Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d           c6grid_00;
100     __m128d           c6grid_10;
101     __m128d           c6grid_20;
102     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     real             *vdwgridparam;
104     __m128d           one_half = _mm_set1_pd(0.5);
105     __m128d           minus_one = _mm_set1_pd(-1.0);
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
131     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
132     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
133
134     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
147     rcutoff_scalar   = fr->rcoulomb;
148     rcutoff          = _mm_set1_pd(rcutoff_scalar);
149     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
150
151     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
152     rvdw             = _mm_set1_pd(fr->rvdw);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_pd();
181         fiy0             = _mm_setzero_pd();
182         fiz0             = _mm_setzero_pd();
183         fix1             = _mm_setzero_pd();
184         fiy1             = _mm_setzero_pd();
185         fiz1             = _mm_setzero_pd();
186         fix2             = _mm_setzero_pd();
187         fiy2             = _mm_setzero_pd();
188         fiz2             = _mm_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_pd();
192         vvdwsum          = _mm_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_pd(ix0,jx0);
210             dy00             = _mm_sub_pd(iy0,jy0);
211             dz00             = _mm_sub_pd(iz0,jz0);
212             dx10             = _mm_sub_pd(ix1,jx0);
213             dy10             = _mm_sub_pd(iy1,jy0);
214             dz10             = _mm_sub_pd(iz1,jz0);
215             dx20             = _mm_sub_pd(ix2,jx0);
216             dy20             = _mm_sub_pd(iy2,jy0);
217             dz20             = _mm_sub_pd(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227
228             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
229             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _mm_setzero_pd();
238             fjy0             = _mm_setzero_pd();
239             fjz0             = _mm_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm_mul_pd(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_pd(iq0,jq0);
252             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
255                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
256
257             /* EWALD ELECTROSTATICS */
258
259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
260             ewrt             = _mm_mul_pd(r00,ewtabscale);
261             ewitab           = _mm_cvttpd_epi32(ewrt);
262             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
263             ewitab           = _mm_slli_epi32(ewitab,2);
264             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
265             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
266             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
267             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
268             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
270             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
271             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
272             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
273             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
274
275             /* Analytical LJ-PME */
276             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
277             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
278             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
279             exponent         = gmx_simd_exp_d(ewcljrsq);
280             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
281             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
282             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
283             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
284             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
286                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
287             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
288             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
289
290             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velec            = _mm_and_pd(velec,cutoff_mask);
294             velecsum         = _mm_add_pd(velecsum,velec);
295             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
296             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
297
298             fscal            = _mm_add_pd(felec,fvdw);
299
300             fscal            = _mm_and_pd(fscal,cutoff_mask);
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_pd(fscal,dx00);
304             ty               = _mm_mul_pd(fscal,dy00);
305             tz               = _mm_mul_pd(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm_add_pd(fix0,tx);
309             fiy0             = _mm_add_pd(fiy0,ty);
310             fiz0             = _mm_add_pd(fiz0,tz);
311
312             fjx0             = _mm_add_pd(fjx0,tx);
313             fjy0             = _mm_add_pd(fjy0,ty);
314             fjz0             = _mm_add_pd(fjz0,tz);
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_mm_any_lt(rsq10,rcutoff2))
323             {
324
325             r10              = _mm_mul_pd(rsq10,rinv10);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq10             = _mm_mul_pd(iq1,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm_mul_pd(r10,ewtabscale);
334             ewitab           = _mm_cvttpd_epi32(ewrt);
335             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
336             ewitab           = _mm_slli_epi32(ewitab,2);
337             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
338             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
339             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
340             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
341             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
342             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
343             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
344             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
345             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
346             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
347
348             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _mm_and_pd(velec,cutoff_mask);
352             velecsum         = _mm_add_pd(velecsum,velec);
353
354             fscal            = felec;
355
356             fscal            = _mm_and_pd(fscal,cutoff_mask);
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm_mul_pd(fscal,dx10);
360             ty               = _mm_mul_pd(fscal,dy10);
361             tz               = _mm_mul_pd(fscal,dz10);
362
363             /* Update vectorial force */
364             fix1             = _mm_add_pd(fix1,tx);
365             fiy1             = _mm_add_pd(fiy1,ty);
366             fiz1             = _mm_add_pd(fiz1,tz);
367
368             fjx0             = _mm_add_pd(fjx0,tx);
369             fjy0             = _mm_add_pd(fjy0,ty);
370             fjz0             = _mm_add_pd(fjz0,tz);
371
372             }
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm_any_lt(rsq20,rcutoff2))
379             {
380
