Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           c6grid_30;
105     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     real             *vdwgridparam;
107     __m128d           one_half = _mm_set1_pd(0.5);
108     __m128d           minus_one = _mm_set1_pd(-1.0);
109     __m128i          ewitab;
110     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128d          dummy_mask,cutoff_mask;
113     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114     __m128d          one     = _mm_set1_pd(1.0);
115     __m128d          two     = _mm_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_pd(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->ic->rcoulomb;
151     rcutoff          = _mm_set1_pd(rcutoff_scalar);
152     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
153
154     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
155     rvdw             = _mm_set1_pd(fr->ic->rvdw);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_pd();
184         fiy0             = _mm_setzero_pd();
185         fiz0             = _mm_setzero_pd();
186         fix1             = _mm_setzero_pd();
187         fiy1             = _mm_setzero_pd();
188         fiz1             = _mm_setzero_pd();
189         fix2             = _mm_setzero_pd();
190         fiy2             = _mm_setzero_pd();
191         fiz2             = _mm_setzero_pd();
192         fix3             = _mm_setzero_pd();
193         fiy3             = _mm_setzero_pd();
194         fiz3             = _mm_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_pd();
198         vvdwsum          = _mm_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx20             = _mm_sub_pd(ix2,jx0);
222             dy20             = _mm_sub_pd(iy2,jy0);
223             dz20             = _mm_sub_pd(iz2,jz0);
224             dx30             = _mm_sub_pd(ix3,jx0);
225             dy30             = _mm_sub_pd(iy3,jy0);
226             dz30             = _mm_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv00           = sse41_invsqrt_d(rsq00);
235             rinv10           = sse41_invsqrt_d(rsq10);
236             rinv20           = sse41_invsqrt_d(rsq20);
237             rinv30           = sse41_invsqrt_d(rsq30);
238
239             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
242             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248
249             fjx0             = _mm_setzero_pd();
250             fjy0             = _mm_setzero_pd();
251             fjz0             = _mm_setzero_pd();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
265             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
266                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
267
268             /* Analytical LJ-PME */
269             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
271             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
272             exponent         = sse41_exp_d(ewcljrsq);
273             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
274             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
275             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
276             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
277             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
278             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
279                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
280             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
281             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
282
283             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
287             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
288
289             fscal            = fvdw;
290
291             fscal            = _mm_and_pd(fscal,cutoff_mask);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_pd(fscal,dx00);
295             ty               = _mm_mul_pd(fscal,dy00);
296             tz               = _mm_mul_pd(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_pd(fix0,tx);
300             fiy0             = _mm_add_pd(fiy0,ty);
301             fiz0             = _mm_add_pd(fiz0,tz);
302
303             fjx0             = _mm_add_pd(fjx0,tx);
304             fjy0             = _mm_add_pd(fjy0,ty);
305             fjz0             = _mm_add_pd(fjz0,tz);
306
307             }
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm_any_lt(rsq10,rcutoff2))
314             {
315
316             r10              = _mm_mul_pd(rsq10,rinv10);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm_mul_pd(iq1,jq0);
320
321             /* EWALD ELECTROSTATICS */
322
323             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
324             ewrt             = _mm_mul_pd(r10,ewtabscale);
325             ewitab           = _mm_cvttpd_epi32(ewrt);
326             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
327             ewitab           = _mm_slli_epi32(ewitab,2);
328             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
329             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
330             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
331             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
332             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
333             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
334             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
335             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
336             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
337             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
338
339             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_and_pd(velec,cutoff_mask);
343             velecsum         = _mm_add_pd(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_pd(fscal,cutoff_mask);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx10);
351             ty               = _mm_mul_pd(fscal,dy10);
352             tz               = _mm_mul_pd(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm_add_pd(fix1,tx);
356             fiy1             = _mm_add_pd(fiy1,ty);
357             fiz1             = _mm_add_pd(fiz1,tz);
358
359             fjx0             = _mm_add_pd(fjx0,tx);
