Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
110     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
111     __m128d           c6grid_00;
112     __m128d           c6grid_01;
113     __m128d           c6grid_02;
114     __m128d           c6grid_10;
115     __m128d           c6grid_11;
116     __m128d           c6grid_12;
117     __m128d           c6grid_20;
118     __m128d           c6grid_21;
119     __m128d           c6grid_22;
120     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
121     real             *vdwgridparam;
122     __m128d           one_half = _mm_set1_pd(0.5);
123     __m128d           minus_one = _mm_set1_pd(-1.0);
124     __m128i          ewitab;
125     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
126     real             *ewtab;
127     __m128d          dummy_mask,cutoff_mask;
128     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
129     __m128d          one     = _mm_set1_pd(1.0);
130     __m128d          two     = _mm_set1_pd(2.0);
131     x                = xx[0];
132     f                = ff[0];
133
134     nri              = nlist->nri;
135     iinr             = nlist->iinr;
136     jindex           = nlist->jindex;
137     jjnr             = nlist->jjnr;
138     shiftidx         = nlist->shift;
139     gid              = nlist->gid;
140     shiftvec         = fr->shift_vec[0];
141     fshift           = fr->fshift[0];
142     facel            = _mm_set1_pd(fr->epsfac);
143     charge           = mdatoms->chargeA;
144     nvdwtype         = fr->ntype;
145     vdwparam         = fr->nbfp;
146     vdwtype          = mdatoms->typeA;
147     vdwgridparam     = fr->ljpme_c6grid;
148     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
149     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
150     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
151
152     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
153     ewtab            = fr->ic->tabq_coul_FDV0;
154     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
155     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
156
157     /* Setup water-specific parameters */
158     inr              = nlist->iinr[0];
159     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
160     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
161     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
162     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164     jq0              = _mm_set1_pd(charge[inr+0]);
165     jq1              = _mm_set1_pd(charge[inr+1]);
166     jq2              = _mm_set1_pd(charge[inr+2]);
167     vdwjidx0A        = 2*vdwtype[inr+0];
168     qq00             = _mm_mul_pd(iq0,jq0);
169     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
170     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
171     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
172     qq01             = _mm_mul_pd(iq0,jq1);
173     qq02             = _mm_mul_pd(iq0,jq2);
174     qq10             = _mm_mul_pd(iq1,jq0);
175     qq11             = _mm_mul_pd(iq1,jq1);
176     qq12             = _mm_mul_pd(iq1,jq2);
177     qq20             = _mm_mul_pd(iq2,jq0);
178     qq21             = _mm_mul_pd(iq2,jq1);
179     qq22             = _mm_mul_pd(iq2,jq2);
180
181     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
182     rcutoff_scalar   = fr->rcoulomb;
183     rcutoff          = _mm_set1_pd(rcutoff_scalar);
184     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
185
186     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
187     rvdw             = _mm_set1_pd(fr->rvdw);
188
189     /* Avoid stupid compiler warnings */
190     jnrA = jnrB = 0;
191     j_coord_offsetA = 0;
192     j_coord_offsetB = 0;
193
194     outeriter        = 0;
195     inneriter        = 0;
196
197     /* Start outer loop over neighborlists */
198     for(iidx=0; iidx<nri; iidx++)
199     {
200         /* Load shift vector for this list */
201         i_shift_offset   = DIM*shiftidx[iidx];
202
203         /* Load limits for loop over neighbors */
204         j_index_start    = jindex[iidx];
205         j_index_end      = jindex[iidx+1];
206
207         /* Get outer coordinate index */
208         inr              = iinr[iidx];
209         i_coord_offset   = DIM*inr;
210
211         /* Load i particle coords and add shift vector */
212         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
213                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
214
215         fix0             = _mm_setzero_pd();
216         fiy0             = _mm_setzero_pd();
217         fiz0             = _mm_setzero_pd();
218         fix1             = _mm_setzero_pd();
219         fiy1             = _mm_setzero_pd();
220         fiz1             = _mm_setzero_pd();
221         fix2             = _mm_setzero_pd();
222         fiy2             = _mm_setzero_pd();
223         fiz2             = _mm_setzero_pd();
224
225         /* Reset potential sums */
226         velecsum         = _mm_setzero_pd();
227         vvdwsum          = _mm_setzero_pd();
228
229         /* Start inner kernel loop */
230         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
231         {
232
233             /* Get j neighbor index, and coordinate index */
234             jnrA             = jjnr[jidx];
235             jnrB             = jjnr[jidx+1];
236             j_coord_offsetA  = DIM*jnrA;
237             j_coord_offsetB  = DIM*jnrB;
238
239             /* load j atom coordinates */
240             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
241                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
242
243             /* Calculate displacement vector */
244             dx00             = _mm_sub_pd(ix0,jx0);
245             dy00             = _mm_sub_pd(iy0,jy0);
246             dz00             = _mm_sub_pd(iz0,jz0);
247             dx01             = _mm_sub_pd(ix0,jx1);
248             dy01             = _mm_sub_pd(iy0,jy1);
249             dz01             = _mm_sub_pd(iz0,jz1);
250             dx02             = _mm_sub_pd(ix0,jx2);
251             dy02             = _mm_sub_pd(iy0,jy2);
252             dz02             = _mm_sub_pd(iz0,jz2);
253             dx10             = _mm_sub_pd(ix1,jx0);
254             dy10             = _mm_sub_pd(iy1,jy0);
255             dz10             = _mm_sub_pd(iz1,jz0);
256             dx11             = _mm_sub_pd(ix1,jx1);
257             dy11             = _mm_sub_pd(iy1,jy1);
258             dz11             = _mm_sub_pd(iz1,jz1);
259             dx12             = _mm_sub_pd(ix1,jx2);
260             dy12             = _mm_sub_pd(iy1,jy2);
261             dz12             = _mm_sub_pd(iz1,jz2);
262             dx20             = _mm_sub_pd(ix2,jx0);
263             dy20             = _mm_sub_pd(iy2,jy0);
264             dz20             = _mm_sub_pd(iz2,jz0);
265             dx21             = _mm_sub_pd(ix2,jx1);
266             dy21             = _mm_sub_pd(iy2,jy1);
267             dz21             = _mm_sub_pd(iz2,jz1);
268             dx22             = _mm_sub_pd(ix2,jx2);
269             dy22             = _mm_sub_pd(iy2,jy2);
270             dz22             = _mm_sub_pd(iz2,jz2);
271
272             /* Calculate squared distance and things based on it */
273             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
274             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
275             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
276             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
277             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
278             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
279             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
280             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
281             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
282
283             rinv00           = gmx_mm_invsqrt_pd(rsq00);
284             rinv01           = gmx_mm_invsqrt_pd(rsq01);
285             rinv02           = gmx_mm_invsqrt_pd(rsq02);
286             rinv10           = gmx_mm_invsqrt_pd(rsq10);
287             rinv11           = gmx_mm_invsqrt_pd(rsq11);
288             rinv12           = gmx_mm_invsqrt_pd(rsq12);
289             rinv20           = gmx_mm_invsqrt_pd(rsq20);
290             rinv21           = gmx_mm_invsqrt_pd(rsq21);
291             rinv22           = gmx_mm_invsqrt_pd(rsq22);
292
293             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
294             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
295             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
296             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
297             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
298             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
299             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
300             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
301             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
302
303             fjx0             = _mm_setzero_pd();
304             fjy0             = _mm_setzero_pd();
305             fjz0             = _mm_setzero_pd();
306             fjx1             = _mm_setzero_pd();
307             fjy1             = _mm_setzero_pd();
308             fjz1             = _mm_setzero_pd();
309             fjx2             = _mm_setzero_pd();
310             fjy2             = _mm_setzero_pd();
311             fjz2             = _mm_setzero_pd();
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm_any_lt(rsq00,rcutoff2))
318             {
319
320             r00              = _mm_mul_pd(rsq00,rinv00);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_pd(r00,ewtabscale);
326             ewitab           = _mm_cvttpd_epi32(ewrt);
327             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
336             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
337             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
339
340             /* Analytical LJ-PME */
341             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
342             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
343             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
344             exponent         = gmx_simd_exp_d(ewcljrsq);
345             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
346             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
347             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
348             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
349             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
350             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
351                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
352             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
353             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
354
355             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_pd(velec,cutoff_mask);
359             velecsum         = _mm_add_pd(velecsum,velec);
360             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
361             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
362
363             fscal            = _mm_add_pd(felec,fvdw);
364
365             fscal            = _mm_and_pd(fscal,cutoff_mask);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm_mul_pd(fscal,dx00);
369             ty               = _mm_mul_pd(fscal,dy00);
370             tz               = _mm_mul_pd(fscal,dz00);
371
372             /* Update vectorial force */
373             fix0             = _mm_add_pd(fix0,tx);
374             fiy0             = _mm_add_pd(fiy0,ty);
375             fiz0             = _mm_add_pd(fiz0,tz);
376
377             fjx0             = _mm_add_pd(fjx0,tx);
378             fjy0             = _mm_add_pd(fjy0,ty);
379             fjz0             = _mm_add_pd(fjz0,tz);
380
381             }
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             if (gmx_mm_any_lt(rsq01,rcutoff2))
388             {
389
390             r01              = _mm_mul_pd(rsq01,rinv01);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm_mul_pd(r01,ewtabscale);
396             ewitab           = _mm_cvttpd_epi32(ewrt);
397             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
406             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
407             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
409
410             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm_and_pd(velec,cutoff_mask);
414             velecsum         = _mm_add_pd(velecsum,velec);
415
416             fscal            = felec;
417
418             fscal            = _mm_and_pd(fscal,cutoff_mask);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm_mul_pd(fscal,dx01);
422             ty               = _mm_mul_pd(fscal,dy01);
423             tz               = _mm_mul_pd(fscal,dz01);
424
425             /* Update vectorial force */
426             fix0             = _mm_add_pd(fix0,tx);
427             fiy0             = _mm_add_pd(fiy0,ty);
428             fiz0             = _mm_add_pd(fiz0,tz);
429
430             fjx1             = _mm_add_pd(fjx1,tx);
431             fjy1             = _mm_add_pd(fjy1,ty);
432             fjz1             = _mm_add_pd(fjz1,tz);
433
434             }
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             if (gmx_mm_any_lt(rsq02,rcutoff2))
441             {
442
443             r02              = _mm_mul_pd(rsq02,rinv02);
444
445             /* EWALD ELECTROSTATICS */
446
447             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
448             ewrt             = _mm_mul_pd(r02,ewtabscale);
449             ewitab           = _mm_cvttpd_epi32(ewrt);
450             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
451             ewitab           = _mm_slli_epi32(ewitab,2);
452             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
453             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
454             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
455             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
456             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
457             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
458             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
