Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d           c6grid_00;
105     __m128d           c6grid_10;
106     __m128d           c6grid_20;
107     __m128d           c6grid_30;
108     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128d           one_half = _mm_set1_pd(0.5);
111     __m128d           minus_one = _mm_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128d          dummy_mask,cutoff_mask;
116     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
117     __m128d          one     = _mm_set1_pd(1.0);
118     __m128d          two     = _mm_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
148     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
149     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->rcoulomb;
154     rcutoff          = _mm_set1_pd(rcutoff_scalar);
155     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
158     rvdw             = _mm_set1_pd(fr->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _mm_setzero_pd();
187         fiy0             = _mm_setzero_pd();
188         fiz0             = _mm_setzero_pd();
189         fix1             = _mm_setzero_pd();
190         fiy1             = _mm_setzero_pd();
191         fiz1             = _mm_setzero_pd();
192         fix2             = _mm_setzero_pd();
193         fiy2             = _mm_setzero_pd();
194         fiz2             = _mm_setzero_pd();
195         fix3             = _mm_setzero_pd();
196         fiy3             = _mm_setzero_pd();
197         fiz3             = _mm_setzero_pd();
198
199         /* Reset potential sums */
200         velecsum         = _mm_setzero_pd();
201         vvdwsum          = _mm_setzero_pd();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212
213             /* load j atom coordinates */
214             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_pd(ix0,jx0);
219             dy00             = _mm_sub_pd(iy0,jy0);
220             dz00             = _mm_sub_pd(iz0,jz0);
221             dx10             = _mm_sub_pd(ix1,jx0);
222             dy10             = _mm_sub_pd(iy1,jy0);
223             dz10             = _mm_sub_pd(iz1,jz0);
224             dx20             = _mm_sub_pd(ix2,jx0);
225             dy20             = _mm_sub_pd(iy2,jy0);
226             dz20             = _mm_sub_pd(iz2,jz0);
227             dx30             = _mm_sub_pd(ix3,jx0);
228             dy30             = _mm_sub_pd(iy3,jy0);
229             dz30             = _mm_sub_pd(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
235             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
236
237             rinv00           = gmx_mm_invsqrt_pd(rsq00);
238             rinv10           = gmx_mm_invsqrt_pd(rsq10);
239             rinv20           = gmx_mm_invsqrt_pd(rsq20);
240             rinv30           = gmx_mm_invsqrt_pd(rsq30);
241
242             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
243             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
244             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
245             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251
252             fjx0             = _mm_setzero_pd();
253             fjy0             = _mm_setzero_pd();
254             fjz0             = _mm_setzero_pd();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm_mul_pd(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
267                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
268             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
269                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
270
271             /* Analytical LJ-PME */
272             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
274             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
275             exponent         = gmx_simd_exp_d(ewcljrsq);
276             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
277             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
278             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
279             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
280             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
281             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
282                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
283             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
284             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
285
286             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
290             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             fscal            = _mm_and_pd(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_pd(fscal,dx00);
298             ty               = _mm_mul_pd(fscal,dy00);
299             tz               = _mm_mul_pd(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm_add_pd(fix0,tx);
303             fiy0             = _mm_add_pd(fiy0,ty);
304             fiz0             = _mm_add_pd(fiz0,tz);
305
306             fjx0             = _mm_add_pd(fjx0,tx);
307             fjy0             = _mm_add_pd(fjy0,ty);
308             fjz0             = _mm_add_pd(fjz0,tz);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq10,rcutoff2))
317             {
318
319             r10              = _mm_mul_pd(rsq10,rinv10);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_pd(iq1,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_pd(r10,ewtabscale);
328             ewitab           = _mm_cvttpd_epi32(ewrt);
329             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
334             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
335             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
336             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
337             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
338             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
339             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
340             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
341
342             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm_and_pd(velec,cutoff_mask);
346             velecsum         = _mm_add_pd(velecsum,velec);
347
