _mm_mul_pd(iq1,jq3);
178     qq21             = _mm_mul_pd(iq2,jq1);
179     qq22             = _mm_mul_pd(iq2,jq2);
180     qq23             = _mm_mul_pd(iq2,jq3);
181     qq31             = _mm_mul_pd(iq3,jq1);
182     qq32             = _mm_mul_pd(iq3,jq2);
183     qq33             = _mm_mul_pd(iq3,jq3);
184
185     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
186     rcutoff_scalar   = fr->rcoulomb;
187     rcutoff          = _mm_set1_pd(rcutoff_scalar);
188     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
189
190     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
191     rvdw             = _mm_set1_pd(fr->rvdw);
192
193     /* Avoid stupid compiler warnings */
194     jnrA = jnrB = 0;
195     j_coord_offsetA = 0;
196     j_coord_offsetB = 0;
197
198     outeriter        = 0;
199     inneriter        = 0;
200
201     /* Start outer loop over neighborlists */
202     for(iidx=0; iidx<nri; iidx++)
203     {
204         /* Load shift vector for this list */
205         i_shift_offset   = DIM*shiftidx[iidx];
206
207         /* Load limits for loop over neighbors */
208         j_index_start    = jindex[iidx];
209         j_index_end      = jindex[iidx+1];
210
211         /* Get outer coordinate index */
212         inr              = iinr[iidx];
213         i_coord_offset   = DIM*inr;
214
215         /* Load i particle coords and add shift vector */
216         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
217                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
218
219         fix0             = _mm_setzero_pd();
220         fiy0             = _mm_setzero_pd();
221         fiz0             = _mm_setzero_pd();
222         fix1             = _mm_setzero_pd();
223         fiy1             = _mm_setzero_pd();
224         fiz1             = _mm_setzero_pd();
225         fix2             = _mm_setzero_pd();
226         fiy2             = _mm_setzero_pd();
227         fiz2             = _mm_setzero_pd();
228         fix3             = _mm_setzero_pd();
229         fiy3             = _mm_setzero_pd();
230         fiz3             = _mm_setzero_pd();
231
232         /* Reset potential sums */
233         velecsum         = _mm_setzero_pd();
234         vvdwsum          = _mm_setzero_pd();
235
236         /* Start inner kernel loop */
237         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
238         {
239
240             /* Get j neighbor index, and coordinate index */
241             jnrA             = jjnr[jidx];
242             jnrB             = jjnr[jidx+1];
243             j_coord_offsetA  = DIM*jnrA;
244             j_coord_offsetB  = DIM*jnrB;
245
246             /* load j atom coordinates */
247             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
248                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
249                                               &jy2,&jz2,&jx3,&jy3,&jz3);
250
251             /* Calculate displacement vector */
252             dx00             = _mm_sub_pd(ix0,jx0);
253             dy00             = _mm_sub_pd(iy0,jy0);
254             dz00             = _mm_sub_pd(iz0,jz0);
255             dx11             = _mm_sub_pd(ix1,jx1);
256             dy11             = _mm_sub_pd(iy1,jy1);
257             dz11             = _mm_sub_pd(iz1,jz1);
258             dx12             = _mm_sub_pd(ix1,jx2);
259             dy12             = _mm_sub_pd(iy1,jy2);
260             dz12             = _mm_sub_pd(iz1,jz2);
261             dx13             = _mm_sub_pd(ix1,jx3);
262             dy13             = _mm_sub_pd(iy1,jy3);
263             dz13             = _mm_sub_pd(iz1,jz3);
264             dx21             = _mm_sub_pd(ix2,jx1);
265             dy21             = _mm_sub_pd(iy2,jy1);
266             dz21             = _mm_sub_pd(iz2,jz1);
267             dx22             = _mm_sub_pd(ix2,jx2);
268             dy22             = _mm_sub_pd(iy2,jy2);
269             dz22             = _mm_sub_pd(iz2,jz2);
270             dx23             = _mm_sub_pd(ix2,jx3);
271             dy23             = _mm_sub_pd(iy2,jy3);
272             dz23             = _mm_sub_pd(iz2,jz3);
273             dx31             = _mm_sub_pd(ix3,jx1);
274             dy31             = _mm_sub_pd(iy3,jy1);
275             dz31             = _mm_sub_pd(iz3,jz1);
276             dx32             = _mm_sub_pd(ix3,jx2);
277             dy32             = _mm_sub_pd(iy3,jy2);
278             dz32             = _mm_sub_pd(iz3,jz2);
279             dx33             = _mm_sub_pd(ix3,jx3);
280             dy33             = _mm_sub_pd(iy3,jy3);
281             dz33             = _mm_sub_pd(iz3,jz3);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
285             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
286             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
287             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
288             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
289             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
290             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
291             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
292             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
293             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
294
295             rinv00           = gmx_mm_invsqrt_pd(rsq00);
296             rinv11           = gmx_mm_invsqrt_pd(rsq11);
297             rinv12           = gmx_mm_invsqrt_pd(rsq12);
298             rinv13           = gmx_mm_invsqrt_pd(rsq13);
299             rinv21           = gmx_mm_invsqrt_pd(rsq21);
300             rinv22           = gmx_mm_invsqrt_pd(rsq22);
301             rinv23           = gmx_mm_invsqrt_pd(rsq23);
302             rinv31           = gmx_mm_invsqrt_pd(rsq31);
303             rinv32           = gmx_mm_invsqrt_pd(rsq32);
304             rinv33           = gmx_mm_invsqrt_pd(rsq33);
305
306             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
307             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
308             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
309             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
310             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
311             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
312             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
313             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
314             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
315             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
316
317             fjx0             = _mm_setzero_pd();
318             fjy0             = _mm_setzero_pd();
319             fjz0             = _mm_setzero_pd();
320             fjx1             = _mm_setzero_pd();
321             fjy1             = _mm_setzero_pd();
322             fjz1             = _mm_setzero_pd();
323             fjx2             = _mm_setzero_pd();
324             fjy2             = _mm_setzero_pd();
325             fjz2             = _mm_setzero_pd();
326             fjx3             = _mm_setzero_pd();
327             fjy3             = _mm_setzero_pd();
328             fjz3             = _mm_setzero_pd();
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             if (gmx_mm_any_lt(rsq00,rcutoff2))
335             {
336
337             r00              = _mm_mul_pd(rsq00,rinv00);
338
339             /* Analytical LJ-PME */
340             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
341             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
342             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
343             exponent         = gmx_simd_exp_d(ewcljrsq);
344             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
345             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
346             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
347             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
348             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
349             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
350                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
351             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
352             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
353
354             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
358             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
359
360             fscal            = fvdw;
361
362             fscal            = _mm_and_pd(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_pd(fscal,dx00);
366             ty               = _mm_mul_pd(fscal,dy00);
367             tz               = _mm_mul_pd(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm_add_pd(fix0,tx);
371             fiy0             = _mm_add_pd(fiy0,ty);
372             fiz0             = _mm_add_pd(fiz0,tz);
373
374             fjx0             = _mm_add_pd(fjx0,tx);
375             fjy0             = _mm_add_pd(fjy0,ty);
376             fjz0             = _mm_add_pd(fjz0,tz);
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm_any_lt(rsq11,rcutoff2))
385             {
386
387             r11              = _mm_mul_pd(rsq11,rinv11);
388
389             /* EWALD ELECTROSTATICS */
390
391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
392             ewrt             = _mm_mul_pd(r11,ewtabscale);
393             ewitab           = _mm_cvttpd_epi32(ewrt);
394             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
395             ewitab           = _mm_slli_epi32(ewitab,2);
396             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
397             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
398             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
399             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
400             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
401             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
402             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
403             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
404             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
405             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
406
407             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_and_pd(velec,cutoff_mask);
411             velecsum         = _mm_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm_and_pd(fscal,cutoff_mask);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm_mul_pd(fscal,dx11);
419             ty               = _mm_mul_pd(fscal,dy11);
420             tz               = _mm_mul_pd(fscal,dz11);
421
422             /* Update vectorial force */
423             fix1             = _mm_add_pd(fix1,tx);
424             fiy1             = _mm_add_pd(fiy1,ty);
425             fiz1             = _mm_add_pd(fiz1,tz);
426
427             fjx1             = _mm_add_pd(fjx1,tx);
428             fjy1             = _mm_add_pd(fjy1,ty);
429             fjz1             = _mm_add_pd(fjz1,tz);
430
431             }
432
433             /**************************
434              * CALCULATE INTERACTIONS *
435              **************************/
436
437             if (gmx_mm_any_lt(rsq12,rcutoff2))
438             {
439
440             r12              = _mm_mul_pd(rsq12,rinv12);
441
442             /* EWALD ELECTROSTATICS */
443
444             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
445             ewrt             = _mm_mul_pd(r12,ewtabscale);
446             ewitab           = _mm_cvttpd_epi32(ewrt);
447             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
448             ewitab           = _mm_slli_epi32(ewitab,2);
449             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
450             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
451             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
452             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
453             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
454             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
455             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
456             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
457             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
458             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
459
460             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm_and_pd(velec,cutoff_mask);
464             velecsum         = _mm_add_pd(velecsum,velec);
465
466             fscal            = felec;
467
468             fscal            = _mm_and_pd(fscal,cutoff_mask);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_pd(fscal,dx12);
472             ty               = _mm_mul_pd(fscal,dy12);
473             tz               = _mm_mul_pd(fscal,dz12);
474
475             /* Update vectorial force */
476             fix1             = _mm_add_pd(fix1,tx);
477             fiy1             = _mm_add_pd(fiy1,ty);
478             fiz1             = _mm_add_pd(fiz1,tz);
479
480             fjx2             = _mm_add_pd(fjx2,tx);
481             fjy2             = _mm_add_pd(fjy2,ty);
482             fjz2             = _mm_add_pd(fjz2,tz);
483
484             }
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (gmx_mm_any_lt(rsq13,rcutoff2))
491             {
492
493             r13              = _mm_mul_pd(rsq13,rinv13);
494
495             /* EWALD ELECTROSTATICS */
496
497             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
498             ewrt             = _mm_mul_pd(r13,ewtabscale);
499             ewitab           = _mm_cvttpd_epi32(ewrt);
500             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
501             ewitab           = _mm_slli_epi32(ewitab,2);
502             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
503             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
504             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
505             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
506             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
507             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
508             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
509             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
510             velec            = _mm_mul_pd(qq13,_mm_sub_pd(_mm_sub_pd(rinv13,sh_ewald),velec));
511             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
512
513             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
514
515             /* Update potential sum for this i atom from the interaction with this j atom. */
516             velec            = _mm_and_pd(velec,cutoff_mask);
517             velecsum         = _mm_add_pd(velecsum,velec);
518
519             fscal            = felec;
520
521             fscal            = _mm_and_pd(fscal,cutoff_mask);
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm_mul_pd(fscal,dx13);
525             ty               = _mm_mul_pd(fscal,dy13);