459             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
460             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
461             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
462
463             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
464
465             /* Update potential sum for this i atom from the interaction with this j atom. */
466             velec            = _mm_and_pd(velec,cutoff_mask);
467             velecsum         = _mm_add_pd(velecsum,velec);
468
469             fscal            = felec;
470
471             fscal            = _mm_and_pd(fscal,cutoff_mask);
472
473             /* Calculate temporary vectorial force */
474             tx               = _mm_mul_pd(fscal,dx02);
475             ty               = _mm_mul_pd(fscal,dy02);
476             tz               = _mm_mul_pd(fscal,dz02);
477
478             /* Update vectorial force */
479             fix0             = _mm_add_pd(fix0,tx);
480             fiy0             = _mm_add_pd(fiy0,ty);
481             fiz0             = _mm_add_pd(fiz0,tz);
482
483             fjx2             = _mm_add_pd(fjx2,tx);
484             fjy2             = _mm_add_pd(fjy2,ty);
485             fjz2             = _mm_add_pd(fjz2,tz);
486
487             }
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             if (gmx_mm_any_lt(rsq10,rcutoff2))
494             {
495
496             r10              = _mm_mul_pd(rsq10,rinv10);
497
498             /* EWALD ELECTROSTATICS */
499
500             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
501             ewrt             = _mm_mul_pd(r10,ewtabscale);
502             ewitab           = _mm_cvttpd_epi32(ewrt);
503             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
504             ewitab           = _mm_slli_epi32(ewitab,2);
505             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
506             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
507             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
508             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
509             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
510             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
511             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
512             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
513             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
514             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
515
516             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_and_pd(velec,cutoff_mask);
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_and_pd(fscal,cutoff_mask);
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm_mul_pd(fscal,dx10);
528             ty               = _mm_mul_pd(fscal,dy10);
529             tz               = _mm_mul_pd(fscal,dz10);
530
531             /* Update vectorial force */
532             fix1             = _mm_add_pd(fix1,tx);
533             fiy1             = _mm_add_pd(fiy1,ty);
534             fiz1             = _mm_add_pd(fiz1,tz);
535
536             fjx0             = _mm_add_pd(fjx0,tx);
537             fjy0             = _mm_add_pd(fjy0,ty);
538             fjz0             = _mm_add_pd(fjz0,tz);
539
540             }
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             if (gmx_mm_any_lt(rsq11,rcutoff2))
547             {
548
549             r11              = _mm_mul_pd(rsq11,rinv11);
550
551             /* EWALD ELECTROSTATICS */
552
553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
554             ewrt             = _mm_mul_pd(r11,ewtabscale);
555             ewitab           = _mm_cvttpd_epi32(ewrt);
556             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
557             ewitab           = _mm_slli_epi32(ewitab,2);
558             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
559             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
560             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
561             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
562             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
563             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
564             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
565             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
566             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
567             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
568
569             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm_and_pd(velec,cutoff_mask);
573             velecsum         = _mm_add_pd(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm_and_pd(fscal,cutoff_mask);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_pd(fscal,dx11);
581             ty               = _mm_mul_pd(fscal,dy11);
582             tz               = _mm_mul_pd(fscal,dz11);
583
584             /* Update vectorial force */
585             fix1             = _mm_add_pd(fix1,tx);
586             fiy1             = _mm_add_pd(fiy1,ty);
587             fiz1             = _mm_add_pd(fiz1,tz);
588
589             fjx1             = _mm_add_pd(fjx1,tx);
590             fjy1             = _mm_add_pd(fjy1,ty);
591             fjz1             = _mm_add_pd(fjz1,tz);
592
593             }
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (gmx_mm_any_lt(rsq12,rcutoff2))
600             {
601
602             r12              = _mm_mul_pd(rsq12,rinv12);
603
604             /* EWALD ELECTROSTATICS */
605
606             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
607             ewrt             = _mm_mul_pd(r12,ewtabscale);
608             ewitab           = _mm_cvttpd_epi32(ewrt);
609             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
610             ewitab           = _mm_slli_epi32(ewitab,2);
611             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
612             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
613             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
614             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
615             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
616             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
617             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
618             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
619             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
620             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
621
622             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm_and_pd(velec,cutoff_mask);
626             velecsum         = _mm_add_pd(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm_and_pd(fscal,cutoff_mask);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_pd(fscal,dx12);
634             ty               = _mm_mul_pd(fscal,dy12);
635             tz               = _mm_mul_pd(fscal,dz12);
636
637             /* Update vectorial force */
638             fix1             = _mm_add_pd(fix1,tx);
639             fiy1             = _mm_add_pd(fiy1,ty);
640             fiz1             = _mm_add_pd(fiz1,tz);
641
642             fjx2             = _mm_add_pd(fjx2,tx);
643             fjy2             = _mm_add_pd(fjy2,ty);
644             fjz2             = _mm_add_pd(fjz2,tz);
645
646             }
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm_any_lt(rsq20,rcutoff2))
653             {
654
655             r20              = _mm_mul_pd(rsq20,rinv20);
656
657             /* EWALD ELECTROSTATICS */
658
659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
660             ewrt             = _mm_mul_pd(r20,ewtabscale);
661             ewitab           = _mm_cvttpd_epi32(ewrt);
662             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
663             ewitab           = _mm_slli_epi32(ewitab,2);
664             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
665             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
666             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
667             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
668             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
669             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
670             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
671             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
672             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
673             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
674
675             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
676
677             /* Update potential sum for this i atom from the interaction with this j atom. */
678             velec            = _mm_and_pd(velec,cutoff_mask);
679             velecsum         = _mm_add_pd(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm_and_pd(fscal,cutoff_mask);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm_mul_pd(fscal,dx20);
687             ty               = _mm_mul_pd(fscal,dy20);
688             tz               = _mm_mul_pd(fscal,dz20);
689
690             /* Update vectorial force */
691             fix2             = _mm_add_pd(fix2,tx);
692             fiy2             = _mm_add_pd(fiy2,ty);
693             fiz2             = _mm_add_pd(fiz2,tz);
694
695             fjx0             = _mm_add_pd(fjx0,tx);
696             fjy0             = _mm_add_pd(fjy0,ty);
697             fjz0             = _mm_add_pd(fjz0,tz);
698
699             }
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             if (gmx_mm_any_lt(rsq21,rcutoff2))
706             {
707
708             r21              = _mm_mul_pd(rsq21,rinv21);
709
710             /* EWALD ELECTROSTATICS */
711
712             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
713             ewrt             = _mm_mul_pd(r21,ewtabscale);
714             ewitab           = _mm_cvttpd_epi32(ewrt);
715             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
716             ewitab           = _mm_slli_epi32(ewitab,2);
717             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
718             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
719             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
720             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
721             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
722             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
723             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
724             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
725             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
726             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
727
728             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
729
730             /* Update potential sum for this i atom from the interaction with this j atom. */
731             velec            = _mm_and_pd(velec,cutoff_mask);
732             velecsum         = _mm_add_pd(velecsum,velec);
733
734             fscal            = felec;
735
736             fscal            = _mm_and_pd(fscal,cutoff_mask);
737
738             /* Calculate temporary vectorial force */
739             tx               = _mm_mul_pd(fscal,dx21);
740             ty               = _mm_mul_pd(fscal,dy21);
741             tz               = _mm_mul_pd(fscal,dz21);
742
743             /* Update vectorial force */
744             fix2             = _mm_add_pd(fix2,tx);
745             fiy2             = _mm_add_pd(fiy2,ty);
746             fiz2             = _mm_add_pd(fiz2,tz);
747
748             fjx1             = _mm_add_pd(fjx1,tx);
749             fjy1             = _mm_add_pd(fjy1,ty);
750             fjz1             = _mm_add_pd(fjz1,tz);
751
752             }
753
754             /**************************
755              * CALCULATE INTERACTIONS *
756              **************************/
757
758             if (gmx_mm_any_lt(rsq22,rcutoff2))
759             {
760
761             r22              = _mm_mul_pd(rsq22,rinv22);
762
763             /* EWALD ELECTROSTATICS */
764
765             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
766             ewrt             = _mm_mul_pd(r22,ewtabscale);
767             ewitab           = _mm_cvttpd_epi32(ewrt);
768             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
769             ewitab           = _mm_slli_epi32(ewitab,2);
770             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
771             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
772             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
773             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
774             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
775             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
776             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
777             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
778             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
779             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
780
781             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
782
783             /* Update potential sum for this i atom from the interaction with this j atom. */
784             velec            = _mm_and_pd(velec,cutoff_mask);
785             velecsum         = _mm_add_pd(velecsum,velec);
786
787             fscal            = felec;
788
789             fscal            = _mm_and_pd(fscal,cutoff_mask);
790
791             /* Calculate temporary vectorial force */
792             tx               = _mm_mul_pd(fscal,dx22);
793             ty               = _mm_mul_pd(fscal,dy22);
794             tz               = _mm_mul_pd(fscal,dz22);
795
796             /* Update vectorial force */
797             fix2             = _mm_add_pd(fix2,tx);
798             fiy2             = _mm_add_pd(fiy2,ty);
799             fiz2             = _mm_add_pd(fiz2,tz);
800
801             fjx2             = _mm_add_pd(fjx2,tx);
802             fjy2             = _mm_add_pd(fjy2,ty);
803             fjz2             = _mm_add_pd(fjz2,tz);
804
805             }
806
807             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
808
809             /* Inner loop uses 449 flops */
810         }
811
