f920aa646dcec848f4df742df3e776270a712eb8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d           c6grid_00;
103     __m128d           c6grid_10;
104     __m128d           c6grid_20;
105     __m128d           c6grid_30;
106     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     real             *vdwgridparam;
108     __m128d           one_half = _mm_set1_pd(0.5);
109     __m128d           minus_one = _mm_set1_pd(-1.0);
110     __m128i          ewitab;
111     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     __m128d          dummy_mask,cutoff_mask;
114     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
115     __m128d          one     = _mm_set1_pd(1.0);
116     __m128d          two     = _mm_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm_set1_pd(rcutoff_scalar);
153     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
154
155     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
156     rvdw             = _mm_set1_pd(fr->rvdw);
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _mm_setzero_pd();
185         fiy0             = _mm_setzero_pd();
186         fiz0             = _mm_setzero_pd();
187         fix1             = _mm_setzero_pd();
188         fiy1             = _mm_setzero_pd();
189         fiz1             = _mm_setzero_pd();
190         fix2             = _mm_setzero_pd();
191         fiy2             = _mm_setzero_pd();
192         fiz2             = _mm_setzero_pd();
193         fix3             = _mm_setzero_pd();
194         fiy3             = _mm_setzero_pd();
195         fiz3             = _mm_setzero_pd();
196
197         /* Reset potential sums */
198         velecsum         = _mm_setzero_pd();
199         vvdwsum          = _mm_setzero_pd();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_pd(ix0,jx0);
217             dy00             = _mm_sub_pd(iy0,jy0);
218             dz00             = _mm_sub_pd(iz0,jz0);
219             dx10             = _mm_sub_pd(ix1,jx0);
220             dy10             = _mm_sub_pd(iy1,jy0);
221             dz10             = _mm_sub_pd(iz1,jz0);
222             dx20             = _mm_sub_pd(ix2,jx0);
223             dy20             = _mm_sub_pd(iy2,jy0);
224             dz20             = _mm_sub_pd(iz2,jz0);
225             dx30             = _mm_sub_pd(ix3,jx0);
226             dy30             = _mm_sub_pd(iy3,jy0);
227             dz30             = _mm_sub_pd(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
233             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
234
235             rinv00           = gmx_mm_invsqrt_pd(rsq00);
236             rinv10           = gmx_mm_invsqrt_pd(rsq10);
237             rinv20           = gmx_mm_invsqrt_pd(rsq20);
238             rinv30           = gmx_mm_invsqrt_pd(rsq30);
239
240             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
241             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
242             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
243             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249
250             fjx0             = _mm_setzero_pd();
251             fjy0             = _mm_setzero_pd();
252             fjz0             = _mm_setzero_pd();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
266             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
268
269             /* Analytical LJ-PME */
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
272             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
273             exponent         = gmx_simd_exp_d(ewcljrsq);
274             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
275             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
276             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
277             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
278             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
280                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
281             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
282             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
283
284             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             fscal            = _mm_and_pd(fscal,cutoff_mask);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_pd(fscal,dx00);
296             ty               = _mm_mul_pd(fscal,dy00);
297             tz               = _mm_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm_add_pd(fix0,tx);
301             fiy0             = _mm_add_pd(fiy0,ty);
302             fiz0             = _mm_add_pd(fiz0,tz);
303
304             fjx0             = _mm_add_pd(fjx0,tx);
305             fjy0             = _mm_add_pd(fjy0,ty);
306             fjz0             = _mm_add_pd(fjz0,tz);
307
308             }
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq10,rcutoff2))
315             {
316
317             r10              = _mm_mul_pd(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_pd(iq1,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_pd(r10,ewtabscale);
326             ewitab           = _mm_cvttpd_epi32(ewrt);
327             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
336             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
337             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
339
340             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_and_pd(velec,cutoff_mask);
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             fscal            = _mm_and_pd(fscal,cutoff_mask);
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_pd(fscal,dx10);
352             ty               = _mm_mul_pd(fscal,dy10);
353             tz               = _mm_mul_pd(fscal,dz10);
354
355             /* Update vectorial force */
356             fix1             = _mm_add_pd(fix1,tx);
357             fiy1             = _mm_add_pd(fiy1,ty);
358             fiz1             = _mm_add_pd(fiz1,tz);
359
360             fjx0             = _mm_add_pd(fjx0,tx);
361             fjy0             = _mm_add_pd(fjy0,ty);
362             fjz0             = _mm_add_pd(fjz0,tz);
363
364             }
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             if (gmx_mm_any_lt(rsq20,rcutoff2))
