Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128d           one_half = _mm_set1_pd(0.5);
107     __m128d           minus_one = _mm_set1_pd(-1.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = _mm_set1_pd(rcutoff_scalar);
151     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
154     rvdw             = _mm_set1_pd(fr->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _mm_setzero_pd();
183         fiy0             = _mm_setzero_pd();
184         fiz0             = _mm_setzero_pd();
185         fix1             = _mm_setzero_pd();
186         fiy1             = _mm_setzero_pd();
187         fiz1             = _mm_setzero_pd();
188         fix2             = _mm_setzero_pd();
189         fiy2             = _mm_setzero_pd();
190         fiz2             = _mm_setzero_pd();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_pd();
194         vvdwsum          = _mm_setzero_pd();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_pd(ix0,jx0);
212             dy00             = _mm_sub_pd(iy0,jy0);
213             dz00             = _mm_sub_pd(iz0,jz0);
214             dx10             = _mm_sub_pd(ix1,jx0);
215             dy10             = _mm_sub_pd(iy1,jy0);
216             dz10             = _mm_sub_pd(iz1,jz0);
217             dx20             = _mm_sub_pd(ix2,jx0);
218             dy20             = _mm_sub_pd(iy2,jy0);
219             dz20             = _mm_sub_pd(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm_invsqrt_pd(rsq00);
227             rinv10           = gmx_mm_invsqrt_pd(rsq10);
228             rinv20           = gmx_mm_invsqrt_pd(rsq20);
229
230             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
231             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _mm_setzero_pd();
240             fjy0             = _mm_setzero_pd();
241             fjz0             = _mm_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_pd(iq0,jq0);
254             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
257                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
258
259             /* EWALD ELECTROSTATICS */
260
261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
262             ewrt             = _mm_mul_pd(r00,ewtabscale);
263             ewitab           = _mm_cvttpd_epi32(ewrt);
264             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
265             ewitab           = _mm_slli_epi32(ewitab,2);
266             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
267             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
268             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
269             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
270             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
271             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
272             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
273             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
274             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
275             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
276
277             /* Analytical LJ-PME */
278             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
279             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
280             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
281             exponent         = gmx_simd_exp_d(ewcljrsq);
282             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
283             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
284             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
285             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
286             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
287             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
288                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
289             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
290             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
291
292             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velec            = _mm_and_pd(velec,cutoff_mask);
296             velecsum         = _mm_add_pd(velecsum,velec);
297             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
298             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
299
300             fscal            = _mm_add_pd(felec,fvdw);
301
302             fscal            = _mm_and_pd(fscal,cutoff_mask);
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm_mul_pd(fscal,dx00);
306             ty               = _mm_mul_pd(fscal,dy00);
307             tz               = _mm_mul_pd(fscal,dz00);
308
309             /* Update vectorial force */
310             fix0             = _mm_add_pd(fix0,tx);
311             fiy0             = _mm_add_pd(fiy0,ty);
312             fiz0             = _mm_add_pd(fiz0,tz);
313
314             fjx0             = _mm_add_pd(fjx0,tx);
315             fjy0             = _mm_add_pd(fjy0,ty);
316             fjz0             = _mm_add_pd(fjz0,tz);
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_mm_any_lt(rsq10,rcutoff2))
325             {
326
327             r10              = _mm_mul_pd(rsq10,rinv10);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _mm_mul_pd(iq1,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm_mul_pd(r10,ewtabscale);
336             ewitab           = _mm_cvttpd_epi32(ewrt);
337             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
341             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
342             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
343             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
344             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
345             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
346             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
347             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
348             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
349
350             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velec            = _mm_and_pd(velec,cutoff_mask);
354             velecsum         = _mm_add_pd(velecsum,velec);
355
356             fscal            = felec;
357
358             fscal            = _mm_and_pd(fscal,cutoff_mask);
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_pd(fscal,dx10);
362             ty               = _mm_mul_pd(fscal,dy10);
363             tz               = _mm_mul_pd(fscal,dz10);