812         if(jidx<j_index_end)
813         {
814
815             jnrA             = jjnr[jidx];
816             j_coord_offsetA  = DIM*jnrA;
817
818             /* load j atom coordinates */
819             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
820                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
821
822             /* Calculate displacement vector */
823             dx00             = _mm_sub_pd(ix0,jx0);
824             dy00             = _mm_sub_pd(iy0,jy0);
825             dz00             = _mm_sub_pd(iz0,jz0);
826             dx01             = _mm_sub_pd(ix0,jx1);
827             dy01             = _mm_sub_pd(iy0,jy1);
828             dz01             = _mm_sub_pd(iz0,jz1);
829             dx02             = _mm_sub_pd(ix0,jx2);
830             dy02             = _mm_sub_pd(iy0,jy2);
831             dz02             = _mm_sub_pd(iz0,jz2);
832             dx10             = _mm_sub_pd(ix1,jx0);
833             dy10             = _mm_sub_pd(iy1,jy0);
834             dz10             = _mm_sub_pd(iz1,jz0);
835             dx11             = _mm_sub_pd(ix1,jx1);
836             dy11             = _mm_sub_pd(iy1,jy1);
837             dz11             = _mm_sub_pd(iz1,jz1);
838             dx12             = _mm_sub_pd(ix1,jx2);
839             dy12             = _mm_sub_pd(iy1,jy2);
840             dz12             = _mm_sub_pd(iz1,jz2);
841             dx20             = _mm_sub_pd(ix2,jx0);
842             dy20             = _mm_sub_pd(iy2,jy0);
843             dz20             = _mm_sub_pd(iz2,jz0);
844             dx21             = _mm_sub_pd(ix2,jx1);
845             dy21             = _mm_sub_pd(iy2,jy1);
846             dz21             = _mm_sub_pd(iz2,jz1);
847             dx22             = _mm_sub_pd(ix2,jx2);
848             dy22             = _mm_sub_pd(iy2,jy2);
849             dz22             = _mm_sub_pd(iz2,jz2);
850
851             /* Calculate squared distance and things based on it */
852             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
853             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
854             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
855             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
856             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
857             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
858             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
859             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
860             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
861
862             rinv00           = gmx_mm_invsqrt_pd(rsq00);
863             rinv01           = gmx_mm_invsqrt_pd(rsq01);
864             rinv02           = gmx_mm_invsqrt_pd(rsq02);
865             rinv10           = gmx_mm_invsqrt_pd(rsq10);
866             rinv11           = gmx_mm_invsqrt_pd(rsq11);
867             rinv12           = gmx_mm_invsqrt_pd(rsq12);
868             rinv20           = gmx_mm_invsqrt_pd(rsq20);
869             rinv21           = gmx_mm_invsqrt_pd(rsq21);
870             rinv22           = gmx_mm_invsqrt_pd(rsq22);
871
872             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
873             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
874             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
875             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
876             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
877             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
878             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
879             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
880             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
881
882             fjx0             = _mm_setzero_pd();
883             fjy0             = _mm_setzero_pd();
884             fjz0             = _mm_setzero_pd();
885             fjx1             = _mm_setzero_pd();
886             fjy1             = _mm_setzero_pd();
887             fjz1             = _mm_setzero_pd();
888             fjx2             = _mm_setzero_pd();
889             fjy2             = _mm_setzero_pd();
890             fjz2             = _mm_setzero_pd();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             if (gmx_mm_any_lt(rsq00,rcutoff2))
897             {
898
899             r00              = _mm_mul_pd(rsq00,rinv00);
900
901             /* EWALD ELECTROSTATICS */
902
903             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
904             ewrt             = _mm_mul_pd(r00,ewtabscale);
905             ewitab           = _mm_cvttpd_epi32(ewrt);
906             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
907             ewitab           = _mm_slli_epi32(ewitab,2);
908             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
909             ewtabD           = _mm_setzero_pd();
910             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
911             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
912             ewtabFn          = _mm_setzero_pd();
913             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
914             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
915             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
916             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
917             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
918
919             /* Analytical LJ-PME */
920             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
921             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
922             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
923             exponent         = gmx_simd_exp_d(ewcljrsq);
924             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
925             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
926             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
927             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
928             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
929             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
930                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
931             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
932             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
933
934             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
935
936             /* Update potential sum for this i atom from the interaction with this j atom. */
937             velec            = _mm_and_pd(velec,cutoff_mask);
938             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
939             velecsum         = _mm_add_pd(velecsum,velec);
940             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
941             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
942             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
943
944             fscal            = _mm_add_pd(felec,fvdw);
945
946             fscal            = _mm_and_pd(fscal,cutoff_mask);
947
948             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm_mul_pd(fscal,dx00);
952             ty               = _mm_mul_pd(fscal,dy00);
953             tz               = _mm_mul_pd(fscal,dz00);
954
955             /* Update vectorial force */
956             fix0             = _mm_add_pd(fix0,tx);
957             fiy0             = _mm_add_pd(fiy0,ty);
958             fiz0             = _mm_add_pd(fiz0,tz);
959
960             fjx0             = _mm_add_pd(fjx0,tx);
961             fjy0             = _mm_add_pd(fjy0,ty);
962             fjz0             = _mm_add_pd(fjz0,tz);
963
964             }
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_mm_any_lt(rsq01,rcutoff2))
971             {
972
973             r01              = _mm_mul_pd(rsq01,rinv01);
974
975             /* EWALD ELECTROSTATICS */
976
977             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
978             ewrt             = _mm_mul_pd(r01,ewtabscale);
979             ewitab           = _mm_cvttpd_epi32(ewrt);
980             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
981             ewitab           = _mm_slli_epi32(ewitab,2);
982             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
983             ewtabD           = _mm_setzero_pd();
984             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
985             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
986             ewtabFn          = _mm_setzero_pd();
987             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
988             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
989             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
990             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
991             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
992
993             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
994
995             /* Update potential sum for this i atom from the interaction with this j atom. */
996             velec            = _mm_and_pd(velec,cutoff_mask);
997             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
998             velecsum         = _mm_add_pd(velecsum,velec);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_and_pd(fscal,cutoff_mask);
1003
1004             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1005
1006             /* Calculate temporary vectorial force */
1007             tx               = _mm_mul_pd(fscal,dx01);
1008             ty               = _mm_mul_pd(fscal,dy01);
1009             tz               = _mm_mul_pd(fscal,dz01);
1010
1011             /* Update vectorial force */
1012             fix0             = _mm_add_pd(fix0,tx);
1013             fiy0             = _mm_add_pd(fiy0,ty);
1014             fiz0             = _mm_add_pd(fiz0,tz);
1015
1016             fjx1             = _mm_add_pd(fjx1,tx);
1017             fjy1             = _mm_add_pd(fjy1,ty);
1018             fjz1             = _mm_add_pd(fjz1,tz);
1019
1020             }
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             if (gmx_mm_any_lt(rsq02,rcutoff2))
1027             {
1028
1029             r02              = _mm_mul_pd(rsq02,rinv02);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_pd(r02,ewtabscale);
1035             ewitab           = _mm_cvttpd_epi32(ewrt);
1036             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1037             ewitab           = _mm_slli_epi32(ewitab,2);
1038             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1039             ewtabD           = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1041             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1042             ewtabFn          = _mm_setzero_pd();
1043             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1044             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1045             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1046             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
1047             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1048
1049             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1050
1051             /* Update potential sum for this i atom from the interaction with this j atom. */
1052             velec            = _mm_and_pd(velec,cutoff_mask);
1053             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1054             velecsum         = _mm_add_pd(velecsum,velec);
1055
1056             fscal            = felec;
1057
1058             fscal            = _mm_and_pd(fscal,cutoff_mask);
1059
1060             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1061
1062             /* Calculate temporary vectorial force */
1063             tx               = _mm_mul_pd(fscal,dx02);
1064             ty               = _mm_mul_pd(fscal,dy02);
1065             tz               = _mm_mul_pd(fscal,dz02);
1066
1067             /* Update vectorial force */
1068             fix0             = _mm_add_pd(fix0,tx);
1069             fiy0             = _mm_add_pd(fiy0,ty);
1070             fiz0             = _mm_add_pd(fiz0,tz);
1071
1072             fjx2             = _mm_add_pd(fjx2,tx);
1073             fjy2             = _mm_add_pd(fjy2,ty);
1074             fjz2             = _mm_add_pd(fjz2,tz);
1075
1076             }
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             if (gmx_mm_any_lt(rsq10,rcutoff2))
1083             {
1084
1085             r10              = _mm_mul_pd(rsq10,rinv10);
1086
1087             /* EWALD ELECTROSTATICS */
1088
1089             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1090             ewrt             = _mm_mul_pd(r10,ewtabscale);
1091             ewitab           = _mm_cvttpd_epi32(ewrt);
1092             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1093             ewitab           = _mm_slli_epi32(ewitab,2);
1094             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1095             ewtabD           = _mm_setzero_pd();
1096             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1097             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1098             ewtabFn          = _mm_setzero_pd();
1099             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1100             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1101             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1102             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1103             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1104
1105             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1106
1107             /* Update potential sum for this i atom from the interaction with this j atom. */
1108             velec            = _mm_and_pd(velec,cutoff_mask);
1109             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1110             velecsum         = _mm_add_pd(velecsum,velec);
1111
1112             fscal            = felec;
1113
1114             fscal            = _mm_and_pd(fscal,cutoff_mask);
1115
1116             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_pd(fscal,dx10);
1120             ty               = _mm_mul_pd(fscal,dy10);
1121             tz               = _mm_mul_pd(fscal,dz10);
1122
1123             /* Update vectorial force */
1124             fix1             = _mm_add_pd(fix1,tx);