371             {
372
373             r20              = _mm_mul_pd(rsq20,rinv20);
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq20             = _mm_mul_pd(iq2,jq0);
377
378             /* EWALD ELECTROSTATICS */
379
380             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
381             ewrt             = _mm_mul_pd(r20,ewtabscale);
382             ewitab           = _mm_cvttpd_epi32(ewrt);
383             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
384             ewitab           = _mm_slli_epi32(ewitab,2);
385             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
386             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
387             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
388             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
389             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
390             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
391             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
392             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
393             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
394             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
395
396             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm_and_pd(velec,cutoff_mask);
400             velecsum         = _mm_add_pd(velecsum,velec);
401
402             fscal            = felec;
403
404             fscal            = _mm_and_pd(fscal,cutoff_mask);
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm_mul_pd(fscal,dx20);
408             ty               = _mm_mul_pd(fscal,dy20);
409             tz               = _mm_mul_pd(fscal,dz20);
410
411             /* Update vectorial force */
412             fix2             = _mm_add_pd(fix2,tx);
413             fiy2             = _mm_add_pd(fiy2,ty);
414             fiz2             = _mm_add_pd(fiz2,tz);
415
416             fjx0             = _mm_add_pd(fjx0,tx);
417             fjy0             = _mm_add_pd(fjy0,ty);
418             fjz0             = _mm_add_pd(fjz0,tz);
419
420             }
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             if (gmx_mm_any_lt(rsq30,rcutoff2))
427             {
428
429             r30              = _mm_mul_pd(rsq30,rinv30);
430
431             /* Compute parameters for interactions between i and j atoms */
432             qq30             = _mm_mul_pd(iq3,jq0);
433
434             /* EWALD ELECTROSTATICS */
435
436             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437             ewrt             = _mm_mul_pd(r30,ewtabscale);
438             ewitab           = _mm_cvttpd_epi32(ewrt);
439             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
440             ewitab           = _mm_slli_epi32(ewitab,2);
441             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
442             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
443             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
444             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
445             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
446             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
447             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
448             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
449             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
450             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
451
452             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             velec            = _mm_and_pd(velec,cutoff_mask);
456             velecsum         = _mm_add_pd(velecsum,velec);
457
458             fscal            = felec;
459
460             fscal            = _mm_and_pd(fscal,cutoff_mask);
461
462             /* Calculate temporary vectorial force */
463             tx               = _mm_mul_pd(fscal,dx30);
464             ty               = _mm_mul_pd(fscal,dy30);
465             tz               = _mm_mul_pd(fscal,dz30);
466
467             /* Update vectorial force */
468             fix3             = _mm_add_pd(fix3,tx);
469             fiy3             = _mm_add_pd(fiy3,ty);
470             fiz3             = _mm_add_pd(fiz3,tz);
471
472             fjx0             = _mm_add_pd(fjx0,tx);
473             fjy0             = _mm_add_pd(fjy0,ty);
474             fjz0             = _mm_add_pd(fjz0,tz);
475
476             }
477
478             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
479
480             /* Inner loop uses 202 flops */
481         }
482
483         if(jidx<j_index_end)
484         {
485
486             jnrA             = jjnr[jidx];
487             j_coord_offsetA  = DIM*jnrA;
488
489             /* load j atom coordinates */
490             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
491                                               &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm_sub_pd(ix0,jx0);
495             dy00             = _mm_sub_pd(iy0,jy0);
496             dz00             = _mm_sub_pd(iz0,jz0);
497             dx10             = _mm_sub_pd(ix1,jx0);
498             dy10             = _mm_sub_pd(iy1,jy0);
499             dz10             = _mm_sub_pd(iz1,jz0);
500             dx20             = _mm_sub_pd(ix2,jx0);
501             dy20             = _mm_sub_pd(iy2,jy0);
502             dz20             = _mm_sub_pd(iz2,jz0);
503             dx30             = _mm_sub_pd(ix3,jx0);
504             dy30             = _mm_sub_pd(iy3,jy0);
505             dz30             = _mm_sub_pd(iz3,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
509             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
510             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
511             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
512
513             rinv00           = gmx_mm_invsqrt_pd(rsq00);
514             rinv10           = gmx_mm_invsqrt_pd(rsq10);
515             rinv20           = gmx_mm_invsqrt_pd(rsq20);
516             rinv30           = gmx_mm_invsqrt_pd(rsq30);
517
518             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