364
365             /* Update vectorial force */
366             fix1             = _mm_add_pd(fix1,tx);
367             fiy1             = _mm_add_pd(fiy1,ty);
368             fiz1             = _mm_add_pd(fiz1,tz);
369
370             fjx0             = _mm_add_pd(fjx0,tx);
371             fjy0             = _mm_add_pd(fjy0,ty);
372             fjz0             = _mm_add_pd(fjz0,tz);
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (gmx_mm_any_lt(rsq20,rcutoff2))
381             {
382
383             r20              = _mm_mul_pd(rsq20,rinv20);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq20             = _mm_mul_pd(iq2,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_pd(r20,ewtabscale);
392             ewitab           = _mm_cvttpd_epi32(ewrt);
393             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
397             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
398             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
399             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
400             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
401             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
402             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
403             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
404             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
405
406             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm_and_pd(velec,cutoff_mask);
410             velecsum         = _mm_add_pd(velecsum,velec);
411
412             fscal            = felec;
413
414             fscal            = _mm_and_pd(fscal,cutoff_mask);
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm_mul_pd(fscal,dx20);
418             ty               = _mm_mul_pd(fscal,dy20);
419             tz               = _mm_mul_pd(fscal,dz20);
420
421             /* Update vectorial force */
422             fix2             = _mm_add_pd(fix2,tx);
423             fiy2             = _mm_add_pd(fiy2,ty);
424             fiz2             = _mm_add_pd(fiz2,tz);
425
426             fjx0             = _mm_add_pd(fjx0,tx);
427             fjy0             = _mm_add_pd(fjy0,ty);
428             fjz0             = _mm_add_pd(fjz0,tz);
429
430             }
431
432             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
433
434             /* Inner loop uses 176 flops */
435         }
436
437         if(jidx<j_index_end)
438         {
439
440             jnrA             = jjnr[jidx];
441             j_coord_offsetA  = DIM*jnrA;
442
443             /* load j atom coordinates */
444             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_pd(ix0,jx0);
449             dy00             = _mm_sub_pd(iy0,jy0);
450             dz00             = _mm_sub_pd(iz0,jz0);
451             dx10             = _mm_sub_pd(ix1,jx0);
452             dy10             = _mm_sub_pd(iy1,jy0);
453             dz10             = _mm_sub_pd(iz1,jz0);
454             dx20             = _mm_sub_pd(ix2,jx0);
455             dy20             = _mm_sub_pd(iy2,jy0);
456             dz20             = _mm_sub_pd(iz2,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
462
463             rinv00           = gmx_mm_invsqrt_pd(rsq00);
464             rinv10           = gmx_mm_invsqrt_pd(rsq10);
465             rinv20           = gmx_mm_invsqrt_pd(rsq20);
466
467             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
468             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
469             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
470
471             /* Load parameters for j particles */
472             jq0              = _mm_load_sd(charge+jnrA+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474
475             fjx0             = _mm_setzero_pd();
476             fjy0             = _mm_setzero_pd();
477             fjz0             = _mm_setzero_pd();
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             if (gmx_mm_any_lt(rsq00,rcutoff2))
484             {
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq00             = _mm_mul_pd(iq0,jq0);
490             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
491
492             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
493
494             /* EWALD ELECTROSTATICS */
495
496             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497             ewrt             = _mm_mul_pd(r00,ewtabscale);
498             ewitab           = _mm_cvttpd_epi32(ewrt);
499             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
500             ewitab           = _mm_slli_epi32(ewitab,2);
501             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
502             ewtabD           = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
504             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
505             ewtabFn          = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
507             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
508             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
509             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
510             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
511
512             /* Analytical LJ-PME */
513             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
514             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
515             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
516             exponent         = gmx_simd_exp_d(ewcljrsq);
517             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
518             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
519             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
520             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
521             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
522             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
523                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
524             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
525             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
526
527             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm_and_pd(velec,cutoff_mask);
531             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
532             velecsum         = _mm_add_pd(velecsum,velec);
533             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
534             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