360             fjy0             = _mm_add_pd(fjy0,ty);
361             fjz0             = _mm_add_pd(fjz0,tz);
362
363             }
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             if (gmx_mm_any_lt(rsq20,rcutoff2))
370             {
371
372             r20              = _mm_mul_pd(rsq20,rinv20);
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq20             = _mm_mul_pd(iq2,jq0);
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380             ewrt             = _mm_mul_pd(r20,ewtabscale);
381             ewitab           = _mm_cvttpd_epi32(ewrt);
382             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
383             ewitab           = _mm_slli_epi32(ewitab,2);
384             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
385             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
386             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
387             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
388             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
389             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
390             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
391             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
392             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
393             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
394
395             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velec            = _mm_and_pd(velec,cutoff_mask);
399             velecsum         = _mm_add_pd(velecsum,velec);
400
401             fscal            = felec;
402
403             fscal            = _mm_and_pd(fscal,cutoff_mask);
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm_mul_pd(fscal,dx20);
407             ty               = _mm_mul_pd(fscal,dy20);
408             tz               = _mm_mul_pd(fscal,dz20);
409
410             /* Update vectorial force */
411             fix2             = _mm_add_pd(fix2,tx);
412             fiy2             = _mm_add_pd(fiy2,ty);
413             fiz2             = _mm_add_pd(fiz2,tz);
414
415             fjx0             = _mm_add_pd(fjx0,tx);
416             fjy0             = _mm_add_pd(fjy0,ty);
417             fjz0             = _mm_add_pd(fjz0,tz);
418
419             }
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             if (gmx_mm_any_lt(rsq30,rcutoff2))
426             {
427
428             r30              = _mm_mul_pd(rsq30,rinv30);
429
430             /* Compute parameters for interactions between i and j atoms */
431             qq30             = _mm_mul_pd(iq3,jq0);
432
433             /* EWALD ELECTROSTATICS */
434
435             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
436             ewrt             = _mm_mul_pd(r30,ewtabscale);
437             ewitab           = _mm_cvttpd_epi32(ewrt);
438             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
439             ewitab           = _mm_slli_epi32(ewitab,2);
440             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
441             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
442             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
443             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
444             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
445             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
446             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
447             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
448             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
449             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
450
451             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_and_pd(velec,cutoff_mask);
455             velecsum         = _mm_add_pd(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_and_pd(fscal,cutoff_mask);
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm_mul_pd(fscal,dx30);
463             ty               = _mm_mul_pd(fscal,dy30);
464             tz               = _mm_mul_pd(fscal,dz30);
465
466             /* Update vectorial force */
467             fix3             = _mm_add_pd(fix3,tx);
468             fiy3             = _mm_add_pd(fiy3,ty);
469             fiz3             = _mm_add_pd(fiz3,tz);
470
471             fjx0             = _mm_add_pd(fjx0,tx);
472             fjy0             = _mm_add_pd(fjy0,ty);
473             fjz0             = _mm_add_pd(fjz0,tz);
474
475             }
476
477             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
478
479             /* Inner loop uses 202 flops */
480         }
481
482         if(jidx<j_index_end)
483         {
484
485             jnrA             = jjnr[jidx];
486             j_coord_offsetA  = DIM*jnrA;
487
488             /* load j atom coordinates */
489             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
490                                               &jx0,&jy0,&jz0);
491
492             /* Calculate displacement vector */
493             dx00             = _mm_sub_pd(ix0,jx0);
494             dy00             = _mm_sub_pd(iy0,jy0);
495             dz00             = _mm_sub_pd(iz0,jz0);
496             dx10             = _mm_sub_pd(ix1,jx0);
497             dy10             = _mm_sub_pd(iy1,jy0);
498             dz10             = _mm_sub_pd(iz1,jz0);
499             dx20             = _mm_sub_pd(ix2,jx0);
500             dy20             = _mm_sub_pd(iy2,jy0);
501             dz20             = _mm_sub_pd(iz2,jz0);
502             dx30             = _mm_sub_pd(ix3,jx0);
503             dy30             = _mm_sub_pd(iy3,jy0);
504             dz30             = _mm_sub_pd(iz3,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
508             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
509             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
510             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
511
512             rinv00           = sse41_invsqrt_d(rsq00);
513             rinv10           = sse41_invsqrt_d(rsq10);
514             rinv20           = sse41_invsqrt_d(rsq20);
515             rinv30           = sse41_invsqrt_d(rsq30);
516
517             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
518             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