1125             fiy1             = _mm_add_pd(fiy1,ty);
1126             fiz1             = _mm_add_pd(fiz1,tz);
1127
1128             fjx0             = _mm_add_pd(fjx0,tx);
1129             fjy0             = _mm_add_pd(fjy0,ty);
1130             fjz0             = _mm_add_pd(fjz0,tz);
1131
1132             }
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             if (gmx_mm_any_lt(rsq11,rcutoff2))
1139             {
1140
1141             r11              = _mm_mul_pd(rsq11,rinv11);
1142
1143             /* EWALD ELECTROSTATICS */
1144
1145             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1146             ewrt             = _mm_mul_pd(r11,ewtabscale);
1147             ewitab           = _mm_cvttpd_epi32(ewrt);
1148             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1149             ewitab           = _mm_slli_epi32(ewitab,2);
1150             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1151             ewtabD           = _mm_setzero_pd();
1152             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1153             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1154             ewtabFn          = _mm_setzero_pd();
1155             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1156             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1157             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1158             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1159             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1160
1161             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1162
1163             /* Update potential sum for this i atom from the interaction with this j atom. */
1164             velec            = _mm_and_pd(velec,cutoff_mask);
1165             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1166             velecsum         = _mm_add_pd(velecsum,velec);
1167
1168             fscal            = felec;
1169
1170             fscal            = _mm_and_pd(fscal,cutoff_mask);
1171
1172             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = _mm_mul_pd(fscal,dx11);
1176             ty               = _mm_mul_pd(fscal,dy11);
1177             tz               = _mm_mul_pd(fscal,dz11);
1178
1179             /* Update vectorial force */
1180             fix1             = _mm_add_pd(fix1,tx);
1181             fiy1             = _mm_add_pd(fiy1,ty);
1182             fiz1             = _mm_add_pd(fiz1,tz);
1183
1184             fjx1             = _mm_add_pd(fjx1,tx);
1185             fjy1             = _mm_add_pd(fjy1,ty);
1186             fjz1             = _mm_add_pd(fjz1,tz);
1187
1188             }
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             if (gmx_mm_any_lt(rsq12,rcutoff2))
1195             {
1196
1197             r12              = _mm_mul_pd(rsq12,rinv12);
1198
1199             /* EWALD ELECTROSTATICS */
1200
1201             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1202             ewrt             = _mm_mul_pd(r12,ewtabscale);
1203             ewitab           = _mm_cvttpd_epi32(ewrt);
1204             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1205             ewitab           = _mm_slli_epi32(ewitab,2);
1206             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1207             ewtabD           = _mm_setzero_pd();
1208             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1209             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1210             ewtabFn          = _mm_setzero_pd();
1211             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1212             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1213             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1214             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1215             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1216
1217             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1218
1219             /* Update potential sum for this i atom from the interaction with this j atom. */
1220             velec            = _mm_and_pd(velec,cutoff_mask);
1221             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1222             velecsum         = _mm_add_pd(velecsum,velec);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm_and_pd(fscal,cutoff_mask);
1227
1228             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm_mul_pd(fscal,dx12);
1232             ty               = _mm_mul_pd(fscal,dy12);
1233             tz               = _mm_mul_pd(fscal,dz12);
1234
1235             /* Update vectorial force */
1236             fix1             = _mm_add_pd(fix1,tx);
1237             fiy1             = _mm_add_pd(fiy1,ty);
1238             fiz1             = _mm_add_pd(fiz1,tz);
1239
1240             fjx2             = _mm_add_pd(fjx2,tx);
1241             fjy2             = _mm_add_pd(fjy2,ty);
1242             fjz2             = _mm_add_pd(fjz2,tz);
1243
1244             }
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             if (gmx_mm_any_lt(rsq20,rcutoff2))
1251             {
1252
1253             r20              = _mm_mul_pd(rsq20,rinv20);
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = _mm_mul_pd(r20,ewtabscale);
1259             ewitab           = _mm_cvttpd_epi32(ewrt);
1260             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1261             ewitab           = _mm_slli_epi32(ewitab,2);
1262             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1263             ewtabD           = _mm_setzero_pd();
1264             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1265             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1266             ewtabFn          = _mm_setzero_pd();
1267             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1268             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1269             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1270             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1271             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1272
1273             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1274
1275             /* Update potential sum for this i atom from the interaction with this j atom. */
1276             velec            = _mm_and_pd(velec,cutoff_mask);
1277             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1278             velecsum         = _mm_add_pd(velecsum,velec);
1279
1280             fscal            = felec;
1281
1282             fscal            = _mm_and_pd(fscal,cutoff_mask);
1283
1284             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1285
1286             /* Calculate temporary vectorial force */
1287             tx               = _mm_mul_pd(fscal,dx20);
1288             ty               = _mm_mul_pd(fscal,dy20);
1289             tz               = _mm_mul_pd(fscal,dz20);
1290
1291             /* Update vectorial force */
1292             fix2             = _mm_add_pd(fix2,tx);
1293             fiy2             = _mm_add_pd(fiy2,ty);
1294             fiz2             = _mm_add_pd(fiz2,tz);
1295
1296             fjx0             = _mm_add_pd(fjx0,tx);
1297             fjy0             = _mm_add_pd(fjy0,ty);
1298             fjz0             = _mm_add_pd(fjz0,tz);
1299
1300             }
1301
1302             /**************************
1303              * CALCULATE INTERACTIONS *
1304              **************************/
1305
1306             if (gmx_mm_any_lt(rsq21,rcutoff2))
1307             {
1308
1309             r21              = _mm_mul_pd(rsq21,rinv21);
1310
1311             /* EWALD ELECTROSTATICS */
1312
1313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1314             ewrt             = _mm_mul_pd(r21,ewtabscale);
1315             ewitab           = _mm_cvttpd_epi32(ewrt);
1316             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1317             ewitab           = _mm_slli_epi32(ewitab,2);
1318             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1319             ewtabD           = _mm_setzero_pd();
1320             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1321             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1322             ewtabFn          = _mm_setzero_pd();
1323             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1324             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1325             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1326             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1327             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1328
1329             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1330
1331             /* Update potential sum for this i atom from the interaction with this j atom. */
1332             velec            = _mm_and_pd(velec,cutoff_mask);
1333             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1334             velecsum         = _mm_add_pd(velecsum,velec);
1335
1336             fscal            = felec;
1337
1338             fscal            = _mm_and_pd(fscal,cutoff_mask);
1339
1340             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1341
1342             /* Calculate temporary vectorial force */
1343             tx               = _mm_mul_pd(fscal,dx21);
1344             ty               = _mm_mul_pd(fscal,dy21);
1345             tz               = _mm_mul_pd(fscal,dz21);
1346
1347             /* Update vectorial force */
1348             fix2             = _mm_add_pd(fix2,tx);
1349             fiy2             = _mm_add_pd(fiy2,ty);
1350             fiz2             = _mm_add_pd(fiz2,tz);
1351
1352             fjx1             = _mm_add_pd(fjx1,tx);
1353             fjy1             = _mm_add_pd(fjy1,ty);
1354             fjz1             = _mm_add_pd(fjz1,tz);
1355
1356             }
1357
1358             /**************************
1359              * CALCULATE INTERACTIONS *
1360              **************************/
1361
1362             if (gmx_mm_any_lt(rsq22,rcutoff2))
1363             {
1364
1365             r22              = _mm_mul_pd(rsq22,rinv22);
1366
1367             /* EWALD ELECTROSTATICS */
1368
1369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1370             ewrt             = _mm_mul_pd(r22,ewtabscale);
1371             ewitab           = _mm_cvttpd_epi32(ewrt);
1372             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1373             ewitab           = _mm_slli_epi32(ewitab,2);
1374             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1375             ewtabD           = _mm_setzero_pd();
1376             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1377             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1378             ewtabFn          = _mm_setzero_pd();
1379             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1380             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1381             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1382             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1383             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1384
1385             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1386
1387             /* Update potential sum for this i atom from the interaction with this j atom. */
1388             velec            = _mm_and_pd(velec,cutoff_mask);
1389             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1390             velecsum         = _mm_add_pd(velecsum,velec);
1391
1392             fscal            = felec;
1393
1394             fscal            = _mm_and_pd(fscal,cutoff_mask);
1395
1396             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1397
1398             /* Calculate temporary vectorial force */
1399             tx               = _mm_mul_pd(fscal,dx22);
1400             ty               = _mm_mul_pd(fscal,dy22);
1401             tz               = _mm_mul_pd(fscal,dz22);
1402
1403             /* Update vectorial force */
1404             fix2             = _mm_add_pd(fix2,tx);
1405             fiy2             = _mm_add_pd(fiy2,ty);
1406             fiz2             = _mm_add_pd(fiz2,tz);
1407
1408             fjx2             = _mm_add_pd(fjx2,tx);
1409             fjy2             = _mm_add_pd(fjy2,ty);
1410             fjz2             = _mm_add_pd(fjz2,tz);
1411
1412             }
1413
1414             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1415
1416             /* Inner loop uses 449 flops */
1417         }
1418
1419         /* End of innermost loop */
1420
1421         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1422                                               f+i_coord_offset,fshift+i_shift_offset);
1423
1424         ggid                        = gid[iidx];
1425         /* Update potential energies */
1426         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1427         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1428
1429         /* Increment number of inner iterations */
1430         inneriter                  += j_index_end - j_index_start;
1431
1432         /* Outer loop uses 20 flops */
1433     }
1434
1435     /* Increment number of outer iterations */
1436     outeriter        += nri;
1437
1438     /* Update outer/inner flops */
1439
1440     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*449);
1441 }
1442 /*
1443  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_F_sse4_1_double
1444  * Electrostatics interaction: Ewald
1445  * VdW interaction:            LJEwald
1446  * Geometry:                   Water3-Water3
1447  * Calculate force/pot:        Force
1448  */
1449 void
1450 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_F_sse4_1_double
1451                     (t_nblist                    * gmx_restrict       nlist,
1452                      rvec                        * gmx_restrict          xx,
1453                      rvec                        * gmx_restrict          ff,
1454                      t_forcerec                  * gmx_restrict          fr,
1455                      t_mdatoms                   * gmx_restrict     mdatoms,
1456                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1457                      t_nrnb                      * gmx_restrict        nrnb)
1458 {
1459     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1460      * just 0 for non-waters.