381             r20              = _mm_mul_pd(rsq20,rinv20);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq20             = _mm_mul_pd(iq2,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm_mul_pd(r20,ewtabscale);
390             ewitab           = _mm_cvttpd_epi32(ewrt);
391             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
392             ewitab           = _mm_slli_epi32(ewitab,2);
393             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
394             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
395             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
396             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
397             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
398             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
399             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
400             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
401             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
402             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
403
404             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_and_pd(velec,cutoff_mask);
408             velecsum         = _mm_add_pd(velecsum,velec);
409
410             fscal            = felec;
411
412             fscal            = _mm_and_pd(fscal,cutoff_mask);
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm_mul_pd(fscal,dx20);
416             ty               = _mm_mul_pd(fscal,dy20);
417             tz               = _mm_mul_pd(fscal,dz20);
418
419             /* Update vectorial force */
420             fix2             = _mm_add_pd(fix2,tx);
421             fiy2             = _mm_add_pd(fiy2,ty);
422             fiz2             = _mm_add_pd(fiz2,tz);
423
424             fjx0             = _mm_add_pd(fjx0,tx);
425             fjy0             = _mm_add_pd(fjy0,ty);
426             fjz0             = _mm_add_pd(fjz0,tz);
427
428             }
429
430             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 176 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             jnrA             = jjnr[jidx];
439             j_coord_offsetA  = DIM*jnrA;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
443                                               &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm_sub_pd(ix0,jx0);
447             dy00             = _mm_sub_pd(iy0,jy0);
448             dz00             = _mm_sub_pd(iz0,jz0);
449             dx10             = _mm_sub_pd(ix1,jx0);
450             dy10             = _mm_sub_pd(iy1,jy0);
451             dz10             = _mm_sub_pd(iz1,jz0);
452             dx20             = _mm_sub_pd(ix2,jx0);
453             dy20             = _mm_sub_pd(iy2,jy0);
454             dz20             = _mm_sub_pd(iz2,jz0);
455
456             /* Calculate squared distance and things based on it */
457             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
458             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
459             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
460
461             rinv00           = gmx_mm_invsqrt_pd(rsq00);
462             rinv10           = gmx_mm_invsqrt_pd(rsq10);
463             rinv20           = gmx_mm_invsqrt_pd(rsq20);
464
465             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
466             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
467             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
468
469             /* Load parameters for j particles */
470             jq0              = _mm_load_sd(charge+jnrA+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm_any_lt(rsq00,rcutoff2))
482             {
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq00             = _mm_mul_pd(iq0,jq0);
488             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
489
490             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
491
492             /* EWALD ELECTROSTATICS */
493
494             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
495             ewrt             = _mm_mul_pd(r00,ewtabscale);
496             ewitab           = _mm_cvttpd_epi32(ewrt);
497             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
498             ewitab           = _mm_slli_epi32(ewitab,2);
499             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
500             ewtabD           = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
502             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
503             ewtabFn          = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
505             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
506             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
507             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
508             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
509
510             /* Analytical LJ-PME */
511             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
512             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
513             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
514             exponent         = gmx_simd_exp_d(ewcljrsq);
515             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
516             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
517             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
518             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
519             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
520             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
521                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
522             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
523             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
524
525             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm_and_pd(velec,cutoff_mask);
529             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
530             velecsum         = _mm_add_pd(velecsum,velec);
531             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
532             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
533             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
534
535             fscal            = _mm_add_pd(felec,fvdw);
536
537             fscal            = _mm_and_pd(fscal,cutoff_mask);
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_pd(fscal,dx00);
543             ty               = _mm_mul_pd(fscal,dy00);
544             tz               = _mm_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_pd(fix0,tx);
548             fiy0             = _mm_add_pd(fiy0,ty);
549             fiz0             = _mm_add_pd(fiz0,tz);
550
551             fjx0             = _mm_add_pd(fjx0,tx);
552             fjy0             = _mm_add_pd(fjy0,ty);
553             fjz0             = _mm_add_pd(fjz0,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq10,rcutoff2))
562             {
563
564             r10              = _mm_mul_pd(rsq10,rinv10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_pd(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_pd(r10,ewtabscale);
573             ewitab           = _mm_cvttpd_epi32(ewrt);
574             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
579             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
580             ewtabFn          = _mm_setzero_pd();
581             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