526             tz               = _mm_mul_pd(fscal,dz13);
527
528             /* Update vectorial force */
529             fix1             = _mm_add_pd(fix1,tx);
530             fiy1             = _mm_add_pd(fiy1,ty);
531             fiz1             = _mm_add_pd(fiz1,tz);
532
533             fjx3             = _mm_add_pd(fjx3,tx);
534             fjy3             = _mm_add_pd(fjy3,ty);
535             fjz3             = _mm_add_pd(fjz3,tz);
536
537             }
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             if (gmx_mm_any_lt(rsq21,rcutoff2))
544             {
545
546             r21              = _mm_mul_pd(rsq21,rinv21);
547
548             /* EWALD ELECTROSTATICS */
549
550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
551             ewrt             = _mm_mul_pd(r21,ewtabscale);
552             ewitab           = _mm_cvttpd_epi32(ewrt);
553             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
554             ewitab           = _mm_slli_epi32(ewitab,2);
555             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
556             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
557             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
558             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
559             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
560             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
561             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
562             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
563             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
564             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
565
566             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_and_pd(velec,cutoff_mask);
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_and_pd(fscal,cutoff_mask);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm_mul_pd(fscal,dx21);
578             ty               = _mm_mul_pd(fscal,dy21);
579             tz               = _mm_mul_pd(fscal,dz21);
580
581             /* Update vectorial force */
582             fix2             = _mm_add_pd(fix2,tx);
583             fiy2             = _mm_add_pd(fiy2,ty);
584             fiz2             = _mm_add_pd(fiz2,tz);
585
586             fjx1             = _mm_add_pd(fjx1,tx);
587             fjy1             = _mm_add_pd(fjy1,ty);
588             fjz1             = _mm_add_pd(fjz1,tz);
589
590             }
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             if (gmx_mm_any_lt(rsq22,rcutoff2))
597             {
598
599             r22              = _mm_mul_pd(rsq22,rinv22);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r22,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
607             ewitab           = _mm_slli_epi32(ewitab,2);
608             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
610             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
611             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
612             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
613             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
614             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
615             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
616             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
617             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
618
619             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_and_pd(velec,cutoff_mask);
623             velecsum         = _mm_add_pd(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm_and_pd(fscal,cutoff_mask);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm_mul_pd(fscal,dx22);
631             ty               = _mm_mul_pd(fscal,dy22);
632             tz               = _mm_mul_pd(fscal,dz22);
633
634             /* Update vectorial force */
635             fix2             = _mm_add_pd(fix2,tx);
636             fiy2             = _mm_add_pd(fiy2,ty);
637             fiz2             = _mm_add_pd(fiz2,tz);
638
639             fjx2             = _mm_add_pd(fjx2,tx);
640             fjy2             = _mm_add_pd(fjy2,ty);
641             fjz2             = _mm_add_pd(fjz2,tz);
642
643             }
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             if (gmx_mm_any_lt(rsq23,rcutoff2))
650             {
651
652             r23              = _mm_mul_pd(rsq23,rinv23);
653
654             /* EWALD ELECTROSTATICS */
655
656             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
657             ewrt             = _mm_mul_pd(r23,ewtabscale);
658             ewitab           = _mm_cvttpd_epi32(ewrt);
659             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
660             ewitab           = _mm_slli_epi32(ewitab,2);
661             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
662             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
663             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
664             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
665             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
666             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
667             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
668             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
669             velec            = _mm_mul_pd(qq23,_mm_sub_pd(_mm_sub_pd(rinv23,sh_ewald),velec));
670             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
671
672             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
673
674             /* Update potential sum for this i atom from the interaction with this j atom. */
675             velec            = _mm_and_pd(velec,cutoff_mask);
676             velecsum         = _mm_add_pd(velecsum,velec);
677
678             fscal            = felec;
679
680             fscal            = _mm_and_pd(fscal,cutoff_mask);
681
682             /* Calculate temporary vectorial force */
683             tx               = _mm_mul_pd(fscal,dx23);
684             ty               = _mm_mul_pd(fscal,dy23);
685             tz               = _mm_mul_pd(fscal,dz23);
686
687             /* Update vectorial force */
688             fix2             = _mm_add_pd(fix2,tx);
689             fiy2             = _mm_add_pd(fiy2,ty);
690             fiz2             = _mm_add_pd(fiz2,tz);
691
692             fjx3             = _mm_add_pd(fjx3,tx);
693             fjy3             = _mm_add_pd(fjy3,ty);
694             fjz3             = _mm_add_pd(fjz3,tz);
695
696             }
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             if (gmx_mm_any_lt(rsq31,rcutoff2))
703             {
704
705             r31              = _mm_mul_pd(rsq31,rinv31);
706
707             /* EWALD ELECTROSTATICS */
708
709             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
710             ewrt             = _mm_mul_pd(r31,ewtabscale);
711             ewitab           = _mm_cvttpd_epi32(ewrt);
712             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
713             ewitab           = _mm_slli_epi32(ewitab,2);
714             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
715             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
716             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
717             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
718             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
719             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
720             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
721             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
722             velec            = _mm_mul_pd(qq31,_mm_sub_pd(_mm_sub_pd(rinv31,sh_ewald),velec));
723             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
724
725             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
726
727             /* Update potential sum for this i atom from the interaction with this j atom. */
728             velec            = _mm_and_pd(velec,cutoff_mask);
729             velecsum         = _mm_add_pd(velecsum,velec);
730
731             fscal            = felec;
732
733             fscal            = _mm_and_pd(fscal,cutoff_mask);
734
735             /* Calculate temporary vectorial force */
736             tx               = _mm_mul_pd(fscal,dx31);
737             ty               = _mm_mul_pd(fscal,dy31);
738             tz               = _mm_mul_pd(fscal,dz31);
739
740             /* Update vectorial force */
741             fix3             = _mm_add_pd(fix3,tx);
742             fiy3             = _mm_add_pd(fiy3,ty);
743             fiz3             = _mm_add_pd(fiz3,tz);
744
745             fjx1             = _mm_add_pd(fjx1,tx);
746             fjy1             = _mm_add_pd(fjy1,ty);
747             fjz1             = _mm_add_pd(fjz1,tz);
748
749             }
750
751             /**************************
752              * CALCULATE INTERACTIONS *
753              **************************/
754
755             if (gmx_mm_any_lt(rsq32,rcutoff2))
756             {
757
758             r32              = _mm_mul_pd(rsq32,rinv32);
759
760             /* EWALD ELECTROSTATICS */
761
762             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
763             ewrt             = _mm_mul_pd(r32,ewtabscale);
764             ewitab           = _mm_cvttpd_epi32(ewrt);
765             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
766             ewitab           = _mm_slli_epi32(ewitab,2);
767             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
768             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
769             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
770             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
771             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
772             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
773             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
774             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
775             velec            = _mm_mul_pd(qq32,_mm_sub_pd(_mm_sub_pd(rinv32,sh_ewald),velec));
776             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
777
778             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
779
780             /* Update potential sum for this i atom from the interaction with this j atom. */
781             velec            = _mm_and_pd(velec,cutoff_mask);
782             velecsum         = _mm_add_pd(velecsum,velec);
783
784             fscal            = felec;
785
786             fscal            = _mm_and_pd(fscal,cutoff_mask);
787
788             /* Calculate temporary vectorial force */
789             tx               = _mm_mul_pd(fscal,dx32);
790             ty               = _mm_mul_pd(fscal,dy32);
791             tz               = _mm_mul_pd(fscal,dz32);
792
793             /* Update vectorial force */
794             fix3             = _mm_add_pd(fix3,tx);
795             fiy3             = _mm_add_pd(fiy3,ty);
796             fiz3             = _mm_add_pd(fiz3,tz);
797
798             fjx2             = _mm_add_pd(fjx2,tx);
799             fjy2             = _mm_add_pd(fjy2,ty);
800             fjz2             = _mm_add_pd(fjz2,tz);
801
802             }
803
804             /**************************
805              * CALCULATE INTERACTIONS *
806              **************************/
807
808             if (gmx_mm_any_lt(rsq33,rcutoff2))
809             {
810
811             r33              = _mm_mul_pd(rsq33,rinv33);
812
813             /* EWALD ELECTROSTATICS */
814
815             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
816             ewrt             = _mm_mul_pd(r33,ewtabscale);
817             ewitab           = _mm_cvttpd_epi32(ewrt);
818             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
819             ewitab           = _mm_slli_epi32(ewitab,2);
820             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
821             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
822             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
823             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
824             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
825             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
826             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
827             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
828             velec            = _mm_mul_pd(qq33,_mm_sub_pd(_mm_sub_pd(rinv33,sh_ewald),velec));
829             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
830
831             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
832
833             /* Update potential sum for this i atom from the interaction with this j atom. */
834             velec            = _mm_and_pd(velec,cutoff_mask);
835             velecsum         = _mm_add_pd(velecsum,velec);
836
837             fscal            = felec;
838
839             fscal            = _mm_and_pd(fscal,cutoff_mask);
840
841             /* Calculate temporary vectorial force */
842             tx               = _mm_mul_pd(fscal,dx33);
843             ty               = _mm_mul_pd(fscal,dy33);
844             tz               = _mm_mul_pd(fscal,dz33);
845
846             /* Update vectorial force */
847             fix3             = _mm_add_pd(fix3,tx);
848             fiy3             = _mm_add_pd(fiy3,ty);
849             fiz3             = _mm_add_pd(fiz3,tz);
850
851             fjx3             = _mm_add_pd(fjx3,tx);
852             fjy3             = _mm_add_pd(fjy3,ty);
853             fjz3             = _mm_add_pd(fjz3,tz);
854
855             }
856
857             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
858
859             /* Inner loop uses 478 flops */
860         }
861
862         if(jidx<j_index_end)
863         {
864
865             jnrA             = jjnr[jidx];
866             j_coord_offsetA  = DIM*jnrA;
867
868             /* load j atom coordinates */
869             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
870                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
871                                               &jy2,&jz2,&jx3,&jy3,&jz3);
872
873             /* Calculate displacement vector */
874             dx00             = _mm_sub_pd(ix0,jx0);
875             dy00             = _mm_sub_pd(iy0,jy0);
876             dz00             = _mm_sub_pd(iz0,jz0);
877             dx11             = _mm_sub_pd(ix1,jx1);
878             dy11             = _mm_sub_pd(iy1,jy1);
879             dz11             = _mm_sub_pd(iz1,jz1);
880             dx12             = _mm_sub_pd(ix1,jx2);
881             dy12             = _mm_sub_pd(iy1,jy2);
882             dz12             = _mm_sub_pd(iz1,jz2);
883             dx13             = _mm_sub_pd(ix1,jx3);
884             dy13             = _mm_sub_pd(iy1,jy3);
885             dz13             = _mm_sub_pd(iz1,jz3);
886             dx21             = _mm_sub_pd(ix2,jx1);