348             fscal            = felec;
349
350             fscal            = _mm_and_pd(fscal,cutoff_mask);
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm_mul_pd(fscal,dx10);
354             ty               = _mm_mul_pd(fscal,dy10);
355             tz               = _mm_mul_pd(fscal,dz10);
356
357             /* Update vectorial force */
358             fix1             = _mm_add_pd(fix1,tx);
359             fiy1             = _mm_add_pd(fiy1,ty);
360             fiz1             = _mm_add_pd(fiz1,tz);
361
362             fjx0             = _mm_add_pd(fjx0,tx);
363             fjy0             = _mm_add_pd(fjy0,ty);
364             fjz0             = _mm_add_pd(fjz0,tz);
365
366             }
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             if (gmx_mm_any_lt(rsq20,rcutoff2))
373             {
374
375             r20              = _mm_mul_pd(rsq20,rinv20);
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq20             = _mm_mul_pd(iq2,jq0);
379
380             /* EWALD ELECTROSTATICS */
381
382             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383             ewrt             = _mm_mul_pd(r20,ewtabscale);
384             ewitab           = _mm_cvttpd_epi32(ewrt);
385             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
386             ewitab           = _mm_slli_epi32(ewitab,2);
387             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
388             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
389             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
390             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
391             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
392             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
393             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
394             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
395             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
396             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
397
398             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _mm_and_pd(velec,cutoff_mask);
402             velecsum         = _mm_add_pd(velecsum,velec);
403
404             fscal            = felec;
405
406             fscal            = _mm_and_pd(fscal,cutoff_mask);
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm_mul_pd(fscal,dx20);
410             ty               = _mm_mul_pd(fscal,dy20);
411             tz               = _mm_mul_pd(fscal,dz20);
412
413             /* Update vectorial force */
414             fix2             = _mm_add_pd(fix2,tx);
415             fiy2             = _mm_add_pd(fiy2,ty);
416             fiz2             = _mm_add_pd(fiz2,tz);
417
418             fjx0             = _mm_add_pd(fjx0,tx);
419             fjy0             = _mm_add_pd(fjy0,ty);
420             fjz0             = _mm_add_pd(fjz0,tz);
421
422             }
423
424             /**************************
425              * CALCULATE INTERACTIONS *
426              **************************/
427
428             if (gmx_mm_any_lt(rsq30,rcutoff2))
429             {
430
431             r30              = _mm_mul_pd(rsq30,rinv30);
432
433             /* Compute parameters for interactions between i and j atoms */
434             qq30             = _mm_mul_pd(iq3,jq0);
435
436             /* EWALD ELECTROSTATICS */
437
438             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
439             ewrt             = _mm_mul_pd(r30,ewtabscale);
440             ewitab           = _mm_cvttpd_epi32(ewrt);
441             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
442             ewitab           = _mm_slli_epi32(ewitab,2);
443             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
444             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
445             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
446             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
447             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
448             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
449             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
450             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
451             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
452             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
453
454             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_and_pd(velec,cutoff_mask);
458             velecsum         = _mm_add_pd(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm_and_pd(fscal,cutoff_mask);
463
464             /* Calculate temporary vectorial force */
465             tx               = _mm_mul_pd(fscal,dx30);
466             ty               = _mm_mul_pd(fscal,dy30);
467             tz               = _mm_mul_pd(fscal,dz30);
468
469             /* Update vectorial force */
470             fix3             = _mm_add_pd(fix3,tx);
471             fiy3             = _mm_add_pd(fiy3,ty);
472             fiz3             = _mm_add_pd(fiz3,tz);
473
474             fjx0             = _mm_add_pd(fjx0,tx);
475             fjy0             = _mm_add_pd(fjy0,ty);
476             fjz0             = _mm_add_pd(fjz0,tz);
477
478             }
479
480             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
481
482             /* Inner loop uses 202 flops */
483         }
484
485         if(jidx<j_index_end)
486         {
487
488             jnrA             = jjnr[jidx];
489             j_coord_offsetA  = DIM*jnrA;
490
491             /* load j atom coordinates */
492             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
493                                               &jx0,&jy0,&jz0);
494
495             /* Calculate displacement vector */
496             dx00             = _mm_sub_pd(ix0,jx0);
497             dy00             = _mm_sub_pd(iy0,jy0);
498             dz00             = _mm_sub_pd(iz0,jz0);
499             dx10             = _mm_sub_pd(ix1,jx0);
500             dy10             = _mm_sub_pd(iy1,jy0);
501             dz10             = _mm_sub_pd(iz1,jz0);
502             dx20             = _mm_sub_pd(ix2,jx0);
503             dy20             = _mm_sub_pd(iy2,jy0);