582             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
583             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
584             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
585             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
586
587             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
588
589             /* Update potential sum for this i atom from the interaction with this j atom. */
590             velec            = _mm_and_pd(velec,cutoff_mask);
591             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
592             velecsum         = _mm_add_pd(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_and_pd(fscal,cutoff_mask);
597
598             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_pd(fscal,dx10);
602             ty               = _mm_mul_pd(fscal,dy10);
603             tz               = _mm_mul_pd(fscal,dz10);
604
605             /* Update vectorial force */
606             fix1             = _mm_add_pd(fix1,tx);
607             fiy1             = _mm_add_pd(fiy1,ty);
608             fiz1             = _mm_add_pd(fiz1,tz);
609
610             fjx0             = _mm_add_pd(fjx0,tx);
611             fjy0             = _mm_add_pd(fjy0,ty);
612             fjz0             = _mm_add_pd(fjz0,tz);
613
614             }
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             if (gmx_mm_any_lt(rsq20,rcutoff2))
621             {
622
623             r20              = _mm_mul_pd(rsq20,rinv20);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq20             = _mm_mul_pd(iq2,jq0);
627
628             /* EWALD ELECTROSTATICS */
629
630             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
631             ewrt             = _mm_mul_pd(r20,ewtabscale);
632             ewitab           = _mm_cvttpd_epi32(ewrt);
633             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
634             ewitab           = _mm_slli_epi32(ewitab,2);
635             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
636             ewtabD           = _mm_setzero_pd();
637             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
638             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
639             ewtabFn          = _mm_setzero_pd();
640             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
641             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
642             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
643             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
644             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
645
646             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_and_pd(velec,cutoff_mask);
650             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
651             velecsum         = _mm_add_pd(velecsum,velec);
652
653             fscal            = felec;
654
655             fscal            = _mm_and_pd(fscal,cutoff_mask);
656
657             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm_mul_pd(fscal,dx20);
661             ty               = _mm_mul_pd(fscal,dy20);
662             tz               = _mm_mul_pd(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm_add_pd(fix2,tx);
666             fiy2             = _mm_add_pd(fiy2,ty);
667             fiz2             = _mm_add_pd(fiz2,tz);
668
669             fjx0             = _mm_add_pd(fjx0,tx);
670             fjy0             = _mm_add_pd(fjy0,ty);
671             fjz0             = _mm_add_pd(fjz0,tz);
672
673             }
674
675             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
676
677             /* Inner loop uses 176 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         ggid                        = gid[iidx];
686         /* Update potential energies */
687         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
688         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
689
690         /* Increment number of inner iterations */
691         inneriter                  += j_index_end - j_index_start;
692
693         /* Outer loop uses 20 flops */
694     }
695
696     /* Increment number of outer iterations */
697     outeriter        += nri;
698
699     /* Update outer/inner flops */
700
701     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*176);
702 }
703 /*
704  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_double
705  * Electrostatics interaction: Ewald
706  * VdW interaction:            LJEwald
707  * Geometry:                   Water3-Particle
708  * Calculate force/pot:        Force
709  */
710 void
711 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_double
712                     (t_nblist                    * gmx_restrict       nlist,
713                      rvec                        * gmx_restrict          xx,
714                      rvec                        * gmx_restrict          ff,
715                      t_forcerec                  * gmx_restrict          fr,
716                      t_mdatoms                   * gmx_restrict     mdatoms,
717                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
718                      t_nrnb                      * gmx_restrict        nrnb)
719 {
720     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
721      * just 0 for non-waters.
722      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
723      * jnr indices corresponding to data put in the four positions in the SIMD register.
724      */
725     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
726     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
727     int              jnrA,jnrB;
728     int              j_coord_offsetA,j_coord_offsetB;
729     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
730     real             rcutoff_scalar;
731     real             *shiftvec,*fshift,*x,*f;
732     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
733     int              vdwioffset0;
734     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
735     int              vdwioffset1;
736     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
737     int              vdwioffset2;
738     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
739     int              vdwjidx0A,vdwjidx0B;
740     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
742     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
743     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
744     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
745     real             *charge;
746     int              nvdwtype;
747     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
748     int              *vdwtype;
749     real             *vdwparam;
750     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
751     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
752     __m128d           c6grid_00;
753     __m128d           c6grid_10;
754     __m128d           c6grid_20;
755     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
756     real             *vdwgridparam;
757     __m128d           one_half = _mm_set1_pd(0.5);
758     __m128d           minus_one = _mm_set1_pd(-1.0);
759     __m128i          ewitab;
760     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
761     real             *ewtab;
762     __m128d          dummy_mask,cutoff_mask;
763     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
764     __m128d          one     = _mm_set1_pd(1.0);
765     __m128d          two     = _mm_set1_pd(2.0);
766     x                = xx[0];