887             dy21             = _mm_sub_pd(iy2,jy1);
888             dz21             = _mm_sub_pd(iz2,jz1);
889             dx22             = _mm_sub_pd(ix2,jx2);
890             dy22             = _mm_sub_pd(iy2,jy2);
891             dz22             = _mm_sub_pd(iz2,jz2);
892             dx23             = _mm_sub_pd(ix2,jx3);
893             dy23             = _mm_sub_pd(iy2,jy3);
894             dz23             = _mm_sub_pd(iz2,jz3);
895             dx31             = _mm_sub_pd(ix3,jx1);
896             dy31             = _mm_sub_pd(iy3,jy1);
897             dz31             = _mm_sub_pd(iz3,jz1);
898             dx32             = _mm_sub_pd(ix3,jx2);
899             dy32             = _mm_sub_pd(iy3,jy2);
900             dz32             = _mm_sub_pd(iz3,jz2);
901             dx33             = _mm_sub_pd(ix3,jx3);
902             dy33             = _mm_sub_pd(iy3,jy3);
903             dz33             = _mm_sub_pd(iz3,jz3);
904
905             /* Calculate squared distance and things based on it */
906             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
907             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
908             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
909             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
910             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
911             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
912             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
913             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
914             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
915             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
916
917             rinv00           = gmx_mm_invsqrt_pd(rsq00);
918             rinv11           = gmx_mm_invsqrt_pd(rsq11);
919             rinv12           = gmx_mm_invsqrt_pd(rsq12);
920             rinv13           = gmx_mm_invsqrt_pd(rsq13);
921             rinv21           = gmx_mm_invsqrt_pd(rsq21);
922             rinv22           = gmx_mm_invsqrt_pd(rsq22);
923             rinv23           = gmx_mm_invsqrt_pd(rsq23);
924             rinv31           = gmx_mm_invsqrt_pd(rsq31);
925             rinv32           = gmx_mm_invsqrt_pd(rsq32);
926             rinv33           = gmx_mm_invsqrt_pd(rsq33);
927
928             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
929             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
930             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
931             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
932             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
933             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
934             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
935             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
936             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
937             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
938
939             fjx0             = _mm_setzero_pd();
940             fjy0             = _mm_setzero_pd();
941             fjz0             = _mm_setzero_pd();
942             fjx1             = _mm_setzero_pd();
943             fjy1             = _mm_setzero_pd();
944             fjz1             = _mm_setzero_pd();
945             fjx2             = _mm_setzero_pd();
946             fjy2             = _mm_setzero_pd();
947             fjz2             = _mm_setzero_pd();
948             fjx3             = _mm_setzero_pd();
949             fjy3             = _mm_setzero_pd();
950             fjz3             = _mm_setzero_pd();
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm_any_lt(rsq00,rcutoff2))
957             {
958
959             r00              = _mm_mul_pd(rsq00,rinv00);
960
961             /* Analytical LJ-PME */
962             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
963             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
964             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
965             exponent         = gmx_simd_exp_d(ewcljrsq);
966             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
967             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
968             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
969             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
970             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
971             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
972                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
973             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
974             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
975
976             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
977
978             /* Update potential sum for this i atom from the interaction with this j atom. */
979             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
980             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
981             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
982
983             fscal            = fvdw;
984
985             fscal            = _mm_and_pd(fscal,cutoff_mask);
986
987             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
988
989             /* Calculate temporary vectorial force */
990             tx               = _mm_mul_pd(fscal,dx00);
991             ty               = _mm_mul_pd(fscal,dy00);
992             tz               = _mm_mul_pd(fscal,dz00);
993
994             /* Update vectorial force */
995             fix0             = _mm_add_pd(fix0,tx);
996             fiy0             = _mm_add_pd(fiy0,ty);
997             fiz0             = _mm_add_pd(fiz0,tz);
998
999             fjx0             = _mm_add_pd(fjx0,tx);
1000             fjy0             = _mm_add_pd(fjy0,ty);
1001             fjz0             = _mm_add_pd(fjz0,tz);
1002
1003             }
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             if (gmx_mm_any_lt(rsq11,rcutoff2))
1010             {
1011
1012             r11              = _mm_mul_pd(rsq11,rinv11);
1013
1014             /* EWALD ELECTROSTATICS */
1015
1016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1017             ewrt             = _mm_mul_pd(r11,ewtabscale);
1018             ewitab           = _mm_cvttpd_epi32(ewrt);
1019             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1020             ewitab           = _mm_slli_epi32(ewitab,2);
1021             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1022             ewtabD           = _mm_setzero_pd();
1023             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1024             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1025             ewtabFn          = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1027             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1028             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1029             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1030             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1031
1032             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1033
1034             /* Update potential sum for this i atom from the interaction with this j atom. */
1035             velec            = _mm_and_pd(velec,cutoff_mask);
1036             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1037             velecsum         = _mm_add_pd(velecsum,velec);
1038
1039             fscal            = felec;
1040
1041             fscal            = _mm_and_pd(fscal,cutoff_mask);
1042
1043             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_pd(fscal,dx11);
1047             ty               = _mm_mul_pd(fscal,dy11);
1048             tz               = _mm_mul_pd(fscal,dz11);
1049
1050             /* Update vectorial force */
1051             fix1             = _mm_add_pd(fix1,tx);
1052             fiy1             = _mm_add_pd(fiy1,ty);
1053             fiz1             = _mm_add_pd(fiz1,tz);
1054
1055             fjx1             = _mm_add_pd(fjx1,tx);
1056             fjy1             = _mm_add_pd(fjy1,ty);
1057             fjz1             = _mm_add_pd(fjz1,tz);
1058
1059             }
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             if (gmx_mm_any_lt(rsq12,rcutoff2))
1066             {
1067
1068             r12              = _mm_mul_pd(rsq12,rinv12);
1069
1070             /* EWALD ELECTROSTATICS */
1071
1072             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073             ewrt             = _mm_mul_pd(r12,ewtabscale);
1074             ewitab           = _mm_cvttpd_epi32(ewrt);
1075             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1076             ewitab           = _mm_slli_epi32(ewitab,2);
1077             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1078             ewtabD           = _mm_setzero_pd();
1079             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1080             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1081             ewtabFn          = _mm_setzero_pd();
1082             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1083             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1084             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1085             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1086             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1087
1088             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1089
1090             /* Update potential sum for this i atom from the interaction with this j atom. */
1091             velec            = _mm_and_pd(velec,cutoff_mask);
1092             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1093             velecsum         = _mm_add_pd(velecsum,velec);
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_and_pd(fscal,cutoff_mask);
1098
1099             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1100
1101             /* Calculate temporary vectorial force */
1102             tx               = _mm_mul_pd(fscal,dx12);
1103             ty               = _mm_mul_pd(fscal,dy12);
1104             tz               = _mm_mul_pd(fscal,dz12);
1105
1106             /* Update vectorial force */
1107             fix1             = _mm_add_pd(fix1,tx);
1108             fiy1             = _mm_add_pd(fiy1,ty);
1109             fiz1             = _mm_add_pd(fiz1,tz);
1110
1111             fjx2             = _mm_add_pd(fjx2,tx);
1112             fjy2             = _mm_add_pd(fjy2,ty);
1113             fjz2             = _mm_add_pd(fjz2,tz);
1114
1115             }
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             if (gmx_mm_any_lt(rsq13,rcutoff2))
1122             {
1123
1124             r13              = _mm_mul_pd(rsq13,rinv13);
1125
1126             /* EWALD ELECTROSTATICS */
1127
1128             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1129             ewrt             = _mm_mul_pd(r13,ewtabscale);
1130             ewitab           = _mm_cvttpd_epi32(ewrt);
1131             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1132             ewitab           = _mm_slli_epi32(ewitab,2);
1133             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1134             ewtabD           = _mm_setzero_pd();
1135             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1136             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1137             ewtabFn          = _mm_setzero_pd();
1138             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1139             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1140             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1141             velec            = _mm_mul_pd(qq13,_mm_sub_pd(_mm_sub_pd(rinv13,sh_ewald),velec));
1142             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1143
1144             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
1145
1146             /* Update potential sum for this i atom from the interaction with this j atom. */
1147             velec            = _mm_and_pd(velec,cutoff_mask);
1148             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1149             velecsum         = _mm_add_pd(velecsum,velec);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_and_pd(fscal,cutoff_mask);
1154
1155             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1156
1157             /* Calculate temporary vectorial force */
1158             tx               = _mm_mul_pd(fscal,dx13);
1159             ty               = _mm_mul_pd(fscal,dy13);
1160             tz               = _mm_mul_pd(fscal,dz13);
1161
1162             /* Update vectorial force */
1163             fix1             = _mm_add_pd(fix1,tx);
1164             fiy1             = _mm_add_pd(fiy1,ty);
1165             fiz1             = _mm_add_pd(fiz1,tz);
1166
1167             fjx3             = _mm_add_pd(fjx3,tx);
1168             fjy3             = _mm_add_pd(fjy3,ty);
1169             fjz3             = _mm_add_pd(fjz3,tz);
1170
1171             }
1172
1173             /**************************
1174              * CALCULATE INTERACTIONS *
1175              **************************/
1176
1177             if (gmx_mm_any_lt(rsq21,rcutoff2))
1178             {
1179
1180             r21              = _mm_mul_pd(rsq21,rinv21);
1181
1182             /* EWALD ELECTROSTATICS */
1183
1184             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1185             ewrt             = _mm_mul_pd(r21,ewtabscale);
1186             ewitab           = _mm_cvttpd_epi32(ewrt);
1187             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1188             ewitab           = _mm_slli_epi32(ewitab,2);
1189             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1190             ewtabD           = _mm_setzero_pd();
1191             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1192             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1193             ewtabFn          = _mm_setzero_pd();
1194             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1195             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1196             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1197             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1198             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1199
1200             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1201
1202             /* Update potential sum for this i atom from the interaction with this j atom. */
1203             velec            = _mm_and_pd(velec,cutoff_mask);
1204             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1205             velecsum         = _mm_add_pd(velecsum,velec);
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm_and_pd(fscal,cutoff_mask);
1210
1211             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1212
1213             /* Calculate temporary vectorial force */
1214             tx               = _mm_mul_pd(fscal,dx21);
1215             ty               = _mm_mul_pd(fscal,dy21);