519             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
520             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
521
522             /* Load parameters for j particles */
523             jq0              = _mm_load_sd(charge+jnrA+0);
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525
526             fjx0             = _mm_setzero_pd();
527             fjy0             = _mm_setzero_pd();
528             fjz0             = _mm_setzero_pd();
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm_any_lt(rsq00,rcutoff2))
535             {
536
537             r00              = _mm_mul_pd(rsq00,rinv00);
538
539             /* Compute parameters for interactions between i and j atoms */
540             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
541
542             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
543
544             /* Analytical LJ-PME */
545             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
546             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
547             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
548             exponent         = sse41_exp_d(ewcljrsq);
549             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
550             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
551             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
552             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
553             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
554             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
555                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
556             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
557             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
558
559             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
563             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
564             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
565
566             fscal            = fvdw;
567
568             fscal            = _mm_and_pd(fscal,cutoff_mask);
569
570             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_pd(fscal,dx00);
574             ty               = _mm_mul_pd(fscal,dy00);
575             tz               = _mm_mul_pd(fscal,dz00);
576
577             /* Update vectorial force */
578             fix0             = _mm_add_pd(fix0,tx);
579             fiy0             = _mm_add_pd(fiy0,ty);
580             fiz0             = _mm_add_pd(fiz0,tz);
581
582             fjx0             = _mm_add_pd(fjx0,tx);
583             fjy0             = _mm_add_pd(fjy0,ty);
584             fjz0             = _mm_add_pd(fjz0,tz);
585
586             }
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             if (gmx_mm_any_lt(rsq10,rcutoff2))
593             {
594
595             r10              = _mm_mul_pd(rsq10,rinv10);
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq10             = _mm_mul_pd(iq1,jq0);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_pd(r10,ewtabscale);
604             ewitab           = _mm_cvttpd_epi32(ewrt);
605             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
606             ewitab           = _mm_slli_epi32(ewitab,2);
607             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
608             ewtabD           = _mm_setzero_pd();
609             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
610             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
611             ewtabFn          = _mm_setzero_pd();
612             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
613             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
614             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
615             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
616             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
617
618             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
619
620             /* Update potential sum for this i atom from the interaction with this j atom. */
621             velec            = _mm_and_pd(velec,cutoff_mask);
622             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
623             velecsum         = _mm_add_pd(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm_and_pd(fscal,cutoff_mask);
628
629             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm_mul_pd(fscal,dx10);
633             ty               = _mm_mul_pd(fscal,dy10);
634             tz               = _mm_mul_pd(fscal,dz10);
635
636             /* Update vectorial force */
637             fix1             = _mm_add_pd(fix1,tx);
638             fiy1             = _mm_add_pd(fiy1,ty);
639             fiz1             = _mm_add_pd(fiz1,tz);
640
641             fjx0             = _mm_add_pd(fjx0,tx);
642             fjy0             = _mm_add_pd(fjy0,ty);
643             fjz0             = _mm_add_pd(fjz0,tz);
644
645             }
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm_any_lt(rsq20,rcutoff2))
652             {
653
654             r20              = _mm_mul_pd(rsq20,rinv20);
655
656             /* Compute parameters for interactions between i and j atoms */
657             qq20             = _mm_mul_pd(iq2,jq0);
658
659             /* EWALD ELECTROSTATICS */
660
661             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
662             ewrt             = _mm_mul_pd(r20,ewtabscale);
663             ewitab           = _mm_cvttpd_epi32(ewrt);
664             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
665             ewitab           = _mm_slli_epi32(ewitab,2);
666             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
667             ewtabD           = _mm_setzero_pd();
668             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
669             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
670             ewtabFn          = _mm_setzero_pd();
671             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
672             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
673             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
674             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
675             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
676