519             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
520             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
521             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
522
523             /* Load parameters for j particles */
524             jq0              = _mm_load_sd(charge+jnrA+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526
527             fjx0             = _mm_setzero_pd();
528             fjy0             = _mm_setzero_pd();
529             fjz0             = _mm_setzero_pd();
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             if (gmx_mm_any_lt(rsq00,rcutoff2))
536             {
537
538             r00              = _mm_mul_pd(rsq00,rinv00);
539
540             /* Compute parameters for interactions between i and j atoms */
541             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
542
543             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
544
545             /* Analytical LJ-PME */
546             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
547             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
548             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
549             exponent         = gmx_simd_exp_d(ewcljrsq);
550             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
551             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
552             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
553             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
554             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
555             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
556                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
557             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
558             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
559
560             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
564             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
565             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
566
567             fscal            = fvdw;
568
569             fscal            = _mm_and_pd(fscal,cutoff_mask);
570
571             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm_mul_pd(fscal,dx00);
575             ty               = _mm_mul_pd(fscal,dy00);
576             tz               = _mm_mul_pd(fscal,dz00);
577
578             /* Update vectorial force */
579             fix0             = _mm_add_pd(fix0,tx);
580             fiy0             = _mm_add_pd(fiy0,ty);
581             fiz0             = _mm_add_pd(fiz0,tz);
582
583             fjx0             = _mm_add_pd(fjx0,tx);
584             fjy0             = _mm_add_pd(fjy0,ty);
585             fjz0             = _mm_add_pd(fjz0,tz);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm_any_lt(rsq10,rcutoff2))
594             {
595
596             r10              = _mm_mul_pd(rsq10,rinv10);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq10             = _mm_mul_pd(iq1,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r10,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
607             ewitab           = _mm_slli_epi32(ewitab,2);
608             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609             ewtabD           = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
611             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
612             ewtabFn          = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
614             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
615             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
616             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
617             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
618
619             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_and_pd(velec,cutoff_mask);
623             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
624             velecsum         = _mm_add_pd(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_and_pd(fscal,cutoff_mask);
629
630             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_pd(fscal,dx10);
634             ty               = _mm_mul_pd(fscal,dy10);
635             tz               = _mm_mul_pd(fscal,dz10);
636
637             /* Update vectorial force */
638             fix1             = _mm_add_pd(fix1,tx);
639             fiy1             = _mm_add_pd(fiy1,ty);
640             fiz1             = _mm_add_pd(fiz1,tz);
641
642             fjx0             = _mm_add_pd(fjx0,tx);
643             fjy0             = _mm_add_pd(fjy0,ty);
644             fjz0             = _mm_add_pd(fjz0,tz);
645
646             }
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm_any_lt(rsq20,rcutoff2))
653             {
654
655             r20              = _mm_mul_pd(rsq20,rinv20);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq20             = _mm_mul_pd(iq2,jq0);
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
663             ewrt             = _mm_mul_pd(r20,ewtabscale);
664             ewitab           = _mm_cvttpd_epi32(ewrt);
665             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
666             ewitab           = _mm_slli_epi32(ewitab,2);
667             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
668             ewtabD           = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
670             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
671             ewtabFn          = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
673             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
674             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
675             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
676             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
677
678             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             velec            = _mm_and_pd(velec,cutoff_mask);
682             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
683             velecsum         = _mm_add_pd(velecsum,velec);
684