1216             tz               = _mm_mul_pd(fscal,dz21);
1217
1218             /* Update vectorial force */
1219             fix2             = _mm_add_pd(fix2,tx);
1220             fiy2             = _mm_add_pd(fiy2,ty);
1221             fiz2             = _mm_add_pd(fiz2,tz);
1222
1223             fjx1             = _mm_add_pd(fjx1,tx);
1224             fjy1             = _mm_add_pd(fjy1,ty);
1225             fjz1             = _mm_add_pd(fjz1,tz);
1226
1227             }
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             if (gmx_mm_any_lt(rsq22,rcutoff2))
1234             {
1235
1236             r22              = _mm_mul_pd(rsq22,rinv22);
1237
1238             /* EWALD ELECTROSTATICS */
1239
1240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1241             ewrt             = _mm_mul_pd(r22,ewtabscale);
1242             ewitab           = _mm_cvttpd_epi32(ewrt);
1243             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1244             ewitab           = _mm_slli_epi32(ewitab,2);
1245             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1246             ewtabD           = _mm_setzero_pd();
1247             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1248             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1249             ewtabFn          = _mm_setzero_pd();
1250             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1251             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1252             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1253             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1254             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1255
1256             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1257
1258             /* Update potential sum for this i atom from the interaction with this j atom. */
1259             velec            = _mm_and_pd(velec,cutoff_mask);
1260             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1261             velecsum         = _mm_add_pd(velecsum,velec);
1262
1263             fscal            = felec;
1264
1265             fscal            = _mm_and_pd(fscal,cutoff_mask);
1266
1267             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1268
1269             /* Calculate temporary vectorial force */
1270             tx               = _mm_mul_pd(fscal,dx22);
1271             ty               = _mm_mul_pd(fscal,dy22);
1272             tz               = _mm_mul_pd(fscal,dz22);
1273
1274             /* Update vectorial force */
1275             fix2             = _mm_add_pd(fix2,tx);
1276             fiy2             = _mm_add_pd(fiy2,ty);
1277             fiz2             = _mm_add_pd(fiz2,tz);
1278
1279             fjx2             = _mm_add_pd(fjx2,tx);
1280             fjy2             = _mm_add_pd(fjy2,ty);
1281             fjz2             = _mm_add_pd(fjz2,tz);
1282
1283             }
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             if (gmx_mm_any_lt(rsq23,rcutoff2))
1290             {
1291
1292             r23              = _mm_mul_pd(rsq23,rinv23);
1293
1294             /* EWALD ELECTROSTATICS */
1295
1296             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1297             ewrt             = _mm_mul_pd(r23,ewtabscale);
1298             ewitab           = _mm_cvttpd_epi32(ewrt);
1299             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1300             ewitab           = _mm_slli_epi32(ewitab,2);
1301             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1302             ewtabD           = _mm_setzero_pd();
1303             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1304             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1305             ewtabFn          = _mm_setzero_pd();
1306             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1307             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1308             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1309             velec            = _mm_mul_pd(qq23,_mm_sub_pd(_mm_sub_pd(rinv23,sh_ewald),velec));
1310             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1311
1312             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
1313
1314             /* Update potential sum for this i atom from the interaction with this j atom. */
1315             velec            = _mm_and_pd(velec,cutoff_mask);
1316             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1317             velecsum         = _mm_add_pd(velecsum,velec);
1318
1319             fscal            = felec;
1320
1321             fscal            = _mm_and_pd(fscal,cutoff_mask);
1322
1323             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1324
1325             /* Calculate temporary vectorial force */
1326             tx               = _mm_mul_pd(fscal,dx23);
1327             ty               = _mm_mul_pd(fscal,dy23);
1328             tz               = _mm_mul_pd(fscal,dz23);
1329
1330             /* Update vectorial force */
1331             fix2             = _mm_add_pd(fix2,tx);
1332             fiy2             = _mm_add_pd(fiy2,ty);
1333             fiz2             = _mm_add_pd(fiz2,tz);
1334
1335             fjx3             = _mm_add_pd(fjx3,tx);
1336             fjy3             = _mm_add_pd(fjy3,ty);
1337             fjz3             = _mm_add_pd(fjz3,tz);
1338
1339             }
1340
1341             /**************************
1342              * CALCULATE INTERACTIONS *
1343              **************************/
1344
1345             if (gmx_mm_any_lt(rsq31,rcutoff2))
1346             {
1347
1348             r31              = _mm_mul_pd(rsq31,rinv31);
1349
1350             /* EWALD ELECTROSTATICS */
1351
1352             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1353             ewrt             = _mm_mul_pd(r31,ewtabscale);
1354             ewitab           = _mm_cvttpd_epi32(ewrt);
1355             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1356             ewitab           = _mm_slli_epi32(ewitab,2);
1357             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1358             ewtabD           = _mm_setzero_pd();
1359             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1360             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1361             ewtabFn          = _mm_setzero_pd();
1362             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1363             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1364             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1365             velec            = _mm_mul_pd(qq31,_mm_sub_pd(_mm_sub_pd(rinv31,sh_ewald),velec));
1366             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1367
1368             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
1369
1370             /* Update potential sum for this i atom from the interaction with this j atom. */
1371             velec            = _mm_and_pd(velec,cutoff_mask);
1372             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1373             velecsum         = _mm_add_pd(velecsum,velec);
1374
1375             fscal            = felec;
1376
1377             fscal            = _mm_and_pd(fscal,cutoff_mask);
1378
1379             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1380
1381             /* Calculate temporary vectorial force */
1382             tx               = _mm_mul_pd(fscal,dx31);
1383             ty               = _mm_mul_pd(fscal,dy31);
1384             tz               = _mm_mul_pd(fscal,dz31);
1385
1386             /* Update vectorial force */
1387             fix3             = _mm_add_pd(fix3,tx);
1388             fiy3             = _mm_add_pd(fiy3,ty);
1389             fiz3             = _mm_add_pd(fiz3,tz);
1390
1391             fjx1             = _mm_add_pd(fjx1,tx);
1392             fjy1             = _mm_add_pd(fjy1,ty);
1393             fjz1             = _mm_add_pd(fjz1,tz);
1394
1395             }
1396
1397             /**************************
1398              * CALCULATE INTERACTIONS *
1399              **************************/
1400
1401             if (gmx_mm_any_lt(rsq32,rcutoff2))
1402             {
1403
1404             r32              = _mm_mul_pd(rsq32,rinv32);
1405
1406             /* EWALD ELECTROSTATICS */
1407
1408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1409             ewrt             = _mm_mul_pd(r32,ewtabscale);
1410             ewitab           = _mm_cvttpd_epi32(ewrt);
1411             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1412             ewitab           = _mm_slli_epi32(ewitab,2);
1413             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1414             ewtabD           = _mm_setzero_pd();
1415             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1416             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1417             ewtabFn          = _mm_setzero_pd();
1418             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1419             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1420             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1421             velec            = _mm_mul_pd(qq32,_mm_sub_pd(_mm_sub_pd(rinv32,sh_ewald),velec));
1422             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1423
1424             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
1425
1426             /* Update potential sum for this i atom from the interaction with this j atom. */
1427             velec            = _mm_and_pd(velec,cutoff_mask);
1428             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1429             velecsum         = _mm_add_pd(velecsum,velec);
1430
1431             fscal            = felec;
1432
1433             fscal            = _mm_and_pd(fscal,cutoff_mask);
1434
1435             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1436
1437             /* Calculate temporary vectorial force */
1438             tx               = _mm_mul_pd(fscal,dx32);
1439             ty               = _mm_mul_pd(fscal,dy32);
1440             tz               = _mm_mul_pd(fscal,dz32);
1441
1442             /* Update vectorial force */
1443             fix3             = _mm_add_pd(fix3,tx);
1444             fiy3             = _mm_add_pd(fiy3,ty);
1445             fiz3             = _mm_add_pd(fiz3,tz);
1446
1447             fjx2             = _mm_add_pd(fjx2,tx);
1448             fjy2             = _mm_add_pd(fjy2,ty);
1449             fjz2             = _mm_add_pd(fjz2,tz);
1450
1451             }
1452
1453             /**************************
1454              * CALCULATE INTERACTIONS *
1455              **************************/
1456
1457             if (gmx_mm_any_lt(rsq33,rcutoff2))
1458             {
1459
1460             r33              = _mm_mul_pd(rsq33,rinv33);
1461
1462             /* EWALD ELECTROSTATICS */
1463
1464             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1465             ewrt             = _mm_mul_pd(r33,ewtabscale);
1466             ewitab           = _mm_cvttpd_epi32(ewrt);
1467             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1468             ewitab           = _mm_slli_epi32(ewitab,2);
1469             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1470             ewtabD           = _mm_setzero_pd();
1471             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1472             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1473             ewtabFn          = _mm_setzero_pd();
1474             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1475             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1476             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1477             velec            = _mm_mul_pd(qq33,_mm_sub_pd(_mm_sub_pd(rinv33,sh_ewald),velec));
1478             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1479
1480             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
1481
1482             /* Update potential sum for this i atom from the interaction with this j atom. */
1483             velec            = _mm_and_pd(velec,cutoff_mask);
1484             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1485             velecsum         = _mm_add_pd(velecsum,velec);
1486
1487             fscal            = felec;
1488
1489             fscal            = _mm_and_pd(fscal,cutoff_mask);
1490
1491             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1492
1493             /* Calculate temporary vectorial force */
1494             tx               = _mm_mul_pd(fscal,dx33);
1495             ty               = _mm_mul_pd(fscal,dy33);
1496             tz               = _mm_mul_pd(fscal,dz33);
1497
1498             /* Update vectorial force */
1499             fix3             = _mm_add_pd(fix3,tx);
1500             fiy3             = _mm_add_pd(fiy3,ty);
1501             fiz3             = _mm_add_pd(fiz3,tz);
1502
1503             fjx3             = _mm_add_pd(fjx3,tx);
1504             fjy3             = _mm_add_pd(fjy3,ty);
1505             fjz3             = _mm_add_pd(fjz3,tz);
1506
1507             }
1508
1509             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1510
1511             /* Inner loop uses 478 flops */
1512         }
1513
1514         /* End of innermost loop */
1515
1516         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1517                                               f+i_coord_offset,fshift+i_shift_offset);
1518
1519         ggid                        = gid[iidx];
1520         /* Update potential energies */
1521         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1522         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1523
1524         /* Increment number of inner iterations */
1525         inneriter                  += j_index_end - j_index_start;
1526
1527         /* Outer loop uses 26 flops */
1528     }
1529
1530     /* Increment number of outer iterations */
1531     outeriter        += nri;
1532
1533     /* Update outer/inner flops */
1534
1535     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*478);
1536 }
1537 /*
1538  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_F_sse4_1_double
1539  * Electrostatics interaction: Ewald
1540  * VdW interaction:            LJEwald
1541  * Geometry:                   Water4-Water4
1542  * Calculate force/pot:        Force
1543  */
1544 void
1545 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4W4_F_sse4_1_double
1546                     (t_nblist                    * gmx_restrict       nlist,
1547                      rvec                        * gmx_restrict          xx,
1548                      rvec                        * gmx_restrict          ff,
1549                      t_forcerec                  * gmx_restrict          fr,
1550                      t_mdatoms                   * gmx_restrict     mdatoms,
1551                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1552                      t_nrnb                      * gmx_restrict        nrnb)
1553 {
1554     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1555      * just 0 for non-waters.