677             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
678
679             /* Update potential sum for this i atom from the interaction with this j atom. */
680             velec            = _mm_and_pd(velec,cutoff_mask);
681             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
682             velecsum         = _mm_add_pd(velecsum,velec);
683
684             fscal            = felec;
685
686             fscal            = _mm_and_pd(fscal,cutoff_mask);
687
688             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
689
690             /* Calculate temporary vectorial force */
691             tx               = _mm_mul_pd(fscal,dx20);
692             ty               = _mm_mul_pd(fscal,dy20);
693             tz               = _mm_mul_pd(fscal,dz20);
694
695             /* Update vectorial force */
696             fix2             = _mm_add_pd(fix2,tx);
697             fiy2             = _mm_add_pd(fiy2,ty);
698             fiz2             = _mm_add_pd(fiz2,tz);
699
700             fjx0             = _mm_add_pd(fjx0,tx);
701             fjy0             = _mm_add_pd(fjy0,ty);
702             fjz0             = _mm_add_pd(fjz0,tz);
703
704             }
705
706             /**************************
707              * CALCULATE INTERACTIONS *
708              **************************/
709
710             if (gmx_mm_any_lt(rsq30,rcutoff2))
711             {
712
713             r30              = _mm_mul_pd(rsq30,rinv30);
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq30             = _mm_mul_pd(iq3,jq0);
717
718             /* EWALD ELECTROSTATICS */
719
720             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
721             ewrt             = _mm_mul_pd(r30,ewtabscale);
722             ewitab           = _mm_cvttpd_epi32(ewrt);
723             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
724             ewitab           = _mm_slli_epi32(ewitab,2);
725             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
726             ewtabD           = _mm_setzero_pd();
727             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
728             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
729             ewtabFn          = _mm_setzero_pd();
730             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
731             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
732             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
733             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
734             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
735
736             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
737
738             /* Update potential sum for this i atom from the interaction with this j atom. */
739             velec            = _mm_and_pd(velec,cutoff_mask);
740             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
741             velecsum         = _mm_add_pd(velecsum,velec);
742
743             fscal            = felec;
744
745             fscal            = _mm_and_pd(fscal,cutoff_mask);
746
747             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
748
749             /* Calculate temporary vectorial force */
750             tx               = _mm_mul_pd(fscal,dx30);
751             ty               = _mm_mul_pd(fscal,dy30);
752             tz               = _mm_mul_pd(fscal,dz30);
753
754             /* Update vectorial force */
755             fix3             = _mm_add_pd(fix3,tx);
756             fiy3             = _mm_add_pd(fiy3,ty);
757             fiz3             = _mm_add_pd(fiz3,tz);
758
759             fjx0             = _mm_add_pd(fjx0,tx);
760             fjy0             = _mm_add_pd(fjy0,ty);
761             fjz0             = _mm_add_pd(fjz0,tz);
762
763             }
764
765             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
766
767             /* Inner loop uses 202 flops */
768         }
769
770         /* End of innermost loop */
771
772         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
773                                               f+i_coord_offset,fshift+i_shift_offset);
774
775         ggid                        = gid[iidx];
776         /* Update potential energies */
777         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
778         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
779
780         /* Increment number of inner iterations */
781         inneriter                  += j_index_end - j_index_start;
782
783         /* Outer loop uses 26 flops */
784     }
785
786     /* Increment number of outer iterations */
787     outeriter        += nri;
788
789     /* Update outer/inner flops */
790
791     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*202);
792 }
793 /*
794  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_double
795  * Electrostatics interaction: Ewald
796  * VdW interaction:            LJEwald
797  * Geometry:                   Water4-Particle
798  * Calculate force/pot:        Force
799  */
800 void
801 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_double
802                     (t_nblist                    * gmx_restrict       nlist,
803                      rvec                        * gmx_restrict          xx,
804                      rvec                        * gmx_restrict          ff,
805                      struct t_forcerec           * gmx_restrict          fr,
806                      t_mdatoms                   * gmx_restrict     mdatoms,
807                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
808                      t_nrnb                      * gmx_restrict        nrnb)
809 {
810     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
811      * just 0 for non-waters.
812      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
813      * jnr indices corresponding to data put in the four positions in the SIMD register.
814      */
815     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
816     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
817     int              jnrA,jnrB;
818     int              j_coord_offsetA,j_coord_offsetB;
819     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
820     real             rcutoff_scalar;
821     real             *shiftvec,*fshift,*x,*f;
822     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