535             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
536
537             fscal            = _mm_add_pd(felec,fvdw);
538
539             fscal            = _mm_and_pd(fscal,cutoff_mask);
540
541             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm_mul_pd(fscal,dx00);
545             ty               = _mm_mul_pd(fscal,dy00);
546             tz               = _mm_mul_pd(fscal,dz00);
547
548             /* Update vectorial force */
549             fix0             = _mm_add_pd(fix0,tx);
550             fiy0             = _mm_add_pd(fiy0,ty);
551             fiz0             = _mm_add_pd(fiz0,tz);
552
553             fjx0             = _mm_add_pd(fjx0,tx);
554             fjy0             = _mm_add_pd(fjy0,ty);
555             fjz0             = _mm_add_pd(fjz0,tz);
556
557             }
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             if (gmx_mm_any_lt(rsq10,rcutoff2))
564             {
565
566             r10              = _mm_mul_pd(rsq10,rinv10);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq10             = _mm_mul_pd(iq1,jq0);
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574             ewrt             = _mm_mul_pd(r10,ewtabscale);
575             ewitab           = _mm_cvttpd_epi32(ewrt);
576             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
577             ewitab           = _mm_slli_epi32(ewitab,2);
578             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
579             ewtabD           = _mm_setzero_pd();
580             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
581             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
582             ewtabFn          = _mm_setzero_pd();
583             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
584             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
585             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
586             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
587             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
588
589             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_and_pd(velec,cutoff_mask);
593             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
594             velecsum         = _mm_add_pd(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_and_pd(fscal,cutoff_mask);
599
600             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm_mul_pd(fscal,dx10);
604             ty               = _mm_mul_pd(fscal,dy10);
605             tz               = _mm_mul_pd(fscal,dz10);
606
607             /* Update vectorial force */
608             fix1             = _mm_add_pd(fix1,tx);
609             fiy1             = _mm_add_pd(fiy1,ty);
610             fiz1             = _mm_add_pd(fiz1,tz);
611
612             fjx0             = _mm_add_pd(fjx0,tx);
613             fjy0             = _mm_add_pd(fjy0,ty);
614             fjz0             = _mm_add_pd(fjz0,tz);
615
616             }
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             if (gmx_mm_any_lt(rsq20,rcutoff2))
623             {
624
625             r20              = _mm_mul_pd(rsq20,rinv20);
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq20             = _mm_mul_pd(iq2,jq0);
629
630             /* EWALD ELECTROSTATICS */
631
632             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
633             ewrt             = _mm_mul_pd(r20,ewtabscale);
634             ewitab           = _mm_cvttpd_epi32(ewrt);
635             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
636             ewitab           = _mm_slli_epi32(ewitab,2);
637             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
638             ewtabD           = _mm_setzero_pd();
639             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
640             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
641             ewtabFn          = _mm_setzero_pd();
642             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
643             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
644             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
645             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
646             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
647
648             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_and_pd(velec,cutoff_mask);
652             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
653             velecsum         = _mm_add_pd(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_pd(fscal,cutoff_mask);
658
659             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm_mul_pd(fscal,dx20);
663             ty               = _mm_mul_pd(fscal,dy20);
664             tz               = _mm_mul_pd(fscal,dz20);
665
666             /* Update vectorial force */
667             fix2             = _mm_add_pd(fix2,tx);
668             fiy2             = _mm_add_pd(fiy2,ty);
669             fiz2             = _mm_add_pd(fiz2,tz);
670
671             fjx0             = _mm_add_pd(fjx0,tx);
672             fjy0             = _mm_add_pd(fjy0,ty);
673             fjz0             = _mm_add_pd(fjz0,tz);
674
675             }
676
677             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
678
679             /* Inner loop uses 176 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         ggid                        = gid[iidx];
688         /* Update potential energies */
689         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
690         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 20 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*176);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_double
707  * Electrostatics interaction: Ewald
708  * VdW interaction:            LJEwald
709  * Geometry:                   Water3-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_double
714                     (t_nblist                    * gmx_restrict       nlist,
715                      rvec                        * gmx_restrict          xx,
716                      rvec                        * gmx_restrict          ff,
717                      t_forcerec                  * gmx_restrict          fr,
718                      t_mdatoms                   * gmx_restrict     mdatoms,
719                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720                      t_nrnb                      * gmx_restrict        nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
723      * just 0 for non-waters.