1556      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1557      * jnr indices corresponding to data put in the four positions in the SIMD register.
1558      */
1559     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1560     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1561     int              jnrA,jnrB;
1562     int              j_coord_offsetA,j_coord_offsetB;
1563     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1564     real             rcutoff_scalar;
1565     real             *shiftvec,*fshift,*x,*f;
1566     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1567     int              vdwioffset0;
1568     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1569     int              vdwioffset1;
1570     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1571     int              vdwioffset2;
1572     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1573     int              vdwioffset3;
1574     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1575     int              vdwjidx0A,vdwjidx0B;
1576     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1577     int              vdwjidx1A,vdwjidx1B;
1578     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1579     int              vdwjidx2A,vdwjidx2B;
1580     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1581     int              vdwjidx3A,vdwjidx3B;
1582     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1583     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1584     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1585     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1586     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1587     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1588     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1589     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1590     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1591     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1592     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1593     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1594     real             *charge;
1595     int              nvdwtype;
1596     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1597     int              *vdwtype;
1598     real             *vdwparam;
1599     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1600     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1601     __m128d           c6grid_00;
1602     __m128d           c6grid_11;
1603     __m128d           c6grid_12;
1604     __m128d           c6grid_13;
1605     __m128d           c6grid_21;
1606     __m128d           c6grid_22;
1607     __m128d           c6grid_23;
1608     __m128d           c6grid_31;
1609     __m128d           c6grid_32;
1610     __m128d           c6grid_33;
1611     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1612     real             *vdwgridparam;
1613     __m128d           one_half = _mm_set1_pd(0.5);
1614     __m128d           minus_one = _mm_set1_pd(-1.0);
1615     __m128i          ewitab;
1616     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1617     real             *ewtab;
1618     __m128d          dummy_mask,cutoff_mask;
1619     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1620     __m128d          one     = _mm_set1_pd(1.0);
1621     __m128d          two     = _mm_set1_pd(2.0);
1622     x                = xx[0];
1623     f                = ff[0];
1624
1625     nri              = nlist->nri;
1626     iinr             = nlist->iinr;
1627     jindex           = nlist->jindex;
1628     jjnr             = nlist->jjnr;
1629     shiftidx         = nlist->shift;
1630     gid              = nlist->gid;
1631     shiftvec         = fr->shift_vec[0];
1632     fshift           = fr->fshift[0];
1633     facel            = _mm_set1_pd(fr->epsfac);
1634     charge           = mdatoms->chargeA;
1635     nvdwtype         = fr->ntype;
1636     vdwparam         = fr->nbfp;
1637     vdwtype          = mdatoms->typeA;
1638     vdwgridparam     = fr->ljpme_c6grid;
1639     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1640     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1641     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1642
1643     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1644     ewtab            = fr->ic->tabq_coul_F;
1645     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1646     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1647
1648     /* Setup water-specific parameters */
1649     inr              = nlist->iinr[0];
1650     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1651     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1652     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1653     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1654
1655     jq1              = _mm_set1_pd(charge[inr+1]);
1656     jq2              = _mm_set1_pd(charge[inr+2]);
1657     jq3              = _mm_set1_pd(charge[inr+3]);
1658     vdwjidx0A        = 2*vdwtype[inr+0];
1659     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1660     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1661     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1662     qq11             = _mm_mul_pd(iq1,jq1);
1663     qq12             = _mm_mul_pd(iq1,jq2);
1664     qq13             = _mm_mul_pd(iq1,jq3);
1665     qq21             = _mm_mul_pd(iq2,jq1);
1666     qq22             = _mm_mul_pd(iq2,jq2);
1667     qq23             = _mm_mul_pd(iq2,jq3);
1668     qq31             = _mm_mul_pd(iq3,jq1);
1669     qq32             = _mm_mul_pd(iq3,jq2);
1670     qq33             = _mm_mul_pd(iq3,jq3);
1671
1672     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1673     rcutoff_scalar   = fr->rcoulomb;
1674     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1675     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1676
1677     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
1678     rvdw             = _mm_set1_pd(fr->rvdw);
1679
1680     /* Avoid stupid compiler warnings */
1681     jnrA = jnrB = 0;
1682     j_coord_offsetA = 0;
1683     j_coord_offsetB = 0;
1684
1685     outeriter        = 0;
1686     inneriter        = 0;
1687
1688     /* Start outer loop over neighborlists */
1689     for(iidx=0; iidx<nri; iidx++)
1690     {
1691         /* Load shift vector for this list */
1692         i_shift_offset   = DIM*shiftidx[iidx];
1693
1694         /* Load limits for loop over neighbors */
1695         j_index_start    = jindex[iidx];
1696         j_index_end      = jindex[iidx+1];
1697
1698         /* Get outer coordinate index */
1699         inr              = iinr[iidx];
1700         i_coord_offset   = DIM*inr;
1701
1702         /* Load i particle coords and add shift vector */
1703         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1704                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1705
1706         fix0             = _mm_setzero_pd();
1707         fiy0             = _mm_setzero_pd();
1708         fiz0             = _mm_setzero_pd();
1709         fix1             = _mm_setzero_pd();
1710         fiy1             = _mm_setzero_pd();
1711         fiz1             = _mm_setzero_pd();
1712         fix2             = _mm_setzero_pd();
1713         fiy2             = _mm_setzero_pd();
1714         fiz2             = _mm_setzero_pd();
1715         fix3             = _mm_setzero_pd();
1716         fiy3             = _mm_setzero_pd();
1717         fiz3             = _mm_setzero_pd();
1718
1719         /* Start inner kernel loop */
1720         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1721         {
1722
1723             /* Get j neighbor index, and coordinate index */
1724             jnrA             = jjnr[jidx];
1725             jnrB             = jjnr[jidx+1];
1726             j_coord_offsetA  = DIM*jnrA;
1727             j_coord_offsetB  = DIM*jnrB;
1728
1729             /* load j atom coordinates */
1730             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1731                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1732                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1733
1734             /* Calculate displacement vector */
1735             dx00             = _mm_sub_pd(ix0,jx0);
1736             dy00             = _mm_sub_pd(iy0,jy0);
1737             dz00             = _mm_sub_pd(iz0,jz0);
1738             dx11             = _mm_sub_pd(ix1,jx1);
1739             dy11             = _mm_sub_pd(iy1,jy1);
1740             dz11             = _mm_sub_pd(iz1,jz1);
1741             dx12             = _mm_sub_pd(ix1,jx2);
1742             dy12             = _mm_sub_pd(iy1,jy2);
1743             dz12             = _mm_sub_pd(iz1,jz2);
1744             dx13             = _mm_sub_pd(ix1,jx3);
1745             dy13             = _mm_sub_pd(iy1,jy3);
1746             dz13             = _mm_sub_pd(iz1,jz3);
1747             dx21             = _mm_sub_pd(ix2,jx1);
1748             dy21             = _mm_sub_pd(iy2,jy1);
1749             dz21             = _mm_sub_pd(iz2,jz1);
1750             dx22             = _mm_sub_pd(ix2,jx2);
1751             dy22             = _mm_sub_pd(iy2,jy2);
1752             dz22             = _mm_sub_pd(iz2,jz2);
1753             dx23             = _mm_sub_pd(ix2,jx3);
1754             dy23             = _mm_sub_pd(iy2,jy3);
1755             dz23             = _mm_sub_pd(iz2,jz3);
1756             dx31             = _mm_sub_pd(ix3,jx1);
1757             dy31             = _mm_sub_pd(iy3,jy1);
1758             dz31             = _mm_sub_pd(iz3,jz1);
1759             dx32             = _mm_sub_pd(ix3,jx2);
1760             dy32             = _mm_sub_pd(iy3,jy2);
1761             dz32             = _mm_sub_pd(iz3,jz2);
1762             dx33             = _mm_sub_pd(ix3,jx3);
1763             dy33             = _mm_sub_pd(iy3,jy3);
1764             dz33             = _mm_sub_pd(iz3,jz3);
1765
1766             /* Calculate squared distance and things based on it */
1767             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1768             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1769             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1770             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1771             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1772             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1773             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1774             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1775             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1776             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1777
1778             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1779             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1780             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1781             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1782             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1783             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1784             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1785             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1786             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1787             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1788
1789             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1790             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1791             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1792             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1793             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1794             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1795             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1796             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1797             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1798             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1799
1800             fjx0             = _mm_setzero_pd();
1801             fjy0             = _mm_setzero_pd();
1802             fjz0             = _mm_setzero_pd();
1803             fjx1             = _mm_setzero_pd();
1804             fjy1             = _mm_setzero_pd();
1805             fjz1             = _mm_setzero_pd();
1806             fjx2             = _mm_setzero_pd();
1807             fjy2             = _mm_setzero_pd();
1808             fjz2             = _mm_setzero_pd();
1809             fjx3             = _mm_setzero_pd();
1810             fjy3             = _mm_setzero_pd();
1811             fjz3             = _mm_setzero_pd();
1812
1813             /**************************
1814              * CALCULATE INTERACTIONS *
1815              **************************/
1816
1817             if (gmx_mm_any_lt(rsq00,rcutoff2))
1818             {
1819
1820             r00              = _mm_mul_pd(rsq00,rinv00);
1821
1822             /* Analytical LJ-PME */
1823             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1824             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1825             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1826             exponent         = gmx_simd_exp_d(ewcljrsq);