823     int              vdwioffset0;
824     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
825     int              vdwioffset1;
826     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
827     int              vdwioffset2;
828     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
829     int              vdwioffset3;
830     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
831     int              vdwjidx0A,vdwjidx0B;
832     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
833     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
834     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
835     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
836     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
837     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
838     real             *charge;
839     int              nvdwtype;
840     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
841     int              *vdwtype;
842     real             *vdwparam;
843     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
844     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
845     __m128d           c6grid_00;
846     __m128d           c6grid_10;
847     __m128d           c6grid_20;
848     __m128d           c6grid_30;
849     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
850     real             *vdwgridparam;
851     __m128d           one_half = _mm_set1_pd(0.5);
852     __m128d           minus_one = _mm_set1_pd(-1.0);
853     __m128i          ewitab;
854     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
855     real             *ewtab;
856     __m128d          dummy_mask,cutoff_mask;
857     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
858     __m128d          one     = _mm_set1_pd(1.0);
859     __m128d          two     = _mm_set1_pd(2.0);
860     x                = xx[0];
861     f                = ff[0];
862
863     nri              = nlist->nri;
864     iinr             = nlist->iinr;
865     jindex           = nlist->jindex;
866     jjnr             = nlist->jjnr;
867     shiftidx         = nlist->shift;
868     gid              = nlist->gid;
869     shiftvec         = fr->shift_vec[0];
870     fshift           = fr->fshift[0];
871     facel            = _mm_set1_pd(fr->ic->epsfac);
872     charge           = mdatoms->chargeA;
873     nvdwtype         = fr->ntype;
874     vdwparam         = fr->nbfp;
875     vdwtype          = mdatoms->typeA;
876     vdwgridparam     = fr->ljpme_c6grid;
877     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
878     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
879     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
880
881     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
882     ewtab            = fr->ic->tabq_coul_F;
883     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
884     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
885
886     /* Setup water-specific parameters */
887     inr              = nlist->iinr[0];
888     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
889     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
890     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
891     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
892
893     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
894     rcutoff_scalar   = fr->ic->rcoulomb;
895     rcutoff          = _mm_set1_pd(rcutoff_scalar);
896     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
897
898     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
899     rvdw             = _mm_set1_pd(fr->ic->rvdw);
900
901     /* Avoid stupid compiler warnings */
902     jnrA = jnrB = 0;
903     j_coord_offsetA = 0;
904     j_coord_offsetB = 0;
905
906     outeriter        = 0;
907     inneriter        = 0;
908
909     /* Start outer loop over neighborlists */
910     for(iidx=0; iidx<nri; iidx++)
911     {
912         /* Load shift vector for this list */
913         i_shift_offset   = DIM*shiftidx[iidx];
914
915         /* Load limits for loop over neighbors */
916         j_index_start    = jindex[iidx];
917         j_index_end      = jindex[iidx+1];
918
919         /* Get outer coordinate index */
920         inr              = iinr[iidx];
921         i_coord_offset   = DIM*inr;
922
923         /* Load i particle coords and add shift vector */
924         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
925                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
926
927         fix0             = _mm_setzero_pd();
928         fiy0             = _mm_setzero_pd();
929         fiz0             = _mm_setzero_pd();
930         fix1             = _mm_setzero_pd();
931         fiy1             = _mm_setzero_pd();
932         fiz1             = _mm_setzero_pd();
933         fix2             = _mm_setzero_pd();
934         fiy2             = _mm_setzero_pd();
935         fiz2             = _mm_setzero_pd();
936         fix3             = _mm_setzero_pd();
937         fiy3             = _mm_setzero_pd();
938         fiz3             = _mm_setzero_pd();
939
940         /* Start inner kernel loop */
941         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
942         {
943
944             /* Get j neighbor index, and coordinate index */
945             jnrA             = jjnr[jidx];
946             jnrB             = jjnr[jidx+1];
947             j_coord_offsetA  = DIM*jnrA;
948             j_coord_offsetB  = DIM*jnrB;
949
950             /* load j atom coordinates */
951             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
952                                               &jx0,&jy0,&jz0);
953
954             /* Calculate displacement vector */
955             dx00             = _mm_sub_pd(ix0,jx0);
956             dy00             = _mm_sub_pd(iy0,jy0);
957             dz00             = _mm_sub_pd(iz0,jz0);
958             dx10             = _mm_sub_pd(ix1,jx0);
959             dy10             = _mm_sub_pd(iy1,jy0);
960             dz10             = _mm_sub_pd(iz1,jz0);
961             dx20             = _mm_sub_pd(ix2,jx0);
962             dy20             = _mm_sub_pd(iy2,jy0);
963             dz20             = _mm_sub_pd(iz2,jz0);
964             dx30             = _mm_sub_pd(ix3,jx0);
965             dy30             = _mm_sub_pd(iy3,jy0);
966             dz30             = _mm_sub_pd(iz3,jz0);