724      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB;
730     int              j_coord_offsetA,j_coord_offsetB;
731     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
732     real             rcutoff_scalar;
733     real             *shiftvec,*fshift,*x,*f;
734     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735     int              vdwioffset0;
736     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737     int              vdwioffset1;
738     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739     int              vdwioffset2;
740     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741     int              vdwjidx0A,vdwjidx0B;
742     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
743     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
744     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
745     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
746     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
747     real             *charge;
748     int              nvdwtype;
749     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
750     int              *vdwtype;
751     real             *vdwparam;
752     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
753     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
754     __m128d           c6grid_00;
755     __m128d           c6grid_10;
756     __m128d           c6grid_20;
757     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
758     real             *vdwgridparam;
759     __m128d           one_half = _mm_set1_pd(0.5);
760     __m128d           minus_one = _mm_set1_pd(-1.0);
761     __m128i          ewitab;
762     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
763     real             *ewtab;
764     __m128d          dummy_mask,cutoff_mask;
765     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
766     __m128d          one     = _mm_set1_pd(1.0);
767     __m128d          two     = _mm_set1_pd(2.0);
768     x                = xx[0];
769     f                = ff[0];
770
771     nri              = nlist->nri;
772     iinr             = nlist->iinr;
773     jindex           = nlist->jindex;
774     jjnr             = nlist->jjnr;
775     shiftidx         = nlist->shift;
776     gid              = nlist->gid;
777     shiftvec         = fr->shift_vec[0];
778     fshift           = fr->fshift[0];
779     facel            = _mm_set1_pd(fr->epsfac);
780     charge           = mdatoms->chargeA;
781     nvdwtype         = fr->ntype;
782     vdwparam         = fr->nbfp;
783     vdwtype          = mdatoms->typeA;
784     vdwgridparam     = fr->ljpme_c6grid;
785     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
786     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
787     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
788
789     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
790     ewtab            = fr->ic->tabq_coul_F;
791     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
792     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
793
794     /* Setup water-specific parameters */
795     inr              = nlist->iinr[0];
796     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
797     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
798     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
799     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
800
801     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
802     rcutoff_scalar   = fr->rcoulomb;
803     rcutoff          = _mm_set1_pd(rcutoff_scalar);
804     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
805
806     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
807     rvdw             = _mm_set1_pd(fr->rvdw);
808
809     /* Avoid stupid compiler warnings */
810     jnrA = jnrB = 0;
811     j_coord_offsetA = 0;
812     j_coord_offsetB = 0;
813
814     outeriter        = 0;
815     inneriter        = 0;
816
817     /* Start outer loop over neighborlists */
818     for(iidx=0; iidx<nri; iidx++)
819     {
820         /* Load shift vector for this list */
821         i_shift_offset   = DIM*shiftidx[iidx];
822
823         /* Load limits for loop over neighbors */
824         j_index_start    = jindex[iidx];
825         j_index_end      = jindex[iidx+1];
826
827         /* Get outer coordinate index */
828         inr              = iinr[iidx];
829         i_coord_offset   = DIM*inr;
830
831         /* Load i particle coords and add shift vector */
832         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
833                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
834
835         fix0             = _mm_setzero_pd();
836         fiy0             = _mm_setzero_pd();
837         fiz0             = _mm_setzero_pd();
838         fix1             = _mm_setzero_pd();
839         fiy1             = _mm_setzero_pd();
840         fiz1             = _mm_setzero_pd();
841         fix2             = _mm_setzero_pd();
842         fiy2             = _mm_setzero_pd();
843         fiz2             = _mm_setzero_pd();
844
845         /* Start inner kernel loop */
846         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
847         {
848
849             /* Get j neighbor index, and coordinate index */
850             jnrA             = jjnr[jidx];
851             jnrB             = jjnr[jidx+1];
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854
855             /* load j atom coordinates */