1827             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1828             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1829             /* f6A = 6 * C6grid * (1 - poly) */
1830             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1831             /* f6B = C6grid * exponent * beta^6 */
1832             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1833             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1834             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1835
1836             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1837
1838             fscal            = fvdw;
1839
1840             fscal            = _mm_and_pd(fscal,cutoff_mask);
1841
1842             /* Calculate temporary vectorial force */
1843             tx               = _mm_mul_pd(fscal,dx00);
1844             ty               = _mm_mul_pd(fscal,dy00);
1845             tz               = _mm_mul_pd(fscal,dz00);
1846
1847             /* Update vectorial force */
1848             fix0             = _mm_add_pd(fix0,tx);
1849             fiy0             = _mm_add_pd(fiy0,ty);
1850             fiz0             = _mm_add_pd(fiz0,tz);
1851
1852             fjx0             = _mm_add_pd(fjx0,tx);
1853             fjy0             = _mm_add_pd(fjy0,ty);
1854             fjz0             = _mm_add_pd(fjz0,tz);
1855
1856             }
1857
1858             /**************************
1859              * CALCULATE INTERACTIONS *
1860              **************************/
1861
1862             if (gmx_mm_any_lt(rsq11,rcutoff2))
1863             {
1864
1865             r11              = _mm_mul_pd(rsq11,rinv11);
1866
1867             /* EWALD ELECTROSTATICS */
1868
1869             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1870             ewrt             = _mm_mul_pd(r11,ewtabscale);
1871             ewitab           = _mm_cvttpd_epi32(ewrt);
1872             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1873             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1874                                          &ewtabF,&ewtabFn);
1875             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1876             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1877
1878             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1879
1880             fscal            = felec;
1881
1882             fscal            = _mm_and_pd(fscal,cutoff_mask);
1883
1884             /* Calculate temporary vectorial force */
1885             tx               = _mm_mul_pd(fscal,dx11);
1886             ty               = _mm_mul_pd(fscal,dy11);
1887             tz               = _mm_mul_pd(fscal,dz11);
1888
1889             /* Update vectorial force */
1890             fix1             = _mm_add_pd(fix1,tx);
1891             fiy1             = _mm_add_pd(fiy1,ty);
1892             fiz1             = _mm_add_pd(fiz1,tz);
1893
1894             fjx1             = _mm_add_pd(fjx1,tx);
1895             fjy1             = _mm_add_pd(fjy1,ty);
1896             fjz1             = _mm_add_pd(fjz1,tz);
1897
1898             }
1899
1900             /**************************
1901              * CALCULATE INTERACTIONS *
1902              **************************/
1903
1904             if (gmx_mm_any_lt(rsq12,rcutoff2))
1905             {
1906
1907             r12              = _mm_mul_pd(rsq12,rinv12);
1908
1909             /* EWALD ELECTROSTATICS */
1910
1911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1912             ewrt             = _mm_mul_pd(r12,ewtabscale);
1913             ewitab           = _mm_cvttpd_epi32(ewrt);
1914             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1915             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1916                                          &ewtabF,&ewtabFn);
1917             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1918             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1919
1920             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1921
1922             fscal            = felec;
1923
1924             fscal            = _mm_and_pd(fscal,cutoff_mask);
1925
1926             /* Calculate temporary vectorial force */
1927             tx               = _mm_mul_pd(fscal,dx12);
1928             ty               = _mm_mul_pd(fscal,dy12);
1929             tz               = _mm_mul_pd(fscal,dz12);
1930
1931             /* Update vectorial force */
1932             fix1             = _mm_add_pd(fix1,tx);
1933             fiy1             = _mm_add_pd(fiy1,ty);
1934             fiz1             = _mm_add_pd(fiz1,tz);
1935
1936             fjx2             = _mm_add_pd(fjx2,tx);
1937             fjy2             = _mm_add_pd(fjy2,ty);
1938             fjz2             = _mm_add_pd(fjz2,tz);
1939
1940             }
1941
1942             /**************************
1943              * CALCULATE INTERACTIONS *
1944              **************************/
1945
1946             if (gmx_mm_any_lt(rsq13,rcutoff2))
1947             {
1948
1949             r13              = _mm_mul_pd(rsq13,rinv13);
1950
1951             /* EWALD ELECTROSTATICS */
1952
1953             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1954             ewrt             = _mm_mul_pd(r13,ewtabscale);
1955             ewitab           = _mm_cvttpd_epi32(ewrt);
1956             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1957             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1958                                          &ewtabF,&ewtabFn);
1959             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1960             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1961
1962             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
1963
1964             fscal            = felec;
1965
1966             fscal            = _mm_and_pd(fscal,cutoff_mask);
1967
1968             /* Calculate temporary vectorial force */
1969             tx               = _mm_mul_pd(fscal,dx13);
1970             ty               = _mm_mul_pd(fscal,dy13);
1971             tz               = _mm_mul_pd(fscal,dz13);
1972
1973             /* Update vectorial force */
1974             fix1             = _mm_add_pd(fix1,tx);
1975             fiy1             = _mm_add_pd(fiy1,ty);
1976             fiz1             = _mm_add_pd(fiz1,tz);
1977
1978             fjx3             = _mm_add_pd(fjx3,tx);
1979             fjy3             = _mm_add_pd(fjy3,ty);
1980             fjz3             = _mm_add_pd(fjz3,tz);
1981
1982             }
1983
1984             /**************************
1985              * CALCULATE INTERACTIONS *
1986              **************************/
1987
1988             if (gmx_mm_any_lt(rsq21,rcutoff2))
1989             {
1990
1991             r21              = _mm_mul_pd(rsq21,rinv21);
1992
1993             /* EWALD ELECTROSTATICS */
1994
1995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1996             ewrt             = _mm_mul_pd(r21,ewtabscale);
1997             ewitab           = _mm_cvttpd_epi32(ewrt);
1998             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1999             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2000                                          &ewtabF,&ewtabFn);
2001             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2002             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2003
2004             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2005
2006             fscal            = felec;
2007
2008             fscal            = _mm_and_pd(fscal,cutoff_mask);
2009
2010             /* Calculate temporary vectorial force */
2011             tx               = _mm_mul_pd(fscal,dx21);
2012             ty               = _mm_mul_pd(fscal,dy21);
2013             tz               = _mm_mul_pd(fscal,dz21);
2014
2015             /* Update vectorial force */
2016             fix2             = _mm_add_pd(fix2,tx);
2017             fiy2             = _mm_add_pd(fiy2,ty);
2018             fiz2             = _mm_add_pd(fiz2,tz);
2019
2020             fjx1             = _mm_add_pd(fjx1,tx);
2021             fjy1             = _mm_add_pd(fjy1,ty);
2022             fjz1             = _mm_add_pd(fjz1,tz);
2023
2024             }
2025
2026             /**************************
2027              * CALCULATE INTERACTIONS *
2028              **************************/
2029
2030             if (gmx_mm_any_lt(rsq22,rcutoff2))
2031             {
2032
2033             r22              = _mm_mul_pd(rsq22,rinv22);
2034
2035             /* EWALD ELECTROSTATICS */
2036
2037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2038             ewrt             = _mm_mul_pd(r22,ewtabscale);
2039             ewitab           = _mm_cvttpd_epi32(ewrt);
2040             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2041             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2042                                          &ewtabF,&ewtabFn);
2043             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2044             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2045
2046             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2047
2048             fscal            = felec;
2049
2050             fscal            = _mm_and_pd(fscal,cutoff_mask);
2051
2052             /* Calculate temporary vectorial force */
2053             tx               = _mm_mul_pd(fscal,dx22);
2054             ty               = _mm_mul_pd(fscal,dy22);
2055             tz               = _mm_mul_pd(fscal,dz22);
2056
2057             /* Update vectorial force */
2058             fix2             = _mm_add_pd(fix2,tx);
2059             fiy2             = _mm_add_pd(fiy2,ty);
2060             fiz2             = _mm_add_pd(fiz2,tz);
2061
2062             fjx2             = _mm_add_pd(fjx2,tx);
2063             fjy2             = _mm_add_pd(fjy2,ty);
2064             fjz2             = _mm_add_pd(fjz2,tz);
2065
2066             }
2067
2068             /**************************
2069              * CALCULATE INTERACTIONS *
2070              **************************/
2071
2072             if (gmx_mm_any_lt(rsq23,rcutoff2))
2073             {
2074
2075             r23              = _mm_mul_pd(rsq23,rinv23);
2076
2077             /* EWALD ELECTROSTATICS */
2078
2079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2080             ewrt             = _mm_mul_pd(r23,ewtabscale);
2081             ewitab           = _mm_cvttpd_epi32(ewrt);
2082             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2083             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2084                                          &ewtabF,&ewtabFn);
2085             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2086             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2087
2088             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
2089
2090             fscal            = felec;
2091
2092             fscal            = _mm_and_pd(fscal,cutoff_mask);
2093
2094             /* Calculate temporary vectorial force */
2095             tx               = _mm_mul_pd(fscal,dx23);
2096             ty               = _mm_mul_pd(fscal,dy23);
2097             tz               = _mm_mul_pd(fscal,dz23);
2098
2099             /* Update vectorial force */
2100             fix2             = _mm_add_pd(fix2,tx);
2101             fiy2             = _mm_add_pd(fiy2,ty);
2102             fiz2             = _mm_add_pd(fiz2,tz);
2103
2104             fjx3             = _mm_add_pd(fjx3,tx);
2105             fjy3             = _mm_add_pd(fjy3,ty);
2106             fjz3             = _mm_add_pd(fjz3,tz);
2107
2108             }
2109
2110             /**************************
2111              * CALCULATE INTERACTIONS *
2112              **************************/
2113
2114             if (gmx_mm_any_lt(rsq31,rcutoff2))
2115             {
2116
2117             r31              = _mm_mul_pd(rsq31,rinv31);
2118
2119             /* EWALD ELECTROSTATICS */
2120
2121             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2122             ewrt             = _mm_mul_pd(r31,ewtabscale);
2123             ewitab           = _mm_cvttpd_epi32(ewrt);
2124             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2125             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2126                                          &ewtabF,&ewtabFn);
2127             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2128             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2129
2130             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
2131
2132             fscal            = felec;
2133
2134             fscal            = _mm_and_pd(fscal,cutoff_mask);
2135
2136             /* Calculate temporary vectorial force */
2137             tx               = _mm_mul_pd(fscal,dx31);
2138             ty               = _mm_mul_pd(fscal,dy31);
2139             tz               = _mm_mul_pd(fscal,dz31);
2140
2141             /* Update vectorial force */
2142             fix3             = _mm_add_pd(fix3,tx);
2143             fiy3             = _mm_add_pd(fiy3,ty);
2144             fiz3             = _mm_add_pd(fiz3,tz);
2145
2146             fjx1             = _mm_add_pd(fjx1,tx);
2147             fjy1             = _mm_add_pd(fjy1,ty);
2148             fjz1             = _mm_add_pd(fjz1,tz);
2149
2150             }
2151
2152             /**************************
2153              * CALCULATE INTERACTIONS *