504             dz20             = _mm_sub_pd(iz2,jz0);
505             dx30             = _mm_sub_pd(ix3,jx0);
506             dy30             = _mm_sub_pd(iy3,jy0);
507             dz30             = _mm_sub_pd(iz3,jz0);
508
509             /* Calculate squared distance and things based on it */
510             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
511             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
512             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
513             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
514
515             rinv00           = gmx_mm_invsqrt_pd(rsq00);
516             rinv10           = gmx_mm_invsqrt_pd(rsq10);
517             rinv20           = gmx_mm_invsqrt_pd(rsq20);
518             rinv30           = gmx_mm_invsqrt_pd(rsq30);
519
520             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
521             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
522             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
523             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
524
525             /* Load parameters for j particles */
526             jq0              = _mm_load_sd(charge+jnrA+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528
529             fjx0             = _mm_setzero_pd();
530             fjy0             = _mm_setzero_pd();
531             fjz0             = _mm_setzero_pd();
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             if (gmx_mm_any_lt(rsq00,rcutoff2))
538             {
539
540             r00              = _mm_mul_pd(rsq00,rinv00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
544
545             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
546
547             /* Analytical LJ-PME */
548             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
549             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
550             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
551             exponent         = gmx_simd_exp_d(ewcljrsq);
552             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
553             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
554             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
555             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
556             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
557             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
558                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
559             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
560             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
561
562             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
566             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
567             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
568
569             fscal            = fvdw;
570
571             fscal            = _mm_and_pd(fscal,cutoff_mask);
572
573             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_pd(fscal,dx00);
577             ty               = _mm_mul_pd(fscal,dy00);
578             tz               = _mm_mul_pd(fscal,dz00);
579
580             /* Update vectorial force */
581             fix0             = _mm_add_pd(fix0,tx);
582             fiy0             = _mm_add_pd(fiy0,ty);
583             fiz0             = _mm_add_pd(fiz0,tz);
584
585             fjx0             = _mm_add_pd(fjx0,tx);
586             fjy0             = _mm_add_pd(fjy0,ty);
587             fjz0             = _mm_add_pd(fjz0,tz);
588
589             }
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq10,rcutoff2))
596             {
597
598             r10              = _mm_mul_pd(rsq10,rinv10);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq10             = _mm_mul_pd(iq1,jq0);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm_mul_pd(r10,ewtabscale);
607             ewitab           = _mm_cvttpd_epi32(ewrt);
608             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
609             ewitab           = _mm_slli_epi32(ewitab,2);
610             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
611             ewtabD           = _mm_setzero_pd();
612             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
613             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
614             ewtabFn          = _mm_setzero_pd();
615             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
616             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
617             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
618             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
619             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
620
621             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm_and_pd(velec,cutoff_mask);
625             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
626             velecsum         = _mm_add_pd(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm_and_pd(fscal,cutoff_mask);
631
632             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm_mul_pd(fscal,dx10);
636             ty               = _mm_mul_pd(fscal,dy10);
637             tz               = _mm_mul_pd(fscal,dz10);
638
639             /* Update vectorial force */
640             fix1             = _mm_add_pd(fix1,tx);
641             fiy1             = _mm_add_pd(fiy1,ty);
642             fiz1             = _mm_add_pd(fiz1,tz);
643
644             fjx0             = _mm_add_pd(fjx0,tx);
645             fjy0             = _mm_add_pd(fjy0,ty);
646             fjz0             = _mm_add_pd(fjz0,tz);
647
648             }
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             if (gmx_mm_any_lt(rsq20,rcutoff2))
655             {
656
657             r20              = _mm_mul_pd(rsq20,rinv20);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq20             = _mm_mul_pd(iq2,jq0);
661
662             /* EWALD ELECTROSTATICS */
663
664             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
665             ewrt             = _mm_mul_pd(r20,ewtabscale);
666             ewitab           = _mm_cvttpd_epi32(ewrt);