967
968             /* Calculate squared distance and things based on it */
969             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
970             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
971             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
972             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
973
974             rinv00           = sse41_invsqrt_d(rsq00);
975             rinv10           = sse41_invsqrt_d(rsq10);
976             rinv20           = sse41_invsqrt_d(rsq20);
977             rinv30           = sse41_invsqrt_d(rsq30);
978
979             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
980             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
981             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
982             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
983
984             /* Load parameters for j particles */
985             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
986             vdwjidx0A        = 2*vdwtype[jnrA+0];
987             vdwjidx0B        = 2*vdwtype[jnrB+0];
988
989             fjx0             = _mm_setzero_pd();
990             fjy0             = _mm_setzero_pd();
991             fjz0             = _mm_setzero_pd();
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             if (gmx_mm_any_lt(rsq00,rcutoff2))
998             {
999
1000             r00              = _mm_mul_pd(rsq00,rinv00);
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1004                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1005             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1006                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
1007
1008             /* Analytical LJ-PME */
1009             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1010             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1011             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1012             exponent         = sse41_exp_d(ewcljrsq);
1013             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1014             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1015             /* f6A = 6 * C6grid * (1 - poly) */
1016             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1017             /* f6B = C6grid * exponent * beta^6 */
1018             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1019             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1020             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1021
1022             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1023
1024             fscal            = fvdw;
1025
1026             fscal            = _mm_and_pd(fscal,cutoff_mask);
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm_mul_pd(fscal,dx00);
1030             ty               = _mm_mul_pd(fscal,dy00);
1031             tz               = _mm_mul_pd(fscal,dz00);
1032
1033             /* Update vectorial force */
1034             fix0             = _mm_add_pd(fix0,tx);
1035             fiy0             = _mm_add_pd(fiy0,ty);
1036             fiz0             = _mm_add_pd(fiz0,tz);
1037
1038             fjx0             = _mm_add_pd(fjx0,tx);
1039             fjy0             = _mm_add_pd(fjy0,ty);
1040             fjz0             = _mm_add_pd(fjz0,tz);
1041
1042             }
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             if (gmx_mm_any_lt(rsq10,rcutoff2))
1049             {
1050
1051             r10              = _mm_mul_pd(rsq10,rinv10);
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq10             = _mm_mul_pd(iq1,jq0);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm_mul_pd(r10,ewtabscale);
1060             ewitab           = _mm_cvttpd_epi32(ewrt);
1061             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1062             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1063                                          &ewtabF,&ewtabFn);
1064             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1065             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1066
1067             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1068
1069             fscal            = felec;
1070
1071             fscal            = _mm_and_pd(fscal,cutoff_mask);
1072
1073             /* Calculate temporary vectorial force */
1074             tx               = _mm_mul_pd(fscal,dx10);
1075             ty               = _mm_mul_pd(fscal,dy10);
1076             tz               = _mm_mul_pd(fscal,dz10);
1077
1078             /* Update vectorial force */
1079             fix1             = _mm_add_pd(fix1,tx);
1080             fiy1             = _mm_add_pd(fiy1,ty);
1081             fiz1             = _mm_add_pd(fiz1,tz);
1082
1083             fjx0             = _mm_add_pd(fjx0,tx);
1084             fjy0             = _mm_add_pd(fjy0,ty);
1085             fjz0             = _mm_add_pd(fjz0,tz);
1086
1087             }
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             if (gmx_mm_any_lt(rsq20,rcutoff2))
1094             {
1095
1096             r20              = _mm_mul_pd(rsq20,rinv20);
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm_mul_pd(iq2,jq0);
1100
1101             /* EWALD ELECTROSTATICS */
1102
1103             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1104             ewrt             = _mm_mul_pd(r20,ewtabscale);
1105             ewitab           = _mm_cvttpd_epi32(ewrt);
1106             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1107             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1108                                          &ewtabF,&ewtabFn);
1109             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1110             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1111
1112             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1113
1114             fscal            = felec;
1115
1116             fscal            = _mm_and_pd(fscal,cutoff_mask);
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_pd(fscal,dx20);
1120             ty               = _mm_mul_pd(fscal,dy20);
1121             tz               = _mm_mul_pd(fscal,dz20);
1122
1123             /* Update vectorial force */
1124             fix2             = _mm_add_pd(fix2,tx);