1461      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1462      * jnr indices corresponding to data put in the four positions in the SIMD register.
1463      */
1464     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1465     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1466     int              jnrA,jnrB;
1467     int              j_coord_offsetA,j_coord_offsetB;
1468     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1469     real             rcutoff_scalar;
1470     real             *shiftvec,*fshift,*x,*f;
1471     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1472     int              vdwioffset0;
1473     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1474     int              vdwioffset1;
1475     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1476     int              vdwioffset2;
1477     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1478     int              vdwjidx0A,vdwjidx0B;
1479     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1480     int              vdwjidx1A,vdwjidx1B;
1481     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1482     int              vdwjidx2A,vdwjidx2B;
1483     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1484     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1485     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1486     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1487     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1488     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1489     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1490     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1491     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1492     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1493     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1494     real             *charge;
1495     int              nvdwtype;
1496     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1497     int              *vdwtype;
1498     real             *vdwparam;
1499     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1500     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1501     __m128d           c6grid_00;
1502     __m128d           c6grid_01;
1503     __m128d           c6grid_02;
1504     __m128d           c6grid_10;
1505     __m128d           c6grid_11;
1506     __m128d           c6grid_12;
1507     __m128d           c6grid_20;
1508     __m128d           c6grid_21;
1509     __m128d           c6grid_22;
1510     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1511     real             *vdwgridparam;
1512     __m128d           one_half = _mm_set1_pd(0.5);
1513     __m128d           minus_one = _mm_set1_pd(-1.0);
1514     __m128i          ewitab;
1515     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1516     real             *ewtab;
1517     __m128d          dummy_mask,cutoff_mask;
1518     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1519     __m128d          one     = _mm_set1_pd(1.0);
1520     __m128d          two     = _mm_set1_pd(2.0);
1521     x                = xx[0];
1522     f                = ff[0];
1523
1524     nri              = nlist->nri;
1525     iinr             = nlist->iinr;
1526     jindex           = nlist->jindex;
1527     jjnr             = nlist->jjnr;
1528     shiftidx         = nlist->shift;
1529     gid              = nlist->gid;
1530     shiftvec         = fr->shift_vec[0];
1531     fshift           = fr->fshift[0];
1532     facel            = _mm_set1_pd(fr->epsfac);
1533     charge           = mdatoms->chargeA;
1534     nvdwtype         = fr->ntype;
1535     vdwparam         = fr->nbfp;
1536     vdwtype          = mdatoms->typeA;
1537     vdwgridparam     = fr->ljpme_c6grid;
1538     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1539     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1540     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1541
1542     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1543     ewtab            = fr->ic->tabq_coul_F;
1544     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1545     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1546
1547     /* Setup water-specific parameters */
1548     inr              = nlist->iinr[0];
1549     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1550     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1551     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1552     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1553
1554     jq0              = _mm_set1_pd(charge[inr+0]);
1555     jq1              = _mm_set1_pd(charge[inr+1]);
1556     jq2              = _mm_set1_pd(charge[inr+2]);
1557     vdwjidx0A        = 2*vdwtype[inr+0];
1558     qq00             = _mm_mul_pd(iq0,jq0);
1559     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1560     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1561     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1562     qq01             = _mm_mul_pd(iq0,jq1);
1563     qq02             = _mm_mul_pd(iq0,jq2);
1564     qq10             = _mm_mul_pd(iq1,jq0);
1565     qq11             = _mm_mul_pd(iq1,jq1);
1566     qq12             = _mm_mul_pd(iq1,jq2);
1567     qq20             = _mm_mul_pd(iq2,jq0);
1568     qq21             = _mm_mul_pd(iq2,jq1);
1569     qq22             = _mm_mul_pd(iq2,jq2);
1570
1571     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1572     rcutoff_scalar   = fr->rcoulomb;
1573     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1574     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1575
1576     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
1577     rvdw             = _mm_set1_pd(fr->rvdw);
1578
1579     /* Avoid stupid compiler warnings */
1580     jnrA = jnrB = 0;
1581     j_coord_offsetA = 0;
1582     j_coord_offsetB = 0;
1583
1584     outeriter        = 0;
1585     inneriter        = 0;
1586
1587     /* Start outer loop over neighborlists */
1588     for(iidx=0; iidx<nri; iidx++)
1589     {
1590         /* Load shift vector for this list */
1591         i_shift_offset   = DIM*shiftidx[iidx];
1592
1593         /* Load limits for loop over neighbors */
1594         j_index_start    = jindex[iidx];
1595         j_index_end      = jindex[iidx+1];
1596
1597         /* Get outer coordinate index */
1598         inr              = iinr[iidx];
1599         i_coord_offset   = DIM*inr;
1600
1601         /* Load i particle coords and add shift vector */
1602         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1603                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1604
1605         fix0             = _mm_setzero_pd();
1606         fiy0             = _mm_setzero_pd();
1607         fiz0             = _mm_setzero_pd();
1608         fix1             = _mm_setzero_pd();
1609         fiy1             = _mm_setzero_pd();
1610         fiz1             = _mm_setzero_pd();
1611         fix2             = _mm_setzero_pd();
1612         fiy2             = _mm_setzero_pd();
1613         fiz2             = _mm_setzero_pd();
1614
1615         /* Start inner kernel loop */
1616         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1617         {
1618
1619             /* Get j neighbor index, and coordinate index */
1620             jnrA             = jjnr[jidx];
1621             jnrB             = jjnr[jidx+1];
1622             j_coord_offsetA  = DIM*jnrA;
1623             j_coord_offsetB  = DIM*jnrB;
1624
1625             /* load j atom coordinates */
1626             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1627                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1628
1629             /* Calculate displacement vector */
1630             dx00             = _mm_sub_pd(ix0,jx0);
1631             dy00             = _mm_sub_pd(iy0,jy0);
1632             dz00             = _mm_sub_pd(iz0,jz0);
1633             dx01             = _mm_sub_pd(ix0,jx1);
1634             dy01             = _mm_sub_pd(iy0,jy1);
1635             dz01             = _mm_sub_pd(iz0,jz1);
1636             dx02             = _mm_sub_pd(ix0,jx2);
1637             dy02             = _mm_sub_pd(iy0,jy2);
1638             dz02             = _mm_sub_pd(iz0,jz2);
1639             dx10             = _mm_sub_pd(ix1,jx0);
1640             dy10             = _mm_sub_pd(iy1,jy0);
1641             dz10             = _mm_sub_pd(iz1,jz0);
1642             dx11             = _mm_sub_pd(ix1,jx1);
1643             dy11             = _mm_sub_pd(iy1,jy1);
1644             dz11             = _mm_sub_pd(iz1,jz1);
1645             dx12             = _mm_sub_pd(ix1,jx2);
1646             dy12             = _mm_sub_pd(iy1,jy2);
1647             dz12             = _mm_sub_pd(iz1,jz2);
1648             dx20             = _mm_sub_pd(ix2,jx0);
1649             dy20             = _mm_sub_pd(iy2,jy0);
1650             dz20             = _mm_sub_pd(iz2,jz0);
1651             dx21             = _mm_sub_pd(ix2,jx1);
1652             dy21             = _mm_sub_pd(iy2,jy1);
1653             dz21             = _mm_sub_pd(iz2,jz1);
1654             dx22             = _mm_sub_pd(ix2,jx2);
1655             dy22             = _mm_sub_pd(iy2,jy2);
1656             dz22             = _mm_sub_pd(iz2,jz2);
1657
1658             /* Calculate squared distance and things based on it */
1659             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1660             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1661             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1662             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1663             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1664             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1665             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1666             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1667             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1668
1669             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1670             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1671             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1672             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1673             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1674             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1675             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1676             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1677             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1678
1679             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1680             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1681             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1682             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1683             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1684             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1685             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1686             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1687             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1688
1689             fjx0             = _mm_setzero_pd();
1690             fjy0             = _mm_setzero_pd();
1691             fjz0             = _mm_setzero_pd();
1692             fjx1             = _mm_setzero_pd();
1693             fjy1             = _mm_setzero_pd();
1694             fjz1             = _mm_setzero_pd();
1695             fjx2             = _mm_setzero_pd();
1696             fjy2             = _mm_setzero_pd();
1697             fjz2             = _mm_setzero_pd();
1698
1699             /**************************
1700              * CALCULATE INTERACTIONS *
1701              **************************/
1702
1703             if (gmx_mm_any_lt(rsq00,rcutoff2))
1704             {
1705
1706             r00              = _mm_mul_pd(rsq00,rinv00);
1707
1708             /* EWALD ELECTROSTATICS */
1709
1710             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1711             ewrt             = _mm_mul_pd(r00,ewtabscale);
1712             ewitab           = _mm_cvttpd_epi32(ewrt);
1713             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1714             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1715                                          &ewtabF,&ewtabFn);