856             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
857                                               &jx0,&jy0,&jz0);
858
859             /* Calculate displacement vector */
860             dx00             = _mm_sub_pd(ix0,jx0);
861             dy00             = _mm_sub_pd(iy0,jy0);
862             dz00             = _mm_sub_pd(iz0,jz0);
863             dx10             = _mm_sub_pd(ix1,jx0);
864             dy10             = _mm_sub_pd(iy1,jy0);
865             dz10             = _mm_sub_pd(iz1,jz0);
866             dx20             = _mm_sub_pd(ix2,jx0);
867             dy20             = _mm_sub_pd(iy2,jy0);
868             dz20             = _mm_sub_pd(iz2,jz0);
869
870             /* Calculate squared distance and things based on it */
871             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
872             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
873             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
874
875             rinv00           = gmx_mm_invsqrt_pd(rsq00);
876             rinv10           = gmx_mm_invsqrt_pd(rsq10);
877             rinv20           = gmx_mm_invsqrt_pd(rsq20);
878
879             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
880             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
881             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886             vdwjidx0B        = 2*vdwtype[jnrB+0];
887
888             fjx0             = _mm_setzero_pd();
889             fjy0             = _mm_setzero_pd();
890             fjz0             = _mm_setzero_pd();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             if (gmx_mm_any_lt(rsq00,rcutoff2))
897             {
898
899             r00              = _mm_mul_pd(rsq00,rinv00);
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq00             = _mm_mul_pd(iq0,jq0);
903             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
904                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
905             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
906                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
907
908             /* EWALD ELECTROSTATICS */
909
910             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911             ewrt             = _mm_mul_pd(r00,ewtabscale);
912             ewitab           = _mm_cvttpd_epi32(ewrt);
913             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
914             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
915                                          &ewtabF,&ewtabFn);
916             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
917             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
918
919             /* Analytical LJ-PME */
920             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
921             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
922             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
923             exponent         = gmx_simd_exp_d(ewcljrsq);
924             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
925             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
926             /* f6A = 6 * C6grid * (1 - poly) */
927             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
928             /* f6B = C6grid * exponent * beta^6 */
929             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
930             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
931             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
932
933             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
934
935             fscal            = _mm_add_pd(felec,fvdw);
936
937             fscal            = _mm_and_pd(fscal,cutoff_mask);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm_mul_pd(fscal,dx00);
941             ty               = _mm_mul_pd(fscal,dy00);
942             tz               = _mm_mul_pd(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm_add_pd(fix0,tx);
946             fiy0             = _mm_add_pd(fiy0,ty);
947             fiz0             = _mm_add_pd(fiz0,tz);
948
949             fjx0             = _mm_add_pd(fjx0,tx);
950             fjy0             = _mm_add_pd(fjy0,ty);
951             fjz0             = _mm_add_pd(fjz0,tz);
952
953             }
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             if (gmx_mm_any_lt(rsq10,rcutoff2))
960             {
961
962             r10              = _mm_mul_pd(rsq10,rinv10);
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq10             = _mm_mul_pd(iq1,jq0);
966
967             /* EWALD ELECTROSTATICS */
968
969             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
970             ewrt             = _mm_mul_pd(r10,ewtabscale);
971             ewitab           = _mm_cvttpd_epi32(ewrt);
972             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
973             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
974                                          &ewtabF,&ewtabFn);
975             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
976             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
977
978             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
979
980             fscal            = felec;
981
982             fscal            = _mm_and_pd(fscal,cutoff_mask);
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm_mul_pd(fscal,dx10);