1125             fiy2             = _mm_add_pd(fiy2,ty);
1126             fiz2             = _mm_add_pd(fiz2,tz);
1127
1128             fjx0             = _mm_add_pd(fjx0,tx);
1129             fjy0             = _mm_add_pd(fjy0,ty);
1130             fjz0             = _mm_add_pd(fjz0,tz);
1131
1132             }
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             if (gmx_mm_any_lt(rsq30,rcutoff2))
1139             {
1140
1141             r30              = _mm_mul_pd(rsq30,rinv30);
1142
1143             /* Compute parameters for interactions between i and j atoms */
1144             qq30             = _mm_mul_pd(iq3,jq0);
1145
1146             /* EWALD ELECTROSTATICS */
1147
1148             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1149             ewrt             = _mm_mul_pd(r30,ewtabscale);
1150             ewitab           = _mm_cvttpd_epi32(ewrt);
1151             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1152             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1153                                          &ewtabF,&ewtabFn);
1154             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1155             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1156
1157             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm_and_pd(fscal,cutoff_mask);
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm_mul_pd(fscal,dx30);
1165             ty               = _mm_mul_pd(fscal,dy30);
1166             tz               = _mm_mul_pd(fscal,dz30);
1167
1168             /* Update vectorial force */
1169             fix3             = _mm_add_pd(fix3,tx);
1170             fiy3             = _mm_add_pd(fiy3,ty);
1171             fiz3             = _mm_add_pd(fiz3,tz);
1172
1173             fjx0             = _mm_add_pd(fjx0,tx);
1174             fjy0             = _mm_add_pd(fjy0,ty);
1175             fjz0             = _mm_add_pd(fjz0,tz);
1176
1177             }
1178
1179             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1180
1181             /* Inner loop uses 169 flops */
1182         }
1183
1184         if(jidx<j_index_end)
1185         {
1186
1187             jnrA             = jjnr[jidx];
1188             j_coord_offsetA  = DIM*jnrA;
1189
1190             /* load j atom coordinates */
1191             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1192                                               &jx0,&jy0,&jz0);
1193
1194             /* Calculate displacement vector */
1195             dx00             = _mm_sub_pd(ix0,jx0);
1196             dy00             = _mm_sub_pd(iy0,jy0);
1197             dz00             = _mm_sub_pd(iz0,jz0);
1198             dx10             = _mm_sub_pd(ix1,jx0);
1199             dy10             = _mm_sub_pd(iy1,jy0);
1200             dz10             = _mm_sub_pd(iz1,jz0);
1201             dx20             = _mm_sub_pd(ix2,jx0);
1202             dy20             = _mm_sub_pd(iy2,jy0);
1203             dz20             = _mm_sub_pd(iz2,jz0);
1204             dx30             = _mm_sub_pd(ix3,jx0);
1205             dy30             = _mm_sub_pd(iy3,jy0);
1206             dz30             = _mm_sub_pd(iz3,jz0);
1207
1208             /* Calculate squared distance and things based on it */
1209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1212             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1213
1214             rinv00           = sse41_invsqrt_d(rsq00);
1215             rinv10           = sse41_invsqrt_d(rsq10);
1216             rinv20           = sse41_invsqrt_d(rsq20);
1217             rinv30           = sse41_invsqrt_d(rsq30);
1218
1219             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1222             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1223
1224             /* Load parameters for j particles */
1225             jq0              = _mm_load_sd(charge+jnrA+0);
1226             vdwjidx0A        = 2*vdwtype[jnrA+0];
1227
1228             fjx0             = _mm_setzero_pd();
1229             fjy0             = _mm_setzero_pd();
1230             fjz0             = _mm_setzero_pd();
1231
1232             /**************************
1233              * CALCULATE INTERACTIONS *
1234              **************************/
1235
1236             if (gmx_mm_any_lt(rsq00,rcutoff2))
1237             {
1238
1239             r00              = _mm_mul_pd(rsq00,rinv00);
1240
1241             /* Compute parameters for interactions between i and j atoms */
1242             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1243
1244             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1245
1246             /* Analytical LJ-PME */
1247             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1248             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1249             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1250             exponent         = sse41_exp_d(ewcljrsq);
1251             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1252             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1253             /* f6A = 6 * C6grid * (1 - poly) */
1254             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1255             /* f6B = C6grid * exponent * beta^6 */
1256             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1257             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1258             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1259
1260             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1261
1262             fscal            = fvdw;
1263
1264             fscal            = _mm_and_pd(fscal,cutoff_mask);
1265
1266             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1267
1268             /* Calculate temporary vectorial force */
1269             tx               = _mm_mul_pd(fscal,dx00);
1270             ty               = _mm_mul_pd(fscal,dy00);
1271             tz               = _mm_mul_pd(fscal,dz00);
1272
1273             /* Update vectorial force */
1274             fix0             = _mm_add_pd(fix0,tx);
1275             fiy0             = _mm_add_pd(fiy0,ty);
1276             fiz0             = _mm_add_pd(fiz0,tz);
1277
1278             fjx0             = _mm_add_pd(fjx0,tx);
1279             fjy0             = _mm_add_pd(fjy0,ty);
1280             fjz0             = _mm_add_pd(fjz0,tz);