1716             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1717             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1718
1719             /* Analytical LJ-PME */
1720             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1721             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1722             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1723             exponent         = gmx_simd_exp_d(ewcljrsq);
1724             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1725             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1726             /* f6A = 6 * C6grid * (1 - poly) */
1727             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1728             /* f6B = C6grid * exponent * beta^6 */
1729             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1730             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1731             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1732
1733             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1734
1735             fscal            = _mm_add_pd(felec,fvdw);
1736
1737             fscal            = _mm_and_pd(fscal,cutoff_mask);
1738
1739             /* Calculate temporary vectorial force */
1740             tx               = _mm_mul_pd(fscal,dx00);
1741             ty               = _mm_mul_pd(fscal,dy00);
1742             tz               = _mm_mul_pd(fscal,dz00);
1743
1744             /* Update vectorial force */
1745             fix0             = _mm_add_pd(fix0,tx);
1746             fiy0             = _mm_add_pd(fiy0,ty);
1747             fiz0             = _mm_add_pd(fiz0,tz);
1748
1749             fjx0             = _mm_add_pd(fjx0,tx);
1750             fjy0             = _mm_add_pd(fjy0,ty);
1751             fjz0             = _mm_add_pd(fjz0,tz);
1752
1753             }
1754
1755             /**************************
1756              * CALCULATE INTERACTIONS *
1757              **************************/
1758
1759             if (gmx_mm_any_lt(rsq01,rcutoff2))
1760             {
1761
1762             r01              = _mm_mul_pd(rsq01,rinv01);
1763
1764             /* EWALD ELECTROSTATICS */
1765
1766             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1767             ewrt             = _mm_mul_pd(r01,ewtabscale);
1768             ewitab           = _mm_cvttpd_epi32(ewrt);
1769             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1770             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1771                                          &ewtabF,&ewtabFn);
1772             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1773             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1774
1775             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1776
1777             fscal            = felec;
1778
1779             fscal            = _mm_and_pd(fscal,cutoff_mask);
1780
1781             /* Calculate temporary vectorial force */
1782             tx               = _mm_mul_pd(fscal,dx01);
1783             ty               = _mm_mul_pd(fscal,dy01);
1784             tz               = _mm_mul_pd(fscal,dz01);
1785
1786             /* Update vectorial force */
1787             fix0             = _mm_add_pd(fix0,tx);
1788             fiy0             = _mm_add_pd(fiy0,ty);
1789             fiz0             = _mm_add_pd(fiz0,tz);
1790
1791             fjx1             = _mm_add_pd(fjx1,tx);
1792             fjy1             = _mm_add_pd(fjy1,ty);
1793             fjz1             = _mm_add_pd(fjz1,tz);
1794
1795             }
1796
1797             /**************************
1798              * CALCULATE INTERACTIONS *
1799              **************************/
1800
1801             if (gmx_mm_any_lt(rsq02,rcutoff2))
1802             {
1803
1804             r02              = _mm_mul_pd(rsq02,rinv02);
1805
1806             /* EWALD ELECTROSTATICS */
1807
1808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1809             ewrt             = _mm_mul_pd(r02,ewtabscale);
1810             ewitab           = _mm_cvttpd_epi32(ewrt);
1811             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1812             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1813                                          &ewtabF,&ewtabFn);
1814             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1815             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1816
1817             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1818
1819             fscal            = felec;
1820
1821             fscal            = _mm_and_pd(fscal,cutoff_mask);
1822
1823             /* Calculate temporary vectorial force */
1824             tx               = _mm_mul_pd(fscal,dx02);
1825             ty               = _mm_mul_pd(fscal,dy02);
1826             tz               = _mm_mul_pd(fscal,dz02);
1827
1828             /* Update vectorial force */
1829             fix0             = _mm_add_pd(fix0,tx);
1830             fiy0             = _mm_add_pd(fiy0,ty);
1831             fiz0             = _mm_add_pd(fiz0,tz);
1832
1833             fjx2             = _mm_add_pd(fjx2,tx);
1834             fjy2             = _mm_add_pd(fjy2,ty);
1835             fjz2             = _mm_add_pd(fjz2,tz);
1836
1837             }
1838
1839             /**************************
1840              * CALCULATE INTERACTIONS *
1841              **************************/
1842
1843             if (gmx_mm_any_lt(rsq10,rcutoff2))
1844             {
1845
1846             r10              = _mm_mul_pd(rsq10,rinv10);
1847
1848             /* EWALD ELECTROSTATICS */
1849
1850             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1851             ewrt             = _mm_mul_pd(r10,ewtabscale);
1852             ewitab           = _mm_cvttpd_epi32(ewrt);
1853             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1854             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1855                                          &ewtabF,&ewtabFn);
1856             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1857             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1858
1859             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1860
1861             fscal            = felec;
1862
1863             fscal            = _mm_and_pd(fscal,cutoff_mask);
1864
1865             /* Calculate temporary vectorial force */
1866             tx               = _mm_mul_pd(fscal,dx10);
1867             ty               = _mm_mul_pd(fscal,dy10);
1868             tz               = _mm_mul_pd(fscal,dz10);
1869
1870             /* Update vectorial force */
1871             fix1             = _mm_add_pd(fix1,tx);
1872             fiy1             = _mm_add_pd(fiy1,ty);
1873             fiz1             = _mm_add_pd(fiz1,tz);
1874
1875             fjx0             = _mm_add_pd(fjx0,tx);
1876             fjy0             = _mm_add_pd(fjy0,ty);
1877             fjz0             = _mm_add_pd(fjz0,tz);
1878
1879             }
1880
1881             /**************************
1882              * CALCULATE INTERACTIONS *
1883              **************************/
1884
1885             if (gmx_mm_any_lt(rsq11,rcutoff2))
1886             {
1887
1888             r11              = _mm_mul_pd(rsq11,rinv11);
1889
1890             /* EWALD ELECTROSTATICS */
1891
1892             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1893             ewrt             = _mm_mul_pd(r11,ewtabscale);
1894             ewitab           = _mm_cvttpd_epi32(ewrt);
1895             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1896             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1897                                          &ewtabF,&ewtabFn);
1898             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1899             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1900
1901             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1902
1903             fscal            = felec;
1904
1905             fscal            = _mm_and_pd(fscal,cutoff_mask);
1906
1907             /* Calculate temporary vectorial force */
1908             tx               = _mm_mul_pd(fscal,dx11);
1909             ty               = _mm_mul_pd(fscal,dy11);
1910             tz               = _mm_mul_pd(fscal,dz11);
1911
1912             /* Update vectorial force */
1913             fix1             = _mm_add_pd(fix1,tx);
1914             fiy1             = _mm_add_pd(fiy1,ty);
1915             fiz1             = _mm_add_pd(fiz1,tz);
1916
1917             fjx1             = _mm_add_pd(fjx1,tx);
1918             fjy1             = _mm_add_pd(fjy1,ty);
1919             fjz1             = _mm_add_pd(fjz1,tz);
1920
1921             }
1922
1923             /**************************
1924              * CALCULATE INTERACTIONS *
1925              **************************/
1926
1927             if (gmx_mm_any_lt(rsq12,rcutoff2))
1928             {
1929
1930             r12              = _mm_mul_pd(rsq12,rinv12);
1931
1932             /* EWALD ELECTROSTATICS */
1933
1934             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1935             ewrt             = _mm_mul_pd(r12,ewtabscale);
1936             ewitab           = _mm_cvttpd_epi32(ewrt);
1937             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1938             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1939                                          &ewtabF,&ewtabFn);
1940             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1941             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1942
1943             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1944
1945             fscal            = felec;
1946
1947             fscal            = _mm_and_pd(fscal,cutoff_mask);
1948
1949             /* Calculate temporary vectorial force */
1950             tx               = _mm_mul_pd(fscal,dx12);
1951             ty               = _mm_mul_pd(fscal,dy12);
1952             tz               = _mm_mul_pd(fscal,dz12);
1953
1954             /* Update vectorial force */
1955             fix1             = _mm_add_pd(fix1,tx);
1956             fiy1             = _mm_add_pd(fiy1,ty);
1957             fiz1             = _mm_add_pd(fiz1,tz);
1958
1959             fjx2             = _mm_add_pd(fjx2,tx);
1960             fjy2             = _mm_add_pd(fjy2,ty);
1961             fjz2             = _mm_add_pd(fjz2,tz);
1962
1963             }
1964
1965             /**************************
1966              * CALCULATE INTERACTIONS *
1967              **************************/
1968
1969             if (gmx_mm_any_lt(rsq20,rcutoff2))
1970             {
1971
1972             r20              = _mm_mul_pd(rsq20,rinv20);
1973
1974             /* EWALD ELECTROSTATICS */
1975
1976             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1977             ewrt             = _mm_mul_pd(r20,ewtabscale);
1978             ewitab           = _mm_cvttpd_epi32(ewrt);
1979             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1980             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1981                                          &ewtabF,&ewtabFn);
1982             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1983             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1984
1985             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1986
1987             fscal            = felec;
1988
1989             fscal            = _mm_and_pd(fscal,cutoff_mask);
1990
1991             /* Calculate temporary vectorial force */
1992             tx               = _mm_mul_pd(fscal,dx20);
1993             ty               = _mm_mul_pd(fscal,dy20);
1994             tz               = _mm_mul_pd(fscal,dz20);
1995
1996             /* Update vectorial force */
1997             fix2             = _mm_add_pd(fix2,tx);
1998             fiy2             = _mm_add_pd(fiy2,ty);
1999             fiz2             = _mm_add_pd(fiz2,tz);
2000
2001             fjx0             = _mm_add_pd(fjx0,tx);
2002             fjy0             = _mm_add_pd(fjy0,ty);
2003             fjz0             = _mm_add_pd(fjz0,tz);
2004
2005             }
2006
2007             /**************************
2008              * CALCULATE INTERACTIONS *
2009              **************************/
2010
2011             if (gmx_mm_any_lt(rsq21,rcutoff2))
2012             {
2013
2014             r21              = _mm_mul_pd(rsq21,rinv21);