667             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
668             ewitab           = _mm_slli_epi32(ewitab,2);
669             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
670             ewtabD           = _mm_setzero_pd();
671             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
672             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
673             ewtabFn          = _mm_setzero_pd();
674             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
675             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
676             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
677             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
678             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
679
680             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _mm_and_pd(velec,cutoff_mask);
684             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
685             velecsum         = _mm_add_pd(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _mm_and_pd(fscal,cutoff_mask);
690
691             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_pd(fscal,dx20);
695             ty               = _mm_mul_pd(fscal,dy20);
696             tz               = _mm_mul_pd(fscal,dz20);
697
698             /* Update vectorial force */
699             fix2             = _mm_add_pd(fix2,tx);
700             fiy2             = _mm_add_pd(fiy2,ty);
701             fiz2             = _mm_add_pd(fiz2,tz);
702
703             fjx0             = _mm_add_pd(fjx0,tx);
704             fjy0             = _mm_add_pd(fjy0,ty);
705             fjz0             = _mm_add_pd(fjz0,tz);
706
707             }
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             if (gmx_mm_any_lt(rsq30,rcutoff2))
714             {
715
716             r30              = _mm_mul_pd(rsq30,rinv30);
717
718             /* Compute parameters for interactions between i and j atoms */
719             qq30             = _mm_mul_pd(iq3,jq0);
720
721             /* EWALD ELECTROSTATICS */
722
723             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
724             ewrt             = _mm_mul_pd(r30,ewtabscale);
725             ewitab           = _mm_cvttpd_epi32(ewrt);
726             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
727             ewitab           = _mm_slli_epi32(ewitab,2);
728             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
729             ewtabD           = _mm_setzero_pd();
730             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
731             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
732             ewtabFn          = _mm_setzero_pd();
733             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
734             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
735             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
736             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
737             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
738
739             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
740
741             /* Update potential sum for this i atom from the interaction with this j atom. */
742             velec            = _mm_and_pd(velec,cutoff_mask);
743             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
744             velecsum         = _mm_add_pd(velecsum,velec);
745
746             fscal            = felec;
747
748             fscal            = _mm_and_pd(fscal,cutoff_mask);
749
750             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm_mul_pd(fscal,dx30);
754             ty               = _mm_mul_pd(fscal,dy30);
755             tz               = _mm_mul_pd(fscal,dz30);
756
757             /* Update vectorial force */
758             fix3             = _mm_add_pd(fix3,tx);
759             fiy3             = _mm_add_pd(fiy3,ty);
760             fiz3             = _mm_add_pd(fiz3,tz);
761
762             fjx0             = _mm_add_pd(fjx0,tx);
763             fjy0             = _mm_add_pd(fjy0,ty);
764             fjz0             = _mm_add_pd(fjz0,tz);
765
766             }
767
768             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
769
770             /* Inner loop uses 202 flops */
771         }
772
773         /* End of innermost loop */
774
775         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
776                                               f+i_coord_offset,fshift+i_shift_offset);
777
778         ggid                        = gid[iidx];
779         /* Update potential energies */
780         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
781         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
782
783         /* Increment number of inner iterations */
784         inneriter                  += j_index_end - j_index_start;
785
786         /* Outer loop uses 26 flops */
787     }
788
789     /* Increment number of outer iterations */
790     outeriter        += nri;
791
792     /* Update outer/inner flops */
793
794     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*202);
795 }
796 /*
797  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_double
798  * Electrostatics interaction: Ewald
799  * VdW interaction:            LJEwald
800  * Geometry:                   Water4-Particle
801  * Calculate force/pot:        Force
802  */
803 void
804 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse4_1_double
805                     (t_nblist                    * gmx_restrict       nlist,
806                      rvec                        * gmx_restrict          xx,
807                      rvec                        * gmx_restrict          ff,
808                      t_forcerec                  * gmx_restrict          fr,
809                      t_mdatoms                   * gmx_restrict     mdatoms,
810                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
811                      t_nrnb                      * gmx_restrict        nrnb)
812 {
813     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
814      * just 0 for non-waters.
815      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
816      * jnr indices corresponding to data put in the four positions in the SIMD register.