685             fscal            = felec;
686
687             fscal            = _mm_and_pd(fscal,cutoff_mask);
688
689             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_pd(fscal,dx20);
693             ty               = _mm_mul_pd(fscal,dy20);
694             tz               = _mm_mul_pd(fscal,dz20);
695
696             /* Update vectorial force */
697             fix2             = _mm_add_pd(fix2,tx);
698             fiy2             = _mm_add_pd(fiy2,ty);
699             fiz2             = _mm_add_pd(fiz2,tz);
700
701             fjx0             = _mm_add_pd(fjx0,tx);
702             fjy0             = _mm_add_pd(fjy0,ty);
703             fjz0             = _mm_add_pd(fjz0,tz);
704
705             }
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             if (gmx_mm_any_lt(rsq30,rcutoff2))
712             {
713
714             r30              = _mm_mul_pd(rsq30,rinv30);
715
716             /* Compute parameters for interactions between i and j atoms */
717             qq30             = _mm_mul_pd(iq3,jq0);
718
719             /* EWALD ELECTROSTATICS */
720
721             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
722             ewrt             = _mm_mul_pd(r30,ewtabscale);
723             ewitab           = _mm_cvttpd_epi32(ewrt);
724             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
725             ewitab           = _mm_slli_epi32(ewitab,2);
726             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
727             ewtabD           = _mm_setzero_pd();
728             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
729             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
730             ewtabFn          = _mm_setzero_pd();
731             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
732             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
733             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
734             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
735             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
736
737             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
738
739             /* Update potential sum for this i atom from the interaction with this j atom. */
740             velec            = _mm_and_pd(velec,cutoff_mask);
741             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
742             velecsum         = _mm_add_pd(velecsum,velec);
743
744             fscal            = felec;
745
746             fscal            = _mm_and_pd(fscal,cutoff_mask);
747
748             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm_mul_pd(fscal,dx30);
752             ty               = _mm_mul_pd(fscal,dy30);
753             tz               = _mm_mul_pd(fscal,dz30);
754
755             /* Update vectorial force */
756             fix3             = _mm_add_pd(fix3,tx);
757             fiy3             = _mm_add_pd(fiy3,ty);
758             fiz3             = _mm_add_pd(fiz3,tz);
759
760             fjx0             = _mm_add_pd(fjx0,tx);
761             fjy0             = _mm_add_pd(fjy0,ty);
762             fjz0             = _mm_add_pd(fjz0,tz);
763
764             }
765
766             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
767
768             /* Inner loop uses 202 flops */
769         }
770
771         /* End of innermost loop */
772
773         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
774                                               f+i_coord_offset,fshift+i_shift_offset);
775
776         ggid                        = gid[iidx];
777         /* Update potential energies */
778         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
779         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
780
781         /* Increment number of inner iterations */
782         inneriter                  += j_index_end - j_index_start;
783
784         /* Outer loop uses 26 flops */
785     }
786
787     /* Increment number of outer iterations */
788     outeriter        += nri;
789
790     /* Update outer/inner flops */
791
792     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*202);
793 }
794 /*
795  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_double
796  * Electrostatics interaction: Ewald
797  * VdW interaction:            LJEwald
798  * Geometry:                   Water4-Particle
799  * Calculate force/pot:        Force
800  */
801 void
802 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_double
803                     (t_nblist                    * gmx_restrict       nlist,
804                      rvec                        * gmx_restrict          xx,
805                      rvec                        * gmx_restrict          ff,
806                      t_forcerec                  * gmx_restrict          fr,
807                      t_mdatoms                   * gmx_restrict     mdatoms,
808                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
809                      t_nrnb                      * gmx_restrict        nrnb)
810 {
811     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
812      * just 0 for non-waters.
813      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
814      * jnr indices corresponding to data put in the four positions in the SIMD register.
815      */
816     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
817     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
818     int              jnrA,jnrB;
819     int              j_coord_offsetA,j_coord_offsetB;
820     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
821     real             rcutoff_scalar;
822     real             *shiftvec,*fshift,*x,*f;
823     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
824     int              vdwioffset0;
825     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
826     int              vdwioffset1;
827     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
828     int              vdwioffset2;
829     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
830     int              vdwioffset3;
831     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
832     int              vdwjidx0A,vdwjidx0B;
833     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