1281
1282             }
1283
1284             /**************************
1285              * CALCULATE INTERACTIONS *
1286              **************************/
1287
1288             if (gmx_mm_any_lt(rsq10,rcutoff2))
1289             {
1290
1291             r10              = _mm_mul_pd(rsq10,rinv10);
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq10             = _mm_mul_pd(iq1,jq0);
1295
1296             /* EWALD ELECTROSTATICS */
1297
1298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1299             ewrt             = _mm_mul_pd(r10,ewtabscale);
1300             ewitab           = _mm_cvttpd_epi32(ewrt);
1301             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1302             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1303             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1304             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1305
1306             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1307
1308             fscal            = felec;
1309
1310             fscal            = _mm_and_pd(fscal,cutoff_mask);
1311
1312             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1313
1314             /* Calculate temporary vectorial force */
1315             tx               = _mm_mul_pd(fscal,dx10);
1316             ty               = _mm_mul_pd(fscal,dy10);
1317             tz               = _mm_mul_pd(fscal,dz10);
1318
1319             /* Update vectorial force */
1320             fix1             = _mm_add_pd(fix1,tx);
1321             fiy1             = _mm_add_pd(fiy1,ty);
1322             fiz1             = _mm_add_pd(fiz1,tz);
1323
1324             fjx0             = _mm_add_pd(fjx0,tx);
1325             fjy0             = _mm_add_pd(fjy0,ty);
1326             fjz0             = _mm_add_pd(fjz0,tz);
1327
1328             }
1329
1330             /**************************
1331              * CALCULATE INTERACTIONS *
1332              **************************/
1333
1334             if (gmx_mm_any_lt(rsq20,rcutoff2))
1335             {
1336
1337             r20              = _mm_mul_pd(rsq20,rinv20);
1338
1339             /* Compute parameters for interactions between i and j atoms */
1340             qq20             = _mm_mul_pd(iq2,jq0);
1341
1342             /* EWALD ELECTROSTATICS */
1343
1344             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1345             ewrt             = _mm_mul_pd(r20,ewtabscale);
1346             ewitab           = _mm_cvttpd_epi32(ewrt);
1347             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1348             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1349             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1350             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1351
1352             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1353
1354             fscal            = felec;
1355
1356             fscal            = _mm_and_pd(fscal,cutoff_mask);
1357
1358             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1359
1360             /* Calculate temporary vectorial force */
1361             tx               = _mm_mul_pd(fscal,dx20);
1362             ty               = _mm_mul_pd(fscal,dy20);
1363             tz               = _mm_mul_pd(fscal,dz20);
1364
1365             /* Update vectorial force */
1366             fix2             = _mm_add_pd(fix2,tx);
1367             fiy2             = _mm_add_pd(fiy2,ty);
1368             fiz2             = _mm_add_pd(fiz2,tz);
1369
1370             fjx0             = _mm_add_pd(fjx0,tx);
1371             fjy0             = _mm_add_pd(fjy0,ty);
1372             fjz0             = _mm_add_pd(fjz0,tz);
1373
1374             }
1375
1376             /**************************
1377              * CALCULATE INTERACTIONS *
1378              **************************/
1379
1380             if (gmx_mm_any_lt(rsq30,rcutoff2))
1381             {
1382
1383             r30              = _mm_mul_pd(rsq30,rinv30);
1384
1385             /* Compute parameters for interactions between i and j atoms */
1386             qq30             = _mm_mul_pd(iq3,jq0);
1387
1388             /* EWALD ELECTROSTATICS */
1389
1390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1391             ewrt             = _mm_mul_pd(r30,ewtabscale);
1392             ewitab           = _mm_cvttpd_epi32(ewrt);
1393             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1394             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1395             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1396             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1397
1398             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1399
1400             fscal            = felec;
1401
1402             fscal            = _mm_and_pd(fscal,cutoff_mask);
1403
1404             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1405
1406             /* Calculate temporary vectorial force */
1407             tx               = _mm_mul_pd(fscal,dx30);
1408             ty               = _mm_mul_pd(fscal,dy30);
1409             tz               = _mm_mul_pd(fscal,dz30);
1410
1411             /* Update vectorial force */
1412             fix3             = _mm_add_pd(fix3,tx);
1413             fiy3             = _mm_add_pd(fiy3,ty);
1414             fiz3             = _mm_add_pd(fiz3,tz);
1415
1416             fjx0             = _mm_add_pd(fjx0,tx);
1417             fjy0             = _mm_add_pd(fjy0,ty);
1418             fjz0             = _mm_add_pd(fjz0,tz);
1419
1420             }
1421
1422             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1423
1424             /* Inner loop uses 169 flops */
1425         }
1426
1427         /* End of innermost loop */
1428
1429         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1430                                               f+i_coord_offset,fshift+i_shift_offset);
1431
1432         /* Increment number of inner iterations */
1433         inneriter                  += j_index_end - j_index_start;
1434
1435         /* Outer loop uses 24 flops */
1436     }
1437
1438     /* Increment number of outer iterations */
1439     outeriter        += nri;
1440
1441     /* Update outer/inner flops */
1442
1443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1444 }