817      */
818     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
819     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
820     int              jnrA,jnrB;
821     int              j_coord_offsetA,j_coord_offsetB;
822     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
823     real             rcutoff_scalar;
824     real             *shiftvec,*fshift,*x,*f;
825     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
826     int              vdwioffset0;
827     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
828     int              vdwioffset1;
829     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
830     int              vdwioffset2;
831     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
832     int              vdwioffset3;
833     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
834     int              vdwjidx0A,vdwjidx0B;
835     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
836     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
837     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
838     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
839     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
840     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
841     real             *charge;
842     int              nvdwtype;
843     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
844     int              *vdwtype;
845     real             *vdwparam;
846     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
847     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
848     __m128d           c6grid_00;
849     __m128d           c6grid_10;
850     __m128d           c6grid_20;
851     __m128d           c6grid_30;
852     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
853     real             *vdwgridparam;
854     __m128d           one_half = _mm_set1_pd(0.5);
855     __m128d           minus_one = _mm_set1_pd(-1.0);
856     __m128i          ewitab;
857     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
858     real             *ewtab;
859     __m128d          dummy_mask,cutoff_mask;
860     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
861     __m128d          one     = _mm_set1_pd(1.0);
862     __m128d          two     = _mm_set1_pd(2.0);
863     x                = xx[0];
864     f                = ff[0];
865
866     nri              = nlist->nri;
867     iinr             = nlist->iinr;
868     jindex           = nlist->jindex;
869     jjnr             = nlist->jjnr;
870     shiftidx         = nlist->shift;
871     gid              = nlist->gid;
872     shiftvec         = fr->shift_vec[0];
873     fshift           = fr->fshift[0];
874     facel            = _mm_set1_pd(fr->epsfac);
875     charge           = mdatoms->chargeA;
876     nvdwtype         = fr->ntype;
877     vdwparam         = fr->nbfp;
878     vdwtype          = mdatoms->typeA;
879     vdwgridparam     = fr->ljpme_c6grid;
880     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
881     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
882     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
883
884     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
885     ewtab            = fr->ic->tabq_coul_F;
886     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
887     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
888
889     /* Setup water-specific parameters */
890     inr              = nlist->iinr[0];
891     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
892     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
893     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
894     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
895
896     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
897     rcutoff_scalar   = fr->rcoulomb;
898     rcutoff          = _mm_set1_pd(rcutoff_scalar);
899     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
900
901     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
902     rvdw             = _mm_set1_pd(fr->rvdw);
903
904     /* Avoid stupid compiler warnings */
905     jnrA = jnrB = 0;
906     j_coord_offsetA = 0;
907     j_coord_offsetB = 0;
908
909     outeriter        = 0;
910     inneriter        = 0;
911
912     /* Start outer loop over neighborlists */
913     for(iidx=0; iidx<nri; iidx++)
914     {
915         /* Load shift vector for this list */
916         i_shift_offset   = DIM*shiftidx[iidx];
917
918         /* Load limits for loop over neighbors */
919         j_index_start    = jindex[iidx];
920         j_index_end      = jindex[iidx+1];
921
922         /* Get outer coordinate index */
923         inr              = iinr[iidx];
924         i_coord_offset   = DIM*inr;
925
926         /* Load i particle coords and add shift vector */
927         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
928                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
929
930         fix0             = _mm_setzero_pd();
931         fiy0             = _mm_setzero_pd();
932         fiz0             = _mm_setzero_pd();
933         fix1             = _mm_setzero_pd();
934         fiy1             = _mm_setzero_pd();
935         fiz1             = _mm_setzero_pd();
936         fix2             = _mm_setzero_pd();
937         fiy2             = _mm_setzero_pd();
938         fiz2             = _mm_setzero_pd();
939         fix3             = _mm_setzero_pd();
940         fiy3             = _mm_setzero_pd();
941         fiz3             = _mm_setzero_pd();
942
943         /* Start inner kernel loop */
944         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
945         {
946
947             /* Get j neighbor index, and coordinate index */
948             jnrA             = jjnr[jidx];
949             jnrB             = jjnr[jidx+1];
950             j_coord_offsetA  = DIM*jnrA;
951             j_coord_offsetB  = DIM*jnrB;
952
953             /* load j atom coordinates */
954             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
955                                               &jx0,&jy0,&jz0);
956
957             /* Calculate displacement vector */
958             dx00             = _mm_sub_pd(ix0,jx0);
959             dy00             = _mm_sub_pd(iy0,jy0);
960             dz00             = _mm_sub_pd(iz0,jz0);
961             dx10             = _mm_sub_pd(ix1,jx0);