2154              **************************/
2155
2156             if (gmx_mm_any_lt(rsq32,rcutoff2))
2157             {
2158
2159             r32              = _mm_mul_pd(rsq32,rinv32);
2160
2161             /* EWALD ELECTROSTATICS */
2162
2163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2164             ewrt             = _mm_mul_pd(r32,ewtabscale);
2165             ewitab           = _mm_cvttpd_epi32(ewrt);
2166             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2167             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2168                                          &ewtabF,&ewtabFn);
2169             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2170             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2171
2172             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
2173
2174             fscal            = felec;
2175
2176             fscal            = _mm_and_pd(fscal,cutoff_mask);
2177
2178             /* Calculate temporary vectorial force */
2179             tx               = _mm_mul_pd(fscal,dx32);
2180             ty               = _mm_mul_pd(fscal,dy32);
2181             tz               = _mm_mul_pd(fscal,dz32);
2182
2183             /* Update vectorial force */
2184             fix3             = _mm_add_pd(fix3,tx);
2185             fiy3             = _mm_add_pd(fiy3,ty);
2186             fiz3             = _mm_add_pd(fiz3,tz);
2187
2188             fjx2             = _mm_add_pd(fjx2,tx);
2189             fjy2             = _mm_add_pd(fjy2,ty);
2190             fjz2             = _mm_add_pd(fjz2,tz);
2191
2192             }
2193
2194             /**************************
2195              * CALCULATE INTERACTIONS *
2196              **************************/
2197
2198             if (gmx_mm_any_lt(rsq33,rcutoff2))
2199             {
2200
2201             r33              = _mm_mul_pd(rsq33,rinv33);
2202
2203             /* EWALD ELECTROSTATICS */
2204
2205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2206             ewrt             = _mm_mul_pd(r33,ewtabscale);
2207             ewitab           = _mm_cvttpd_epi32(ewrt);
2208             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2209             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2210                                          &ewtabF,&ewtabFn);
2211             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2212             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2213
2214             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
2215
2216             fscal            = felec;
2217
2218             fscal            = _mm_and_pd(fscal,cutoff_mask);
2219
2220             /* Calculate temporary vectorial force */
2221             tx               = _mm_mul_pd(fscal,dx33);
2222             ty               = _mm_mul_pd(fscal,dy33);
2223             tz               = _mm_mul_pd(fscal,dz33);
2224
2225             /* Update vectorial force */
2226             fix3             = _mm_add_pd(fix3,tx);
2227             fiy3             = _mm_add_pd(fiy3,ty);
2228             fiz3             = _mm_add_pd(fiz3,tz);
2229
2230             fjx3             = _mm_add_pd(fjx3,tx);
2231             fjy3             = _mm_add_pd(fjy3,ty);
2232             fjz3             = _mm_add_pd(fjz3,tz);
2233
2234             }
2235
2236             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2237
2238             /* Inner loop uses 403 flops */
2239         }
2240
2241         if(jidx<j_index_end)
2242         {
2243
2244             jnrA             = jjnr[jidx];
2245             j_coord_offsetA  = DIM*jnrA;
2246
2247             /* load j atom coordinates */
2248             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2249                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
2250                                               &jy2,&jz2,&jx3,&jy3,&jz3);
2251
2252             /* Calculate displacement vector */
2253             dx00             = _mm_sub_pd(ix0,jx0);
2254             dy00             = _mm_sub_pd(iy0,jy0);
2255             dz00             = _mm_sub_pd(iz0,jz0);
2256             dx11             = _mm_sub_pd(ix1,jx1);
2257             dy11             = _mm_sub_pd(iy1,jy1);
2258             dz11             = _mm_sub_pd(iz1,jz1);
2259             dx12             = _mm_sub_pd(ix1,jx2);
2260             dy12             = _mm_sub_pd(iy1,jy2);
2261             dz12             = _mm_sub_pd(iz1,jz2);
2262             dx13             = _mm_sub_pd(ix1,jx3);
2263             dy13             = _mm_sub_pd(iy1,jy3);
2264             dz13             = _mm_sub_pd(iz1,jz3);
2265             dx21             = _mm_sub_pd(ix2,jx1);
2266             dy21             = _mm_sub_pd(iy2,jy1);
2267             dz21             = _mm_sub_pd(iz2,jz1);
2268             dx22             = _mm_sub_pd(ix2,jx2);
2269             dy22             = _mm_sub_pd(iy2,jy2);
2270             dz22             = _mm_sub_pd(iz2,jz2);
2271             dx23             = _mm_sub_pd(ix2,jx3);
2272             dy23             = _mm_sub_pd(iy2,jy3);
2273             dz23             = _mm_sub_pd(iz2,jz3);
2274             dx31             = _mm_sub_pd(ix3,jx1);
2275             dy31             = _mm_sub_pd(iy3,jy1);
2276             dz31             = _mm_sub_pd(iz3,jz1);
2277             dx32             = _mm_sub_pd(ix3,jx2);
2278             dy32             = _mm_sub_pd(iy3,jy2);
2279             dz32             = _mm_sub_pd(iz3,jz2);
2280             dx33             = _mm_sub_pd(ix3,jx3);
2281             dy33             = _mm_sub_pd(iy3,jy3);
2282             dz33             = _mm_sub_pd(iz3,jz3);
2283
2284             /* Calculate squared distance and things based on it */
2285             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2286             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2287             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2288             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
2289             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2290             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2291             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
2292             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
2293             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
2294             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
2295
2296             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2297             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2298             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2299             rinv13           = gmx_mm_invsqrt_pd(rsq13);
2300             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2301             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2302             rinv23           = gmx_mm_invsqrt_pd(rsq23);
2303             rinv31           = gmx_mm_invsqrt_pd(rsq31);
2304             rinv32           = gmx_mm_invsqrt_pd(rsq32);
2305             rinv33           = gmx_mm_invsqrt_pd(rsq33);
2306
2307             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2308             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2309             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2310             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
2311             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2312             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2313             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
2314             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
2315             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
2316             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
2317
2318             fjx0             = _mm_setzero_pd();
2319             fjy0             = _mm_setzero_pd();
2320             fjz0             = _mm_setzero_pd();
2321             fjx1             = _mm_setzero_pd();
2322             fjy1             = _mm_setzero_pd();
2323             fjz1             = _mm_setzero_pd();
2324             fjx2             = _mm_setzero_pd();
2325             fjy2             = _mm_setzero_pd();
2326             fjz2             = _mm_setzero_pd();
2327             fjx3             = _mm_setzero_pd();
2328             fjy3             = _mm_setzero_pd();
2329             fjz3             = _mm_setzero_pd();
2330
2331             /**************************
2332              * CALCULATE INTERACTIONS *
2333              **************************/
2334
2335             if (gmx_mm_any_lt(rsq00,rcutoff2))
2336             {
2337
2338             r00              = _mm_mul_pd(rsq00,rinv00);
2339
2340             /* Analytical LJ-PME */
2341             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2342             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
2343             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
2344             exponent         = gmx_simd_exp_d(ewcljrsq);
2345             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2346             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
2347             /* f6A = 6 * C6grid * (1 - poly) */
2348             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
2349             /* f6B = C6grid * exponent * beta^6 */
2350             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
2351             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2352             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
2353
2354             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2355
2356             fscal            = fvdw;
2357
2358             fscal            = _mm_and_pd(fscal,cutoff_mask);
2359
2360             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2361
2362             /* Calculate temporary vectorial force */
2363             tx               = _mm_mul_pd(fscal,dx00);
2364             ty               = _mm_mul_pd(fscal,dy00);
2365             tz               = _mm_mul_pd(fscal,dz00);
2366
2367             /* Update vectorial force */
2368             fix0             = _mm_add_pd(fix0,tx);
2369             fiy0             = _mm_add_pd(fiy0,ty);
2370             fiz0             = _mm_add_pd(fiz0,tz);
2371
2372             fjx0             = _mm_add_pd(fjx0,tx);
2373             fjy0             = _mm_add_pd(fjy0,ty);
2374             fjz0             = _mm_add_pd(fjz0,tz);
2375
2376             }
2377
2378             /**************************
2379              * CALCULATE INTERACTIONS *
2380              **************************/
2381
2382             if (gmx_mm_any_lt(rsq11,rcutoff2))
2383             {
2384
2385             r11              = _mm_mul_pd(rsq11,rinv11);
2386
2387             /* EWALD ELECTROSTATICS */
2388
2389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2390             ewrt             = _mm_mul_pd(r11,ewtabscale);
2391             ewitab           = _mm_cvttpd_epi32(ewrt);
2392             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2393             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2394             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2395             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2396
2397             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2398
2399             fscal            = felec;
2400
2401             fscal            = _mm_and_pd(fscal,cutoff_mask);
2402
2403             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2404
2405             /* Calculate temporary vectorial force */
2406             tx               = _mm_mul_pd(fscal,dx11);
2407             ty               = _mm_mul_pd(fscal,dy11);
2408             tz               = _mm_mul_pd(fscal,dz11);
2409
2410             /* Update vectorial force */
2411             fix1             = _mm_add_pd(fix1,tx);
2412             fiy1             = _mm_add_pd(fiy1,ty);
2413             fiz1             = _mm_add_pd(fiz1,tz);
2414
2415             fjx1             = _mm_add_pd(fjx1,tx);
2416             fjy1             = _mm_add_pd(fjy1,ty);
2417             fjz1             = _mm_add_pd(fjz1,tz);
2418
2419             }
2420
2421             /**************************
2422              * CALCULATE INTERACTIONS *
2423              **************************/
2424
2425             if (gmx_mm_any_lt(rsq12,rcutoff2))
2426             {
2427
2428             r12              = _mm_mul_pd(rsq12,rinv12);
2429
2430             /* EWALD ELECTROSTATICS */
2431
2432             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2433             ewrt             = _mm_mul_pd(r12,ewtabscale);
2434             ewitab           = _mm_cvttpd_epi32(ewrt);
2435             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2436             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2437             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2438             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2439
2440             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2441
2442             fscal            = felec;
2443
2444             fscal            = _mm_and_pd(fscal,cutoff_mask);
2445
2446             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2447
2448             /* Calculate temporary vectorial force */
2449             tx               = _mm_mul_pd(fscal,dx12);