2015
2016             /* EWALD ELECTROSTATICS */
2017
2018             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2019             ewrt             = _mm_mul_pd(r21,ewtabscale);
2020             ewitab           = _mm_cvttpd_epi32(ewrt);
2021             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2022             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2023                                          &ewtabF,&ewtabFn);
2024             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2025             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2026
2027             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2028
2029             fscal            = felec;
2030
2031             fscal            = _mm_and_pd(fscal,cutoff_mask);
2032
2033             /* Calculate temporary vectorial force */
2034             tx               = _mm_mul_pd(fscal,dx21);
2035             ty               = _mm_mul_pd(fscal,dy21);
2036             tz               = _mm_mul_pd(fscal,dz21);
2037
2038             /* Update vectorial force */
2039             fix2             = _mm_add_pd(fix2,tx);
2040             fiy2             = _mm_add_pd(fiy2,ty);
2041             fiz2             = _mm_add_pd(fiz2,tz);
2042
2043             fjx1             = _mm_add_pd(fjx1,tx);
2044             fjy1             = _mm_add_pd(fjy1,ty);
2045             fjz1             = _mm_add_pd(fjz1,tz);
2046
2047             }
2048
2049             /**************************
2050              * CALCULATE INTERACTIONS *
2051              **************************/
2052
2053             if (gmx_mm_any_lt(rsq22,rcutoff2))
2054             {
2055
2056             r22              = _mm_mul_pd(rsq22,rinv22);
2057
2058             /* EWALD ELECTROSTATICS */
2059
2060             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2061             ewrt             = _mm_mul_pd(r22,ewtabscale);
2062             ewitab           = _mm_cvttpd_epi32(ewrt);
2063             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2064             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2065                                          &ewtabF,&ewtabFn);
2066             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2067             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2068
2069             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2070
2071             fscal            = felec;
2072
2073             fscal            = _mm_and_pd(fscal,cutoff_mask);
2074
2075             /* Calculate temporary vectorial force */
2076             tx               = _mm_mul_pd(fscal,dx22);
2077             ty               = _mm_mul_pd(fscal,dy22);
2078             tz               = _mm_mul_pd(fscal,dz22);
2079
2080             /* Update vectorial force */
2081             fix2             = _mm_add_pd(fix2,tx);
2082             fiy2             = _mm_add_pd(fiy2,ty);
2083             fiz2             = _mm_add_pd(fiz2,tz);
2084
2085             fjx2             = _mm_add_pd(fjx2,tx);
2086             fjy2             = _mm_add_pd(fjy2,ty);
2087             fjz2             = _mm_add_pd(fjz2,tz);
2088
2089             }
2090
2091             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2092
2093             /* Inner loop uses 374 flops */
2094         }
2095
2096         if(jidx<j_index_end)
2097         {
2098
2099             jnrA             = jjnr[jidx];
2100             j_coord_offsetA  = DIM*jnrA;
2101
2102             /* load j atom coordinates */
2103             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2104                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2105
2106             /* Calculate displacement vector */
2107             dx00             = _mm_sub_pd(ix0,jx0);
2108             dy00             = _mm_sub_pd(iy0,jy0);
2109             dz00             = _mm_sub_pd(iz0,jz0);
2110             dx01             = _mm_sub_pd(ix0,jx1);
2111             dy01             = _mm_sub_pd(iy0,jy1);
2112             dz01             = _mm_sub_pd(iz0,jz1);
2113             dx02             = _mm_sub_pd(ix0,jx2);
2114             dy02             = _mm_sub_pd(iy0,jy2);
2115             dz02             = _mm_sub_pd(iz0,jz2);
2116             dx10             = _mm_sub_pd(ix1,jx0);
2117             dy10             = _mm_sub_pd(iy1,jy0);
2118             dz10             = _mm_sub_pd(iz1,jz0);
2119             dx11             = _mm_sub_pd(ix1,jx1);
2120             dy11             = _mm_sub_pd(iy1,jy1);
2121             dz11             = _mm_sub_pd(iz1,jz1);
2122             dx12             = _mm_sub_pd(ix1,jx2);
2123             dy12             = _mm_sub_pd(iy1,jy2);
2124             dz12             = _mm_sub_pd(iz1,jz2);
2125             dx20             = _mm_sub_pd(ix2,jx0);
2126             dy20             = _mm_sub_pd(iy2,jy0);
2127             dz20             = _mm_sub_pd(iz2,jz0);
2128             dx21             = _mm_sub_pd(ix2,jx1);
2129             dy21             = _mm_sub_pd(iy2,jy1);
2130             dz21             = _mm_sub_pd(iz2,jz1);
2131             dx22             = _mm_sub_pd(ix2,jx2);
2132             dy22             = _mm_sub_pd(iy2,jy2);
2133             dz22             = _mm_sub_pd(iz2,jz2);
2134
2135             /* Calculate squared distance and things based on it */
2136             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2137             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2138             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2139             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2140             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2141             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2142             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2143             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2144             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2145
2146             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2147             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2148             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2149             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2150             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2151             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2152             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2153             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2154             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2155
2156             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2157             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2158             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2159             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2160             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2161             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2162             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2163             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2164             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2165
2166             fjx0             = _mm_setzero_pd();
2167             fjy0             = _mm_setzero_pd();
2168             fjz0             = _mm_setzero_pd();
2169             fjx1             = _mm_setzero_pd();
2170             fjy1             = _mm_setzero_pd();
2171             fjz1             = _mm_setzero_pd();
2172             fjx2             = _mm_setzero_pd();
2173             fjy2             = _mm_setzero_pd();
2174             fjz2             = _mm_setzero_pd();
2175
2176             /**************************
2177              * CALCULATE INTERACTIONS *
2178              **************************/
2179
2180             if (gmx_mm_any_lt(rsq00,rcutoff2))
2181             {
2182
2183             r00              = _mm_mul_pd(rsq00,rinv00);
2184
2185             /* EWALD ELECTROSTATICS */
2186
2187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2188             ewrt             = _mm_mul_pd(r00,ewtabscale);
2189             ewitab           = _mm_cvttpd_epi32(ewrt);
2190             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2191             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2192             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2193             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2194
2195             /* Analytical LJ-PME */
2196             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2197             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
2198             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
2199             exponent         = gmx_simd_exp_d(ewcljrsq);
2200             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2201             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
2202             /* f6A = 6 * C6grid * (1 - poly) */
2203             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
2204             /* f6B = C6grid * exponent * beta^6 */
2205             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
2206             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2207             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
2208
2209             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2210
2211             fscal            = _mm_add_pd(felec,fvdw);
2212
2213             fscal            = _mm_and_pd(fscal,cutoff_mask);
2214
2215             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2216
2217             /* Calculate temporary vectorial force */
2218             tx               = _mm_mul_pd(fscal,dx00);
2219             ty               = _mm_mul_pd(fscal,dy00);
2220             tz               = _mm_mul_pd(fscal,dz00);
2221
2222             /* Update vectorial force */
2223             fix0             = _mm_add_pd(fix0,tx);
2224             fiy0             = _mm_add_pd(fiy0,ty);
2225             fiz0             = _mm_add_pd(fiz0,tz);
2226
2227             fjx0             = _mm_add_pd(fjx0,tx);
2228             fjy0             = _mm_add_pd(fjy0,ty);
2229             fjz0             = _mm_add_pd(fjz0,tz);
2230
2231             }
2232
2233             /**************************
2234              * CALCULATE INTERACTIONS *
2235              **************************/
2236
2237             if (gmx_mm_any_lt(rsq01,rcutoff2))
2238             {
2239
2240             r01              = _mm_mul_pd(rsq01,rinv01);
2241
2242             /* EWALD ELECTROSTATICS */
2243
2244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2245             ewrt             = _mm_mul_pd(r01,ewtabscale);
2246             ewitab           = _mm_cvttpd_epi32(ewrt);
2247             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2248             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2249             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2250             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2251
2252             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2253
2254             fscal            = felec;
2255
2256             fscal            = _mm_and_pd(fscal,cutoff_mask);
2257
2258             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2259
2260             /* Calculate temporary vectorial force */
2261             tx               = _mm_mul_pd(fscal,dx01);
2262             ty               = _mm_mul_pd(fscal,dy01);
2263             tz               = _mm_mul_pd(fscal,dz01);
2264
2265             /* Update vectorial force */
2266             fix0             = _mm_add_pd(fix0,tx);
2267             fiy0             = _mm_add_pd(fiy0,ty);
2268             fiz0             = _mm_add_pd(fiz0,tz);
2269
2270             fjx1             = _mm_add_pd(fjx1,tx);
2271             fjy1             = _mm_add_pd(fjy1,ty);
2272             fjz1             = _mm_add_pd(fjz1,tz);
2273
2274             }
2275
2276             /**************************
2277              * CALCULATE INTERACTIONS *
2278              **************************/
2279
2280             if (gmx_mm_any_lt(rsq02,rcutoff2))
2281             {
2282
2283             r02              = _mm_mul_pd(rsq02,rinv02);
2284
2285             /* EWALD ELECTROSTATICS */
2286
2287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2288             ewrt             = _mm_mul_pd(r02,ewtabscale);