986             ty               = _mm_mul_pd(fscal,dy10);
987             tz               = _mm_mul_pd(fscal,dz10);
988
989             /* Update vectorial force */
990             fix1             = _mm_add_pd(fix1,tx);
991             fiy1             = _mm_add_pd(fiy1,ty);
992             fiz1             = _mm_add_pd(fiz1,tz);
993
994             fjx0             = _mm_add_pd(fjx0,tx);
995             fjy0             = _mm_add_pd(fjy0,ty);
996             fjz0             = _mm_add_pd(fjz0,tz);
997
998             }
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             if (gmx_mm_any_lt(rsq20,rcutoff2))
1005             {
1006
1007             r20              = _mm_mul_pd(rsq20,rinv20);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq20             = _mm_mul_pd(iq2,jq0);
1011
1012             /* EWALD ELECTROSTATICS */
1013
1014             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1015             ewrt             = _mm_mul_pd(r20,ewtabscale);
1016             ewitab           = _mm_cvttpd_epi32(ewrt);
1017             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1018             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1019                                          &ewtabF,&ewtabFn);
1020             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1021             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1022
1023             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1024
1025             fscal            = felec;
1026
1027             fscal            = _mm_and_pd(fscal,cutoff_mask);
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm_mul_pd(fscal,dx20);
1031             ty               = _mm_mul_pd(fscal,dy20);
1032             tz               = _mm_mul_pd(fscal,dz20);
1033
1034             /* Update vectorial force */
1035             fix2             = _mm_add_pd(fix2,tx);
1036             fiy2             = _mm_add_pd(fiy2,ty);
1037             fiz2             = _mm_add_pd(fiz2,tz);
1038
1039             fjx0             = _mm_add_pd(fjx0,tx);
1040             fjy0             = _mm_add_pd(fjy0,ty);
1041             fjz0             = _mm_add_pd(fjz0,tz);
1042
1043             }
1044
1045             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1046
1047             /* Inner loop uses 143 flops */
1048         }
1049
1050         if(jidx<j_index_end)
1051         {
1052
1053             jnrA             = jjnr[jidx];
1054             j_coord_offsetA  = DIM*jnrA;
1055
1056             /* load j atom coordinates */
1057             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1058                                               &jx0,&jy0,&jz0);
1059
1060             /* Calculate displacement vector */
1061             dx00             = _mm_sub_pd(ix0,jx0);
1062             dy00             = _mm_sub_pd(iy0,jy0);
1063             dz00             = _mm_sub_pd(iz0,jz0);
1064             dx10             = _mm_sub_pd(ix1,jx0);
1065             dy10             = _mm_sub_pd(iy1,jy0);
1066             dz10             = _mm_sub_pd(iz1,jz0);
1067             dx20             = _mm_sub_pd(ix2,jx0);
1068             dy20             = _mm_sub_pd(iy2,jy0);
1069             dz20             = _mm_sub_pd(iz2,jz0);
1070
1071             /* Calculate squared distance and things based on it */
1072             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1073             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1074             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1075
1076             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1077             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1078             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1079
1080             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1081             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1082             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1083
1084             /* Load parameters for j particles */
1085             jq0              = _mm_load_sd(charge+jnrA+0);
1086             vdwjidx0A        = 2*vdwtype[jnrA+0];
1087
1088             fjx0             = _mm_setzero_pd();
1089             fjy0             = _mm_setzero_pd();
1090             fjz0             = _mm_setzero_pd();
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq00,rcutoff2))
1097             {
1098
1099             r00              = _mm_mul_pd(rsq00,rinv00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq00             = _mm_mul_pd(iq0,jq0);
1103             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1104
1105             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _mm_mul_pd(r00,ewtabscale);
1111             ewitab           = _mm_cvttpd_epi32(ewrt);
1112             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1113             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1114             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1115             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1116
1117             /* Analytical LJ-PME */
1118             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1119             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1120             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1121             exponent         = gmx_simd_exp_d(ewcljrsq);