834     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
835     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
836     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
837     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
838     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
839     real             *charge;
840     int              nvdwtype;
841     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
842     int              *vdwtype;
843     real             *vdwparam;
844     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
845     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
846     __m128d           c6grid_00;
847     __m128d           c6grid_10;
848     __m128d           c6grid_20;
849     __m128d           c6grid_30;
850     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
851     real             *vdwgridparam;
852     __m128d           one_half = _mm_set1_pd(0.5);
853     __m128d           minus_one = _mm_set1_pd(-1.0);
854     __m128i          ewitab;
855     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
856     real             *ewtab;
857     __m128d          dummy_mask,cutoff_mask;
858     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
859     __m128d          one     = _mm_set1_pd(1.0);
860     __m128d          two     = _mm_set1_pd(2.0);
861     x                = xx[0];
862     f                = ff[0];
863
864     nri              = nlist->nri;
865     iinr             = nlist->iinr;
866     jindex           = nlist->jindex;
867     jjnr             = nlist->jjnr;
868     shiftidx         = nlist->shift;
869     gid              = nlist->gid;
870     shiftvec         = fr->shift_vec[0];
871     fshift           = fr->fshift[0];
872     facel            = _mm_set1_pd(fr->epsfac);
873     charge           = mdatoms->chargeA;
874     nvdwtype         = fr->ntype;
875     vdwparam         = fr->nbfp;
876     vdwtype          = mdatoms->typeA;
877     vdwgridparam     = fr->ljpme_c6grid;
878     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
879     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
880     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
881
882     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
883     ewtab            = fr->ic->tabq_coul_F;
884     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
885     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
886
887     /* Setup water-specific parameters */
888     inr              = nlist->iinr[0];
889     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
890     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
891     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
892     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
893
894     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
895     rcutoff_scalar   = fr->rcoulomb;
896     rcutoff          = _mm_set1_pd(rcutoff_scalar);
897     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
898
899     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
900     rvdw             = _mm_set1_pd(fr->rvdw);
901
902     /* Avoid stupid compiler warnings */
903     jnrA = jnrB = 0;
904     j_coord_offsetA = 0;
905     j_coord_offsetB = 0;
906
907     outeriter        = 0;
908     inneriter        = 0;
909
910     /* Start outer loop over neighborlists */
911     for(iidx=0; iidx<nri; iidx++)
912     {
913         /* Load shift vector for this list */
914         i_shift_offset   = DIM*shiftidx[iidx];
915
916         /* Load limits for loop over neighbors */
917         j_index_start    = jindex[iidx];
918         j_index_end      = jindex[iidx+1];
919
920         /* Get outer coordinate index */
921         inr              = iinr[iidx];
922         i_coord_offset   = DIM*inr;
923
924         /* Load i particle coords and add shift vector */
925         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
926                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
927
928         fix0             = _mm_setzero_pd();
929         fiy0             = _mm_setzero_pd();
930         fiz0             = _mm_setzero_pd();
931         fix1             = _mm_setzero_pd();
932         fiy1             = _mm_setzero_pd();
933         fiz1             = _mm_setzero_pd();
934         fix2             = _mm_setzero_pd();
935         fiy2             = _mm_setzero_pd();
936         fiz2             = _mm_setzero_pd();
937         fix3             = _mm_setzero_pd();
938         fiy3             = _mm_setzero_pd();
939         fiz3             = _mm_setzero_pd();
940
941         /* Start inner kernel loop */
942         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
943         {
944
945             /* Get j neighbor index, and coordinate index */
946             jnrA             = jjnr[jidx];
947             jnrB             = jjnr[jidx+1];
948             j_coord_offsetA  = DIM*jnrA;
949             j_coord_offsetB  = DIM*jnrB;
950
951             /* load j atom coordinates */
952             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
953                                               &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm_sub_pd(ix0,jx0);
957             dy00             = _mm_sub_pd(iy0,jy0);
958             dz00             = _mm_sub_pd(iz0,jz0);
959             dx10             = _mm_sub_pd(ix1,jx0);
960             dy10             = _mm_sub_pd(iy1,jy0);
961             dz10             = _mm_sub_pd(iz1,jz0);
962             dx20             = _mm_sub_pd(ix2,jx0);
963             dy20             = _mm_sub_pd(iy2,jy0);
964             dz20             = _mm_sub_pd(iz2,jz0);
965             dx30             = _mm_sub_pd(ix3,jx0);
966             dy30             = _mm_sub_pd(iy3,jy0);
967             dz30             = _mm_sub_pd(iz3,jz0);
968
969             /* Calculate squared distance and things based on it */
970             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
971             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
972             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
973             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
974