962             dy10             = _mm_sub_pd(iy1,jy0);
963             dz10             = _mm_sub_pd(iz1,jz0);
964             dx20             = _mm_sub_pd(ix2,jx0);
965             dy20             = _mm_sub_pd(iy2,jy0);
966             dz20             = _mm_sub_pd(iz2,jz0);
967             dx30             = _mm_sub_pd(ix3,jx0);
968             dy30             = _mm_sub_pd(iy3,jy0);
969             dz30             = _mm_sub_pd(iz3,jz0);
970
971             /* Calculate squared distance and things based on it */
972             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
973             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
974             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
975             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
976
977             rinv00           = gmx_mm_invsqrt_pd(rsq00);
978             rinv10           = gmx_mm_invsqrt_pd(rsq10);
979             rinv20           = gmx_mm_invsqrt_pd(rsq20);
980             rinv30           = gmx_mm_invsqrt_pd(rsq30);
981
982             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
983             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
984             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
985             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
986
987             /* Load parameters for j particles */
988             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
989             vdwjidx0A        = 2*vdwtype[jnrA+0];
990             vdwjidx0B        = 2*vdwtype[jnrB+0];
991
992             fjx0             = _mm_setzero_pd();
993             fjy0             = _mm_setzero_pd();
994             fjz0             = _mm_setzero_pd();
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             if (gmx_mm_any_lt(rsq00,rcutoff2))
1001             {
1002
1003             r00              = _mm_mul_pd(rsq00,rinv00);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1007                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1008             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1009                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
1010
1011             /* Analytical LJ-PME */
1012             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1013             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1014             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1015             exponent         = gmx_simd_exp_d(ewcljrsq);
1016             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1017             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1018             /* f6A = 6 * C6grid * (1 - poly) */
1019             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1020             /* f6B = C6grid * exponent * beta^6 */
1021             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1022             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1023             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1024
1025             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1026
1027             fscal            = fvdw;
1028
1029             fscal            = _mm_and_pd(fscal,cutoff_mask);
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm_mul_pd(fscal,dx00);
1033             ty               = _mm_mul_pd(fscal,dy00);
1034             tz               = _mm_mul_pd(fscal,dz00);
1035
1036             /* Update vectorial force */
1037             fix0             = _mm_add_pd(fix0,tx);
1038             fiy0             = _mm_add_pd(fiy0,ty);
1039             fiz0             = _mm_add_pd(fiz0,tz);
1040
1041             fjx0             = _mm_add_pd(fjx0,tx);
1042             fjy0             = _mm_add_pd(fjy0,ty);
1043             fjz0             = _mm_add_pd(fjz0,tz);
1044
1045             }
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             if (gmx_mm_any_lt(rsq10,rcutoff2))
1052             {
1053
1054             r10              = _mm_mul_pd(rsq10,rinv10);
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq10             = _mm_mul_pd(iq1,jq0);
1058
1059             /* EWALD ELECTROSTATICS */
1060
1061             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1062             ewrt             = _mm_mul_pd(r10,ewtabscale);
1063             ewitab           = _mm_cvttpd_epi32(ewrt);
1064             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1065             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1066                                          &ewtabF,&ewtabFn);
1067             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1068             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1069
1070             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm_and_pd(fscal,cutoff_mask);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm_mul_pd(fscal,dx10);
1078             ty               = _mm_mul_pd(fscal,dy10);
1079             tz               = _mm_mul_pd(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm_add_pd(fix1,tx);
1083             fiy1             = _mm_add_pd(fiy1,ty);
1084             fiz1             = _mm_add_pd(fiz1,tz);
1085
1086             fjx0             = _mm_add_pd(fjx0,tx);
1087             fjy0             = _mm_add_pd(fjy0,ty);
1088             fjz0             = _mm_add_pd(fjz0,tz);
1089
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq20,rcutoff2))
1097             {
1098
1099             r20              = _mm_mul_pd(rsq20,rinv20);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq20             = _mm_mul_pd(iq2,jq0);
1103
1104             /* EWALD ELECTROSTATICS */
1105
1106             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1107             ewrt             = _mm_mul_pd(r20,ewtabscale);
1108             ewitab           = _mm_cvttpd_epi32(ewrt);
1109             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1110             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1111                                          &ewtabF,&ewtabFn);
1112             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1113             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1114
1115             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1116
1117             fscal            = felec;
1118
1119             fscal            = _mm_and_pd(fscal,cutoff_mask);