2289             ewitab           = _mm_cvttpd_epi32(ewrt);
2290             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2291             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2292             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2293             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2294
2295             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2296
2297             fscal            = felec;
2298
2299             fscal            = _mm_and_pd(fscal,cutoff_mask);
2300
2301             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2302
2303             /* Calculate temporary vectorial force */
2304             tx               = _mm_mul_pd(fscal,dx02);
2305             ty               = _mm_mul_pd(fscal,dy02);
2306             tz               = _mm_mul_pd(fscal,dz02);
2307
2308             /* Update vectorial force */
2309             fix0             = _mm_add_pd(fix0,tx);
2310             fiy0             = _mm_add_pd(fiy0,ty);
2311             fiz0             = _mm_add_pd(fiz0,tz);
2312
2313             fjx2             = _mm_add_pd(fjx2,tx);
2314             fjy2             = _mm_add_pd(fjy2,ty);
2315             fjz2             = _mm_add_pd(fjz2,tz);
2316
2317             }
2318
2319             /**************************
2320              * CALCULATE INTERACTIONS *
2321              **************************/
2322
2323             if (gmx_mm_any_lt(rsq10,rcutoff2))
2324             {
2325
2326             r10              = _mm_mul_pd(rsq10,rinv10);
2327
2328             /* EWALD ELECTROSTATICS */
2329
2330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2331             ewrt             = _mm_mul_pd(r10,ewtabscale);
2332             ewitab           = _mm_cvttpd_epi32(ewrt);
2333             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2334             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2335             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2336             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2337
2338             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2339
2340             fscal            = felec;
2341
2342             fscal            = _mm_and_pd(fscal,cutoff_mask);
2343
2344             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2345
2346             /* Calculate temporary vectorial force */
2347             tx               = _mm_mul_pd(fscal,dx10);
2348             ty               = _mm_mul_pd(fscal,dy10);
2349             tz               = _mm_mul_pd(fscal,dz10);
2350
2351             /* Update vectorial force */
2352             fix1             = _mm_add_pd(fix1,tx);
2353             fiy1             = _mm_add_pd(fiy1,ty);
2354             fiz1             = _mm_add_pd(fiz1,tz);
2355
2356             fjx0             = _mm_add_pd(fjx0,tx);
2357             fjy0             = _mm_add_pd(fjy0,ty);
2358             fjz0             = _mm_add_pd(fjz0,tz);
2359
2360             }
2361
2362             /**************************
2363              * CALCULATE INTERACTIONS *
2364              **************************/
2365
2366             if (gmx_mm_any_lt(rsq11,rcutoff2))
2367             {
2368
2369             r11              = _mm_mul_pd(rsq11,rinv11);
2370
2371             /* EWALD ELECTROSTATICS */
2372
2373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2374             ewrt             = _mm_mul_pd(r11,ewtabscale);
2375             ewitab           = _mm_cvttpd_epi32(ewrt);
2376             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2377             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2378             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2379             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2380
2381             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2382
2383             fscal            = felec;
2384
2385             fscal            = _mm_and_pd(fscal,cutoff_mask);
2386
2387             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2388
2389             /* Calculate temporary vectorial force */
2390             tx               = _mm_mul_pd(fscal,dx11);
2391             ty               = _mm_mul_pd(fscal,dy11);
2392             tz               = _mm_mul_pd(fscal,dz11);
2393
2394             /* Update vectorial force */
2395             fix1             = _mm_add_pd(fix1,tx);
2396             fiy1             = _mm_add_pd(fiy1,ty);
2397             fiz1             = _mm_add_pd(fiz1,tz);
2398
2399             fjx1             = _mm_add_pd(fjx1,tx);
2400             fjy1             = _mm_add_pd(fjy1,ty);
2401             fjz1             = _mm_add_pd(fjz1,tz);
2402
2403             }
2404
2405             /**************************
2406              * CALCULATE INTERACTIONS *
2407              **************************/
2408
2409             if (gmx_mm_any_lt(rsq12,rcutoff2))
2410             {
2411
2412             r12              = _mm_mul_pd(rsq12,rinv12);
2413
2414             /* EWALD ELECTROSTATICS */
2415
2416             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2417             ewrt             = _mm_mul_pd(r12,ewtabscale);
2418             ewitab           = _mm_cvttpd_epi32(ewrt);
2419             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2420             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2421             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2422             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2423
2424             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2425
2426             fscal            = felec;
2427
2428             fscal            = _mm_and_pd(fscal,cutoff_mask);
2429
2430             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2431
2432             /* Calculate temporary vectorial force */
2433             tx               = _mm_mul_pd(fscal,dx12);
2434             ty               = _mm_mul_pd(fscal,dy12);
2435             tz               = _mm_mul_pd(fscal,dz12);
2436
2437             /* Update vectorial force */
2438             fix1             = _mm_add_pd(fix1,tx);
2439             fiy1             = _mm_add_pd(fiy1,ty);
2440             fiz1             = _mm_add_pd(fiz1,tz);
2441
2442             fjx2             = _mm_add_pd(fjx2,tx);
2443             fjy2             = _mm_add_pd(fjy2,ty);
2444             fjz2             = _mm_add_pd(fjz2,tz);
2445
2446             }
2447
2448             /**************************
2449              * CALCULATE INTERACTIONS *
2450              **************************/
2451
2452             if (gmx_mm_any_lt(rsq20,rcutoff2))
2453             {
2454
2455             r20              = _mm_mul_pd(rsq20,rinv20);
2456
2457             /* EWALD ELECTROSTATICS */
2458
2459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2460             ewrt             = _mm_mul_pd(r20,ewtabscale);
2461             ewitab           = _mm_cvttpd_epi32(ewrt);
2462             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2463             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2464             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2465             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2466
2467             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2468
2469             fscal            = felec;
2470
2471             fscal            = _mm_and_pd(fscal,cutoff_mask);
2472
2473             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2474
2475             /* Calculate temporary vectorial force */
2476             tx               = _mm_mul_pd(fscal,dx20);
2477             ty               = _mm_mul_pd(fscal,dy20);
2478             tz               = _mm_mul_pd(fscal,dz20);
2479
2480             /* Update vectorial force */
2481             fix2             = _mm_add_pd(fix2,tx);
2482             fiy2             = _mm_add_pd(fiy2,ty);
2483             fiz2             = _mm_add_pd(fiz2,tz);
2484
2485             fjx0             = _mm_add_pd(fjx0,tx);
2486             fjy0             = _mm_add_pd(fjy0,ty);
2487             fjz0             = _mm_add_pd(fjz0,tz);
2488
2489             }
2490
2491             /**************************
2492              * CALCULATE INTERACTIONS *
2493              **************************/
2494
2495             if (gmx_mm_any_lt(rsq21,rcutoff2))
2496             {
2497
2498             r21              = _mm_mul_pd(rsq21,rinv21);
2499
2500             /* EWALD ELECTROSTATICS */
2501
2502             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2503             ewrt             = _mm_mul_pd(r21,ewtabscale);
2504             ewitab           = _mm_cvttpd_epi32(ewrt);
2505             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2506             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2507             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2508             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2509
2510             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2511
2512             fscal            = felec;
2513
2514             fscal            = _mm_and_pd(fscal,cutoff_mask);
2515
2516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2517
2518             /* Calculate temporary vectorial force */
2519             tx               = _mm_mul_pd(fscal,dx21);
2520             ty               = _mm_mul_pd(fscal,dy21);
2521             tz               = _mm_mul_pd(fscal,dz21);
2522
2523             /* Update vectorial force */
2524             fix2             = _mm_add_pd(fix2,tx);
2525             fiy2             = _mm_add_pd(fiy2,ty);
2526             fiz2             = _mm_add_pd(fiz2,tz);
2527
2528             fjx1             = _mm_add_pd(fjx1,tx);
2529             fjy1             = _mm_add_pd(fjy1,ty);
2530             fjz1             = _mm_add_pd(fjz1,tz);
2531
2532             }
2533
2534             /**************************
2535              * CALCULATE INTERACTIONS *
2536              **************************/
2537
2538             if (gmx_mm_any_lt(rsq22,rcutoff2))
2539             {
2540
2541             r22              = _mm_mul_pd(rsq22,rinv22);
2542
2543             /* EWALD ELECTROSTATICS */
2544
2545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2546             ewrt             = _mm_mul_pd(r22,ewtabscale);
2547             ewitab           = _mm_cvttpd_epi32(ewrt);
2548             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2549             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2550             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2551             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2552
2553             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2554
2555             fscal            = felec;
2556
2557             fscal            = _mm_and_pd(fscal,cutoff_mask);
2558
2559             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2560
2561             /* Calculate temporary vectorial force */
2562             tx               = _mm_mul_pd(fscal,dx22);
2563             ty               = _mm_mul_pd(fscal,dy22);
2564             tz               = _mm_mul_pd(fscal,dz22);
2565
2566             /* Update vectorial force */
2567             fix2             = _mm_add_pd(fix2,tx);
2568             fiy2             = _mm_add_pd(fiy2,ty);
2569             fiz2             = _mm_add_pd(fiz2,tz);
2570
2571             fjx2             = _mm_add_pd(fjx2,tx);
2572             fjy2             = _mm_add_pd(fjy2,ty);
2573             fjz2             = _mm_add_pd(fjz2,tz);
2574
2575             }
2576
2577             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2578
2579             /* Inner loop uses 374 flops */
2580         }
2581
2582         /* End of innermost loop */
2583
2584         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2585                                               f+i_coord_offset,fshift+i_shift_offset);
2586
2587         /* Increment number of inner iterations */
2588         inneriter                  += j_index_end - j_index_start;
2589
2590         /* Outer loop uses 18 flops */
2591     }
2592
2593     /* Increment number of outer iterations */
2594     outeriter        += nri;
2595
2596     /* Update outer/inner flops */
2597
2598     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*374);
2599 }