975             rinv00           = gmx_mm_invsqrt_pd(rsq00);
976             rinv10           = gmx_mm_invsqrt_pd(rsq10);
977             rinv20           = gmx_mm_invsqrt_pd(rsq20);
978             rinv30           = gmx_mm_invsqrt_pd(rsq30);
979
980             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
981             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
982             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
983             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
984
985             /* Load parameters for j particles */
986             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
987             vdwjidx0A        = 2*vdwtype[jnrA+0];
988             vdwjidx0B        = 2*vdwtype[jnrB+0];
989
990             fjx0             = _mm_setzero_pd();
991             fjy0             = _mm_setzero_pd();
992             fjz0             = _mm_setzero_pd();
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             if (gmx_mm_any_lt(rsq00,rcutoff2))
999             {
1000
1001             r00              = _mm_mul_pd(rsq00,rinv00);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1005                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1006             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1007                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
1008
1009             /* Analytical LJ-PME */
1010             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1011             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1012             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1013             exponent         = gmx_simd_exp_d(ewcljrsq);
1014             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1015             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1016             /* f6A = 6 * C6grid * (1 - poly) */
1017             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1018             /* f6B = C6grid * exponent * beta^6 */
1019             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1020             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1021             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1022
1023             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1024
1025             fscal            = fvdw;
1026
1027             fscal            = _mm_and_pd(fscal,cutoff_mask);
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm_mul_pd(fscal,dx00);
1031             ty               = _mm_mul_pd(fscal,dy00);
1032             tz               = _mm_mul_pd(fscal,dz00);
1033
1034             /* Update vectorial force */
1035             fix0             = _mm_add_pd(fix0,tx);
1036             fiy0             = _mm_add_pd(fiy0,ty);
1037             fiz0             = _mm_add_pd(fiz0,tz);
1038
1039             fjx0             = _mm_add_pd(fjx0,tx);
1040             fjy0             = _mm_add_pd(fjy0,ty);
1041             fjz0             = _mm_add_pd(fjz0,tz);
1042
1043             }
1044
1045             /**************************
1046              * CALCULATE INTERACTIONS *
1047              **************************/
1048
1049             if (gmx_mm_any_lt(rsq10,rcutoff2))
1050             {
1051
1052             r10              = _mm_mul_pd(rsq10,rinv10);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq10             = _mm_mul_pd(iq1,jq0);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r10,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1063             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1064                                          &ewtabF,&ewtabFn);
1065             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1066             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1067
1068             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1069
1070             fscal            = felec;
1071
1072             fscal            = _mm_and_pd(fscal,cutoff_mask);
1073
1074             /* Calculate temporary vectorial force */
1075             tx               = _mm_mul_pd(fscal,dx10);
1076             ty               = _mm_mul_pd(fscal,dy10);
1077             tz               = _mm_mul_pd(fscal,dz10);
1078
1079             /* Update vectorial force */
1080             fix1             = _mm_add_pd(fix1,tx);
1081             fiy1             = _mm_add_pd(fiy1,ty);
1082             fiz1             = _mm_add_pd(fiz1,tz);
1083
1084             fjx0             = _mm_add_pd(fjx0,tx);
1085             fjy0             = _mm_add_pd(fjy0,ty);
1086             fjz0             = _mm_add_pd(fjz0,tz);
1087
1088             }
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             if (gmx_mm_any_lt(rsq20,rcutoff2))
1095             {
1096
1097             r20              = _mm_mul_pd(rsq20,rinv20);
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq20             = _mm_mul_pd(iq2,jq0);
1101
1102             /* EWALD ELECTROSTATICS */
1103
1104             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1105             ewrt             = _mm_mul_pd(r20,ewtabscale);
1106             ewitab           = _mm_cvttpd_epi32(ewrt);
1107             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1108             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1109                                          &ewtabF,&ewtabFn);
1110             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1111             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1112
1113             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1114
1115             fscal            = felec;
1116
1117             fscal            = _mm_and_pd(fscal,cutoff_mask);
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm_mul_pd(fscal,dx20);
1121             ty               = _mm_mul_pd(fscal,dy20);
1122             tz               = _mm_mul_pd(fscal,dz20);
1123
1124             /* Update vectorial force */
1125             fix2             = _mm_add_pd(fix2,tx);
1126             fiy2             = _mm_add_pd(fiy2,ty);
1127             fiz2             = _mm_add_pd(fiz2,tz);
1128
1129             fjx0             = _mm_add_pd(fjx0,tx);
1130             fjy0             = _mm_add_pd(fjy0,ty);