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm_mul_pd(fscal,dx20);
1123             ty               = _mm_mul_pd(fscal,dy20);
1124             tz               = _mm_mul_pd(fscal,dz20);
1125
1126             /* Update vectorial force */
1127             fix2             = _mm_add_pd(fix2,tx);
1128             fiy2             = _mm_add_pd(fiy2,ty);
1129             fiz2             = _mm_add_pd(fiz2,tz);
1130
1131             fjx0             = _mm_add_pd(fjx0,tx);
1132             fjy0             = _mm_add_pd(fjy0,ty);
1133             fjz0             = _mm_add_pd(fjz0,tz);
1134
1135             }
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             if (gmx_mm_any_lt(rsq30,rcutoff2))
1142             {
1143
1144             r30              = _mm_mul_pd(rsq30,rinv30);
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq30             = _mm_mul_pd(iq3,jq0);
1148
1149             /* EWALD ELECTROSTATICS */
1150
1151             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1152             ewrt             = _mm_mul_pd(r30,ewtabscale);
1153             ewitab           = _mm_cvttpd_epi32(ewrt);
1154             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1155             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1156                                          &ewtabF,&ewtabFn);
1157             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1158             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1159
1160             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1161
1162             fscal            = felec;
1163
1164             fscal            = _mm_and_pd(fscal,cutoff_mask);
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm_mul_pd(fscal,dx30);
1168             ty               = _mm_mul_pd(fscal,dy30);
1169             tz               = _mm_mul_pd(fscal,dz30);
1170
1171             /* Update vectorial force */
1172             fix3             = _mm_add_pd(fix3,tx);
1173             fiy3             = _mm_add_pd(fiy3,ty);
1174             fiz3             = _mm_add_pd(fiz3,tz);
1175
1176             fjx0             = _mm_add_pd(fjx0,tx);
1177             fjy0             = _mm_add_pd(fjy0,ty);
1178             fjz0             = _mm_add_pd(fjz0,tz);
1179
1180             }
1181
1182             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1183
1184             /* Inner loop uses 169 flops */
1185         }
1186
1187         if(jidx<j_index_end)
1188         {
1189
1190             jnrA             = jjnr[jidx];
1191             j_coord_offsetA  = DIM*jnrA;
1192
1193             /* load j atom coordinates */
1194             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1195                                               &jx0,&jy0,&jz0);
1196
1197             /* Calculate displacement vector */
1198             dx00             = _mm_sub_pd(ix0,jx0);
1199             dy00             = _mm_sub_pd(iy0,jy0);
1200             dz00             = _mm_sub_pd(iz0,jz0);
1201             dx10             = _mm_sub_pd(ix1,jx0);
1202             dy10             = _mm_sub_pd(iy1,jy0);
1203             dz10             = _mm_sub_pd(iz1,jz0);
1204             dx20             = _mm_sub_pd(ix2,jx0);
1205             dy20             = _mm_sub_pd(iy2,jy0);
1206             dz20             = _mm_sub_pd(iz2,jz0);
1207             dx30             = _mm_sub_pd(ix3,jx0);
1208             dy30             = _mm_sub_pd(iy3,jy0);
1209             dz30             = _mm_sub_pd(iz3,jz0);
1210
1211             /* Calculate squared distance and things based on it */
1212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1216
1217             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1218             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1219             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1220             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1221
1222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1225             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1226
1227             /* Load parameters for j particles */
1228             jq0              = _mm_load_sd(charge+jnrA+0);
1229             vdwjidx0A        = 2*vdwtype[jnrA+0];
1230
1231             fjx0             = _mm_setzero_pd();
1232             fjy0             = _mm_setzero_pd();
1233             fjz0             = _mm_setzero_pd();
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             if (gmx_mm_any_lt(rsq00,rcutoff2))
1240             {
1241
1242             r00              = _mm_mul_pd(rsq00,rinv00);
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1246
1247             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1248
1249             /* Analytical LJ-PME */
1250             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1251             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1252             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1253             exponent         = gmx_simd_exp_d(ewcljrsq);
1254             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1255             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1256             /* f6A = 6 * C6grid * (1 - poly) */
1257             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1258             /* f6B = C6grid * exponent * beta^6 */
1259             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1260             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1261             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1262
1263             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1264
1265             fscal            = fvdw;
1266
1267             fscal            = _mm_and_pd(fscal,cutoff_mask);
1268
1269             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_pd(fscal,dx00);
1273             ty               = _mm_mul_pd(fscal,dy00);
1274             tz               = _mm_mul_pd(fscal,dz00);
1275
1276             /* Update vectorial force */
1277             fix0             = _mm_add_pd(fix0,tx);
1278             fiy0             = _mm_add_pd(fiy0,ty);
1279             fiz0             = _mm_add_pd(fiz0,tz);
1280
1281             fjx0             = _mm_add_pd(fjx0,tx);
1282             fjy0             = _mm_add_pd(fjy0,ty);