2450             ty               = _mm_mul_pd(fscal,dy12);
2451             tz               = _mm_mul_pd(fscal,dz12);
2452
2453             /* Update vectorial force */
2454             fix1             = _mm_add_pd(fix1,tx);
2455             fiy1             = _mm_add_pd(fiy1,ty);
2456             fiz1             = _mm_add_pd(fiz1,tz);
2457
2458             fjx2             = _mm_add_pd(fjx2,tx);
2459             fjy2             = _mm_add_pd(fjy2,ty);
2460             fjz2             = _mm_add_pd(fjz2,tz);
2461
2462             }
2463
2464             /**************************
2465              * CALCULATE INTERACTIONS *
2466              **************************/
2467
2468             if (gmx_mm_any_lt(rsq13,rcutoff2))
2469             {
2470
2471             r13              = _mm_mul_pd(rsq13,rinv13);
2472
2473             /* EWALD ELECTROSTATICS */
2474
2475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2476             ewrt             = _mm_mul_pd(r13,ewtabscale);
2477             ewitab           = _mm_cvttpd_epi32(ewrt);
2478             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2479             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2480             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2481             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2482
2483             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
2484
2485             fscal            = felec;
2486
2487             fscal            = _mm_and_pd(fscal,cutoff_mask);
2488
2489             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2490
2491             /* Calculate temporary vectorial force */
2492             tx               = _mm_mul_pd(fscal,dx13);
2493             ty               = _mm_mul_pd(fscal,dy13);
2494             tz               = _mm_mul_pd(fscal,dz13);
2495
2496             /* Update vectorial force */
2497             fix1             = _mm_add_pd(fix1,tx);
2498             fiy1             = _mm_add_pd(fiy1,ty);
2499             fiz1             = _mm_add_pd(fiz1,tz);
2500
2501             fjx3             = _mm_add_pd(fjx3,tx);
2502             fjy3             = _mm_add_pd(fjy3,ty);
2503             fjz3             = _mm_add_pd(fjz3,tz);
2504
2505             }
2506
2507             /**************************
2508              * CALCULATE INTERACTIONS *
2509              **************************/
2510
2511             if (gmx_mm_any_lt(rsq21,rcutoff2))
2512             {
2513
2514             r21              = _mm_mul_pd(rsq21,rinv21);
2515
2516             /* EWALD ELECTROSTATICS */
2517
2518             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2519             ewrt             = _mm_mul_pd(r21,ewtabscale);
2520             ewitab           = _mm_cvttpd_epi32(ewrt);
2521             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2522             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2523             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2524             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2525
2526             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2527
2528             fscal            = felec;
2529
2530             fscal            = _mm_and_pd(fscal,cutoff_mask);
2531
2532             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2533
2534             /* Calculate temporary vectorial force */
2535             tx               = _mm_mul_pd(fscal,dx21);
2536             ty               = _mm_mul_pd(fscal,dy21);
2537             tz               = _mm_mul_pd(fscal,dz21);
2538
2539             /* Update vectorial force */
2540             fix2             = _mm_add_pd(fix2,tx);
2541             fiy2             = _mm_add_pd(fiy2,ty);
2542             fiz2             = _mm_add_pd(fiz2,tz);
2543
2544             fjx1             = _mm_add_pd(fjx1,tx);
2545             fjy1             = _mm_add_pd(fjy1,ty);
2546             fjz1             = _mm_add_pd(fjz1,tz);
2547
2548             }
2549
2550             /**************************
2551              * CALCULATE INTERACTIONS *
2552              **************************/
2553
2554             if (gmx_mm_any_lt(rsq22,rcutoff2))
2555             {
2556
2557             r22              = _mm_mul_pd(rsq22,rinv22);
2558
2559             /* EWALD ELECTROSTATICS */
2560
2561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2562             ewrt             = _mm_mul_pd(r22,ewtabscale);
2563             ewitab           = _mm_cvttpd_epi32(ewrt);
2564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2565             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2566             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2567             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2568
2569             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2570
2571             fscal            = felec;
2572
2573             fscal            = _mm_and_pd(fscal,cutoff_mask);
2574
2575             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2576
2577             /* Calculate temporary vectorial force */
2578             tx               = _mm_mul_pd(fscal,dx22);
2579             ty               = _mm_mul_pd(fscal,dy22);
2580             tz               = _mm_mul_pd(fscal,dz22);
2581
2582             /* Update vectorial force */
2583             fix2             = _mm_add_pd(fix2,tx);
2584             fiy2             = _mm_add_pd(fiy2,ty);
2585             fiz2             = _mm_add_pd(fiz2,tz);
2586
2587             fjx2             = _mm_add_pd(fjx2,tx);
2588             fjy2             = _mm_add_pd(fjy2,ty);
2589             fjz2             = _mm_add_pd(fjz2,tz);
2590
2591             }
2592
2593             /**************************
2594              * CALCULATE INTERACTIONS *
2595              **************************/
2596
2597             if (gmx_mm_any_lt(rsq23,rcutoff2))
2598             {
2599
2600             r23              = _mm_mul_pd(rsq23,rinv23);
2601
2602             /* EWALD ELECTROSTATICS */
2603
2604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2605             ewrt             = _mm_mul_pd(r23,ewtabscale);
2606             ewitab           = _mm_cvttpd_epi32(ewrt);
2607             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2608             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2609             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2610             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2611
2612             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
2613
2614             fscal            = felec;
2615
2616             fscal            = _mm_and_pd(fscal,cutoff_mask);
2617
2618             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2619
2620             /* Calculate temporary vectorial force */
2621             tx               = _mm_mul_pd(fscal,dx23);
2622             ty               = _mm_mul_pd(fscal,dy23);
2623             tz               = _mm_mul_pd(fscal,dz23);
2624
2625             /* Update vectorial force */
2626             fix2             = _mm_add_pd(fix2,tx);
2627             fiy2             = _mm_add_pd(fiy2,ty);
2628             fiz2             = _mm_add_pd(fiz2,tz);
2629
2630             fjx3             = _mm_add_pd(fjx3,tx);
2631             fjy3             = _mm_add_pd(fjy3,ty);
2632             fjz3             = _mm_add_pd(fjz3,tz);
2633
2634             }
2635
2636             /**************************
2637              * CALCULATE INTERACTIONS *
2638              **************************/
2639
2640             if (gmx_mm_any_lt(rsq31,rcutoff2))
2641             {
2642
2643             r31              = _mm_mul_pd(rsq31,rinv31);
2644
2645             /* EWALD ELECTROSTATICS */
2646
2647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2648             ewrt             = _mm_mul_pd(r31,ewtabscale);
2649             ewitab           = _mm_cvttpd_epi32(ewrt);
2650             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2651             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2652             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2653             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2654
2655             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
2656
2657             fscal            = felec;
2658
2659             fscal            = _mm_and_pd(fscal,cutoff_mask);
2660
2661             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2662
2663             /* Calculate temporary vectorial force */
2664             tx               = _mm_mul_pd(fscal,dx31);
2665             ty               = _mm_mul_pd(fscal,dy31);
2666             tz               = _mm_mul_pd(fscal,dz31);
2667
2668             /* Update vectorial force */
2669             fix3             = _mm_add_pd(fix3,tx);
2670             fiy3             = _mm_add_pd(fiy3,ty);
2671             fiz3             = _mm_add_pd(fiz3,tz);
2672
2673             fjx1             = _mm_add_pd(fjx1,tx);
2674             fjy1             = _mm_add_pd(fjy1,ty);
2675             fjz1             = _mm_add_pd(fjz1,tz);
2676
2677             }
2678
2679             /**************************
2680              * CALCULATE INTERACTIONS *
2681              **************************/
2682
2683             if (gmx_mm_any_lt(rsq32,rcutoff2))
2684             {
2685
2686             r32              = _mm_mul_pd(rsq32,rinv32);
2687
2688             /* EWALD ELECTROSTATICS */
2689
2690             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2691             ewrt             = _mm_mul_pd(r32,ewtabscale);
2692             ewitab           = _mm_cvttpd_epi32(ewrt);
2693             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2694             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2695             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2696             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2697
2698             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
2699
2700             fscal            = felec;
2701
2702             fscal            = _mm_and_pd(fscal,cutoff_mask);
2703
2704             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2705
2706             /* Calculate temporary vectorial force */
2707             tx               = _mm_mul_pd(fscal,dx32);
2708             ty               = _mm_mul_pd(fscal,dy32);
2709             tz               = _mm_mul_pd(fscal,dz32);
2710
2711             /* Update vectorial force */
2712             fix3             = _mm_add_pd(fix3,tx);
2713             fiy3             = _mm_add_pd(fiy3,ty);
2714             fiz3             = _mm_add_pd(fiz3,tz);
2715
2716             fjx2             = _mm_add_pd(fjx2,tx);
2717             fjy2             = _mm_add_pd(fjy2,ty);
2718             fjz2             = _mm_add_pd(fjz2,tz);
2719
2720             }
2721
2722             /**************************
2723              * CALCULATE INTERACTIONS *
2724              **************************/
2725
2726             if (gmx_mm_any_lt(rsq33,rcutoff2))
2727             {
2728
2729             r33              = _mm_mul_pd(rsq33,rinv33);
2730
2731             /* EWALD ELECTROSTATICS */
2732
2733             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2734             ewrt             = _mm_mul_pd(r33,ewtabscale);
2735             ewitab           = _mm_cvttpd_epi32(ewrt);
2736             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2737             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2738             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2739             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2740
2741             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
2742
2743             fscal            = felec;
2744
2745             fscal            = _mm_and_pd(fscal,cutoff_mask);
2746
2747             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2748
2749             /* Calculate temporary vectorial force */
2750             tx               = _mm_mul_pd(fscal,dx33);
2751             ty               = _mm_mul_pd(fscal,dy33);
2752             tz               = _mm_mul_pd(fscal,dz33);
2753
2754             /* Update vectorial force */
2755             fix3             = _mm_add_pd(fix3,tx);
2756             fiy3             = _mm_add_pd(fiy3,ty);
2757             fiz3             = _mm_add_pd(fiz3,tz);
2758
2759             fjx3             = _mm_add_pd(fjx3,tx);
2760             fjy3             = _mm_add_pd(fjy3,ty);
2761             fjz3             = _mm_add_pd(fjz3,tz);
2762
2763             }
2764
2765             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2766
2767             /* Inner loop uses 403 flops */
2768         }
2769
2770         /* End of innermost loop */
2771
2772         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2773                                               f+i_coord_offset,fshift+i_shift_offset);
2774
2775         /* Increment number of inner iterations */
2776         inneriter                  += j_index_end - j_index_start;
2777
2778         /* Outer loop uses 24 flops */
2779     }
2780
2781     /* Increment number of outer iterations */
2782     outeriter        += nri;
2783
2784     /* Update outer/inner flops */
2785
2786     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*403);
2787 }