1131             fjz0             = _mm_add_pd(fjz0,tz);
1132
1133             }
1134
1135             /**************************
1136              * CALCULATE INTERACTIONS *
1137              **************************/
1138
1139             if (gmx_mm_any_lt(rsq30,rcutoff2))
1140             {
1141
1142             r30              = _mm_mul_pd(rsq30,rinv30);
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             qq30             = _mm_mul_pd(iq3,jq0);
1146
1147             /* EWALD ELECTROSTATICS */
1148
1149             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1150             ewrt             = _mm_mul_pd(r30,ewtabscale);
1151             ewitab           = _mm_cvttpd_epi32(ewrt);
1152             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1153             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1154                                          &ewtabF,&ewtabFn);
1155             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1156             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1157
1158             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1159
1160             fscal            = felec;
1161
1162             fscal            = _mm_and_pd(fscal,cutoff_mask);
1163
1164             /* Calculate temporary vectorial force */
1165             tx               = _mm_mul_pd(fscal,dx30);
1166             ty               = _mm_mul_pd(fscal,dy30);
1167             tz               = _mm_mul_pd(fscal,dz30);
1168
1169             /* Update vectorial force */
1170             fix3             = _mm_add_pd(fix3,tx);
1171             fiy3             = _mm_add_pd(fiy3,ty);
1172             fiz3             = _mm_add_pd(fiz3,tz);
1173
1174             fjx0             = _mm_add_pd(fjx0,tx);
1175             fjy0             = _mm_add_pd(fjy0,ty);
1176             fjz0             = _mm_add_pd(fjz0,tz);
1177
1178             }
1179
1180             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1181
1182             /* Inner loop uses 169 flops */
1183         }
1184
1185         if(jidx<j_index_end)
1186         {
1187
1188             jnrA             = jjnr[jidx];
1189             j_coord_offsetA  = DIM*jnrA;
1190
1191             /* load j atom coordinates */
1192             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1193                                               &jx0,&jy0,&jz0);
1194
1195             /* Calculate displacement vector */
1196             dx00             = _mm_sub_pd(ix0,jx0);
1197             dy00             = _mm_sub_pd(iy0,jy0);
1198             dz00             = _mm_sub_pd(iz0,jz0);
1199             dx10             = _mm_sub_pd(ix1,jx0);
1200             dy10             = _mm_sub_pd(iy1,jy0);
1201             dz10             = _mm_sub_pd(iz1,jz0);
1202             dx20             = _mm_sub_pd(ix2,jx0);
1203             dy20             = _mm_sub_pd(iy2,jy0);
1204             dz20             = _mm_sub_pd(iz2,jz0);
1205             dx30             = _mm_sub_pd(ix3,jx0);
1206             dy30             = _mm_sub_pd(iy3,jy0);
1207             dz30             = _mm_sub_pd(iz3,jz0);
1208
1209             /* Calculate squared distance and things based on it */
1210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1213             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1214
1215             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1216             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1217             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1218             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1219
1220             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1223             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1224
1225             /* Load parameters for j particles */
1226             jq0              = _mm_load_sd(charge+jnrA+0);
1227             vdwjidx0A        = 2*vdwtype[jnrA+0];
1228
1229             fjx0             = _mm_setzero_pd();
1230             fjy0             = _mm_setzero_pd();
1231             fjz0             = _mm_setzero_pd();
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             if (gmx_mm_any_lt(rsq00,rcutoff2))
1238             {
1239
1240             r00              = _mm_mul_pd(rsq00,rinv00);
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1244
1245             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1246
1247             /* Analytical LJ-PME */
1248             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1249             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1250             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1251             exponent         = gmx_simd_exp_d(ewcljrsq);
1252             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1253             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1254             /* f6A = 6 * C6grid * (1 - poly) */
1255             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1256             /* f6B = C6grid * exponent * beta^6 */
1257             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1258             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1259             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1260
1261             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1262
1263             fscal            = fvdw;
1264
1265             fscal            = _mm_and_pd(fscal,cutoff_mask);
1266
1267             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1268
1269             /* Calculate temporary vectorial force */
1270             tx               = _mm_mul_pd(fscal,dx00);
1271             ty               = _mm_mul_pd(fscal,dy00);
1272             tz               = _mm_mul_pd(fscal,dz00);
1273
1274             /* Update vectorial force */
1275             fix0             = _mm_add_pd(fix0,tx);
1276             fiy0             = _mm_add_pd(fiy0,ty);
1277             fiz0             = _mm_add_pd(fiz0,tz);
1278
1279             fjx0             = _mm_add_pd(fjx0,tx);
1280             fjy0             = _mm_add_pd(fjy0,ty);
1281             fjz0             = _mm_add_pd(fjz0,tz);
1282
1283             }