1283             fjz0             = _mm_add_pd(fjz0,tz);
1284
1285             }
1286
1287             /**************************
1288              * CALCULATE INTERACTIONS *
1289              **************************/
1290
1291             if (gmx_mm_any_lt(rsq10,rcutoff2))
1292             {
1293
1294             r10              = _mm_mul_pd(rsq10,rinv10);
1295
1296             /* Compute parameters for interactions between i and j atoms */
1297             qq10             = _mm_mul_pd(iq1,jq0);
1298
1299             /* EWALD ELECTROSTATICS */
1300
1301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1302             ewrt             = _mm_mul_pd(r10,ewtabscale);
1303             ewitab           = _mm_cvttpd_epi32(ewrt);
1304             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1305             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1306             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1307             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1308
1309             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm_and_pd(fscal,cutoff_mask);
1314
1315             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1316
1317             /* Calculate temporary vectorial force */
1318             tx               = _mm_mul_pd(fscal,dx10);
1319             ty               = _mm_mul_pd(fscal,dy10);
1320             tz               = _mm_mul_pd(fscal,dz10);
1321
1322             /* Update vectorial force */
1323             fix1             = _mm_add_pd(fix1,tx);
1324             fiy1             = _mm_add_pd(fiy1,ty);
1325             fiz1             = _mm_add_pd(fiz1,tz);
1326
1327             fjx0             = _mm_add_pd(fjx0,tx);
1328             fjy0             = _mm_add_pd(fjy0,ty);
1329             fjz0             = _mm_add_pd(fjz0,tz);
1330
1331             }
1332
1333             /**************************
1334              * CALCULATE INTERACTIONS *
1335              **************************/
1336
1337             if (gmx_mm_any_lt(rsq20,rcutoff2))
1338             {
1339
1340             r20              = _mm_mul_pd(rsq20,rinv20);
1341
1342             /* Compute parameters for interactions between i and j atoms */
1343             qq20             = _mm_mul_pd(iq2,jq0);
1344
1345             /* EWALD ELECTROSTATICS */
1346
1347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1348             ewrt             = _mm_mul_pd(r20,ewtabscale);
1349             ewitab           = _mm_cvttpd_epi32(ewrt);
1350             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1351             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1352             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1353             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1354
1355             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1356
1357             fscal            = felec;
1358
1359             fscal            = _mm_and_pd(fscal,cutoff_mask);
1360
1361             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1362
1363             /* Calculate temporary vectorial force */
1364             tx               = _mm_mul_pd(fscal,dx20);
1365             ty               = _mm_mul_pd(fscal,dy20);
1366             tz               = _mm_mul_pd(fscal,dz20);
1367
1368             /* Update vectorial force */
1369             fix2             = _mm_add_pd(fix2,tx);
1370             fiy2             = _mm_add_pd(fiy2,ty);
1371             fiz2             = _mm_add_pd(fiz2,tz);
1372
1373             fjx0             = _mm_add_pd(fjx0,tx);
1374             fjy0             = _mm_add_pd(fjy0,ty);
1375             fjz0             = _mm_add_pd(fjz0,tz);
1376
1377             }
1378
1379             /**************************
1380              * CALCULATE INTERACTIONS *
1381              **************************/
1382
1383             if (gmx_mm_any_lt(rsq30,rcutoff2))
1384             {
1385
1386             r30              = _mm_mul_pd(rsq30,rinv30);
1387
1388             /* Compute parameters for interactions between i and j atoms */
1389             qq30             = _mm_mul_pd(iq3,jq0);
1390
1391             /* EWALD ELECTROSTATICS */
1392
1393             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1394             ewrt             = _mm_mul_pd(r30,ewtabscale);
1395             ewitab           = _mm_cvttpd_epi32(ewrt);
1396             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1397             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1398             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1399             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1400
1401             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1402
1403             fscal            = felec;
1404
1405             fscal            = _mm_and_pd(fscal,cutoff_mask);
1406
1407             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1408
1409             /* Calculate temporary vectorial force */
1410             tx               = _mm_mul_pd(fscal,dx30);
1411             ty               = _mm_mul_pd(fscal,dy30);
1412             tz               = _mm_mul_pd(fscal,dz30);
1413
1414             /* Update vectorial force */
1415             fix3             = _mm_add_pd(fix3,tx);
1416             fiy3             = _mm_add_pd(fiy3,ty);
1417             fiz3             = _mm_add_pd(fiz3,tz);
1418
1419             fjx0             = _mm_add_pd(fjx0,tx);
1420             fjy0             = _mm_add_pd(fjy0,ty);
1421             fjz0             = _mm_add_pd(fjz0,tz);
1422
1423             }
1424
1425             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1426
1427             /* Inner loop uses 169 flops */
1428         }
1429
1430         /* End of innermost loop */
1431
1432         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1433                                               f+i_coord_offset,fshift+i_shift_offset);
1434
1435         /* Increment number of inner iterations */
1436         inneriter                  += j_index_end - j_index_start;
1437
1438         /* Outer loop uses 24 flops */
1439     }
1440
1441     /* Increment number of outer iterations */
1442     outeriter        += nri;
1443
1444     /* Update outer/inner flops */
1445
1446     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1447 }