1122             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1123             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1124             /* f6A = 6 * C6grid * (1 - poly) */
1125             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1126             /* f6B = C6grid * exponent * beta^6 */
1127             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1128             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1129             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1130
1131             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1132
1133             fscal            = _mm_add_pd(felec,fvdw);
1134
1135             fscal            = _mm_and_pd(fscal,cutoff_mask);
1136
1137             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm_mul_pd(fscal,dx00);
1141             ty               = _mm_mul_pd(fscal,dy00);
1142             tz               = _mm_mul_pd(fscal,dz00);
1143
1144             /* Update vectorial force */
1145             fix0             = _mm_add_pd(fix0,tx);
1146             fiy0             = _mm_add_pd(fiy0,ty);
1147             fiz0             = _mm_add_pd(fiz0,tz);
1148
1149             fjx0             = _mm_add_pd(fjx0,tx);
1150             fjy0             = _mm_add_pd(fjy0,ty);
1151             fjz0             = _mm_add_pd(fjz0,tz);
1152
1153             }
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             if (gmx_mm_any_lt(rsq10,rcutoff2))
1160             {
1161
1162             r10              = _mm_mul_pd(rsq10,rinv10);
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq10             = _mm_mul_pd(iq1,jq0);
1166
1167             /* EWALD ELECTROSTATICS */
1168
1169             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1170             ewrt             = _mm_mul_pd(r10,ewtabscale);
1171             ewitab           = _mm_cvttpd_epi32(ewrt);
1172             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1173             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1174             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1175             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1176
1177             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1178
1179             fscal            = felec;
1180
1181             fscal            = _mm_and_pd(fscal,cutoff_mask);
1182
1183             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm_mul_pd(fscal,dx10);
1187             ty               = _mm_mul_pd(fscal,dy10);
1188             tz               = _mm_mul_pd(fscal,dz10);
1189
1190             /* Update vectorial force */
1191             fix1             = _mm_add_pd(fix1,tx);
1192             fiy1             = _mm_add_pd(fiy1,ty);
1193             fiz1             = _mm_add_pd(fiz1,tz);
1194
1195             fjx0             = _mm_add_pd(fjx0,tx);
1196             fjy0             = _mm_add_pd(fjy0,ty);
1197             fjz0             = _mm_add_pd(fjz0,tz);
1198
1199             }
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             if (gmx_mm_any_lt(rsq20,rcutoff2))
1206             {
1207
1208             r20              = _mm_mul_pd(rsq20,rinv20);
1209
1210             /* Compute parameters for interactions between i and j atoms */
1211             qq20             = _mm_mul_pd(iq2,jq0);
1212
1213             /* EWALD ELECTROSTATICS */
1214
1215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1216             ewrt             = _mm_mul_pd(r20,ewtabscale);
1217             ewitab           = _mm_cvttpd_epi32(ewrt);
1218             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1219             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1220             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1221             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1222
1223             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1224
1225             fscal            = felec;
1226
1227             fscal            = _mm_and_pd(fscal,cutoff_mask);
1228
1229             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1230
1231             /* Calculate temporary vectorial force */
1232             tx               = _mm_mul_pd(fscal,dx20);
1233             ty               = _mm_mul_pd(fscal,dy20);
1234             tz               = _mm_mul_pd(fscal,dz20);
1235
1236             /* Update vectorial force */
1237             fix2             = _mm_add_pd(fix2,tx);
1238             fiy2             = _mm_add_pd(fiy2,ty);
1239             fiz2             = _mm_add_pd(fiz2,tz);
1240
1241             fjx0             = _mm_add_pd(fjx0,tx);
1242             fjy0             = _mm_add_pd(fjy0,ty);
1243             fjz0             = _mm_add_pd(fjz0,tz);
1244
1245             }
1246
1247             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1248
1249             /* Inner loop uses 143 flops */
1250         }
1251
1252         /* End of innermost loop */
1253
1254         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1255                                               f+i_coord_offset,fshift+i_shift_offset);
1256
1257         /* Increment number of inner iterations */
1258         inneriter                  += j_index_end - j_index_start;
1259
1260         /* Outer loop uses 18 flops */
1261     }
1262
1263     /* Increment number of outer iterations */
1264     outeriter        += nri;
1265
1266     /* Update outer/inner flops */
1267
1268     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1269 }