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             if (gmx_mm_any_lt(rsq10,rcutoff2))
1290             {
1291
1292             r10              = _mm_mul_pd(rsq10,rinv10);
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq10             = _mm_mul_pd(iq1,jq0);
1296
1297             /* EWALD ELECTROSTATICS */
1298
1299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1300             ewrt             = _mm_mul_pd(r10,ewtabscale);
1301             ewitab           = _mm_cvttpd_epi32(ewrt);
1302             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1303             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1304             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1305             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1306
1307             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1308
1309             fscal            = felec;
1310
1311             fscal            = _mm_and_pd(fscal,cutoff_mask);
1312
1313             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1314
1315             /* Calculate temporary vectorial force */
1316             tx               = _mm_mul_pd(fscal,dx10);
1317             ty               = _mm_mul_pd(fscal,dy10);
1318             tz               = _mm_mul_pd(fscal,dz10);
1319
1320             /* Update vectorial force */
1321             fix1             = _mm_add_pd(fix1,tx);
1322             fiy1             = _mm_add_pd(fiy1,ty);
1323             fiz1             = _mm_add_pd(fiz1,tz);
1324
1325             fjx0             = _mm_add_pd(fjx0,tx);
1326             fjy0             = _mm_add_pd(fjy0,ty);
1327             fjz0             = _mm_add_pd(fjz0,tz);
1328
1329             }
1330
1331             /**************************
1332              * CALCULATE INTERACTIONS *
1333              **************************/
1334
1335             if (gmx_mm_any_lt(rsq20,rcutoff2))
1336             {
1337
1338             r20              = _mm_mul_pd(rsq20,rinv20);
1339
1340             /* Compute parameters for interactions between i and j atoms */
1341             qq20             = _mm_mul_pd(iq2,jq0);
1342
1343             /* EWALD ELECTROSTATICS */
1344
1345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1346             ewrt             = _mm_mul_pd(r20,ewtabscale);
1347             ewitab           = _mm_cvttpd_epi32(ewrt);
1348             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1349             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1350             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1351             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1352
1353             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1354
1355             fscal            = felec;
1356
1357             fscal            = _mm_and_pd(fscal,cutoff_mask);
1358
1359             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1360
1361             /* Calculate temporary vectorial force */
1362             tx               = _mm_mul_pd(fscal,dx20);
1363             ty               = _mm_mul_pd(fscal,dy20);
1364             tz               = _mm_mul_pd(fscal,dz20);
1365
1366             /* Update vectorial force */
1367             fix2             = _mm_add_pd(fix2,tx);
1368             fiy2             = _mm_add_pd(fiy2,ty);
1369             fiz2             = _mm_add_pd(fiz2,tz);
1370
1371             fjx0             = _mm_add_pd(fjx0,tx);
1372             fjy0             = _mm_add_pd(fjy0,ty);
1373             fjz0             = _mm_add_pd(fjz0,tz);
1374
1375             }
1376
1377             /**************************
1378              * CALCULATE INTERACTIONS *
1379              **************************/
1380
1381             if (gmx_mm_any_lt(rsq30,rcutoff2))
1382             {
1383
1384             r30              = _mm_mul_pd(rsq30,rinv30);
1385
1386             /* Compute parameters for interactions between i and j atoms */
1387             qq30             = _mm_mul_pd(iq3,jq0);
1388
1389             /* EWALD ELECTROSTATICS */
1390
1391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1392             ewrt             = _mm_mul_pd(r30,ewtabscale);
1393             ewitab           = _mm_cvttpd_epi32(ewrt);
1394             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1395             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1396             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1397             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1398
1399             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1400
1401             fscal            = felec;
1402
1403             fscal            = _mm_and_pd(fscal,cutoff_mask);
1404
1405             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1406
1407             /* Calculate temporary vectorial force */
1408             tx               = _mm_mul_pd(fscal,dx30);
1409             ty               = _mm_mul_pd(fscal,dy30);
1410             tz               = _mm_mul_pd(fscal,dz30);
1411
1412             /* Update vectorial force */
1413             fix3             = _mm_add_pd(fix3,tx);
1414             fiy3             = _mm_add_pd(fiy3,ty);
1415             fiz3             = _mm_add_pd(fiz3,tz);
1416
1417             fjx0             = _mm_add_pd(fjx0,tx);
1418             fjy0             = _mm_add_pd(fjy0,ty);
1419             fjz0             = _mm_add_pd(fjz0,tz);
1420
1421             }
1422
1423             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1424
1425             /* Inner loop uses 169 flops */
1426         }
1427
1428         /* End of innermost loop */
1429
1430         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1431                                               f+i_coord_offset,fshift+i_shift_offset);
1432
1433         /* Increment number of inner iterations */
1434         inneriter                  += j_index_end - j_index_start;
1435
1436         /* Outer loop uses 24 flops */
1437     }
1438
1439     /* Increment number of outer iterations */
1440     outeriter        += nri;
1441
1442     /* Update outer/inner flops */
1443
1444     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1445 }