767     f                = ff[0];
768
769     nri              = nlist->nri;
770     iinr             = nlist->iinr;
771     jindex           = nlist->jindex;
772     jjnr             = nlist->jjnr;
773     shiftidx         = nlist->shift;
774     gid              = nlist->gid;
775     shiftvec         = fr->shift_vec[0];
776     fshift           = fr->fshift[0];
777     facel            = _mm_set1_pd(fr->epsfac);
778     charge           = mdatoms->chargeA;
779     nvdwtype         = fr->ntype;
780     vdwparam         = fr->nbfp;
781     vdwtype          = mdatoms->typeA;
782     vdwgridparam     = fr->ljpme_c6grid;
783     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
784     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
785     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
786
787     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
788     ewtab            = fr->ic->tabq_coul_F;
789     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
790     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
791
792     /* Setup water-specific parameters */
793     inr              = nlist->iinr[0];
794     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
795     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
796     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
797     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
798
799     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
800     rcutoff_scalar   = fr->rcoulomb;
801     rcutoff          = _mm_set1_pd(rcutoff_scalar);
802     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
803
804     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
805     rvdw             = _mm_set1_pd(fr->rvdw);
806
807     /* Avoid stupid compiler warnings */
808     jnrA = jnrB = 0;
809     j_coord_offsetA = 0;
810     j_coord_offsetB = 0;
811
812     outeriter        = 0;
813     inneriter        = 0;
814
815     /* Start outer loop over neighborlists */
816     for(iidx=0; iidx<nri; iidx++)
817     {
818         /* Load shift vector for this list */
819         i_shift_offset   = DIM*shiftidx[iidx];
820
821         /* Load limits for loop over neighbors */
822         j_index_start    = jindex[iidx];
823         j_index_end      = jindex[iidx+1];
824
825         /* Get outer coordinate index */
826         inr              = iinr[iidx];
827         i_coord_offset   = DIM*inr;
828
829         /* Load i particle coords and add shift vector */
830         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
831                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
832
833         fix0             = _mm_setzero_pd();
834         fiy0             = _mm_setzero_pd();
835         fiz0             = _mm_setzero_pd();
836         fix1             = _mm_setzero_pd();
837         fiy1             = _mm_setzero_pd();
838         fiz1             = _mm_setzero_pd();
839         fix2             = _mm_setzero_pd();
840         fiy2             = _mm_setzero_pd();
841         fiz2             = _mm_setzero_pd();
842
843         /* Start inner kernel loop */
844         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
845         {
846
847             /* Get j neighbor index, and coordinate index */
848             jnrA             = jjnr[jidx];
849             jnrB             = jjnr[jidx+1];
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852
853             /* load j atom coordinates */
854             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
855                                               &jx0,&jy0,&jz0);
856
857             /* Calculate displacement vector */
858             dx00             = _mm_sub_pd(ix0,jx0);
859             dy00             = _mm_sub_pd(iy0,jy0);
860             dz00             = _mm_sub_pd(iz0,jz0);
861             dx10             = _mm_sub_pd(ix1,jx0);
862             dy10             = _mm_sub_pd(iy1,jy0);
863             dz10             = _mm_sub_pd(iz1,jz0);
864             dx20             = _mm_sub_pd(ix2,jx0);
865             dy20             = _mm_sub_pd(iy2,jy0);
866             dz20             = _mm_sub_pd(iz2,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
870             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
871             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
872
873             rinv00           = gmx_mm_invsqrt_pd(rsq00);
874             rinv10           = gmx_mm_invsqrt_pd(rsq10);
875             rinv20           = gmx_mm_invsqrt_pd(rsq20);
876
877             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
878             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885
886             fjx0             = _mm_setzero_pd();
887             fjy0             = _mm_setzero_pd();
888             fjz0             = _mm_setzero_pd();
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             if (gmx_mm_any_lt(rsq00,rcutoff2))
895             {
896
897             r00              = _mm_mul_pd(rsq00,rinv00);
898
899             /* Compute parameters for interactions between i and j atoms */
900             qq00             = _mm_mul_pd(iq0,jq0);
901             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
902                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
903             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
904                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
905
906             /* EWALD ELECTROSTATICS */
907
908             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
909             ewrt             = _mm_mul_pd(r00,ewtabscale);
910             ewitab           = _mm_cvttpd_epi32(ewrt);
911             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
912             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
913                                          &ewtabF,&ewtabFn);
914             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
915             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
916
917             /* Analytical LJ-PME */
918             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
919             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
920             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
921             exponent         = gmx_simd_exp_d(ewcljrsq);
922             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
923             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
924             /* f6A = 6 * C6grid * (1 - poly) */
925             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
926             /* f6B = C6grid * exponent * beta^6 */
927             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
928             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
929             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
930
931             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
932
933             fscal            = _mm_add_pd(felec,fvdw);
934
935             fscal            = _mm_and_pd(fscal,cutoff_mask);
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm_mul_pd(fscal,dx00);
939             ty               = _mm_mul_pd(fscal,dy00);
940             tz               = _mm_mul_pd(fscal,dz00);
941
942             /* Update vectorial force */
943             fix0             = _mm_add_pd(fix0,tx);
944             fiy0             = _mm_add_pd(fiy0,ty);
945             fiz0             = _mm_add_pd(fiz0,tz);
946
947             fjx0             = _mm_add_pd(fjx0,tx);
948             fjy0             = _mm_add_pd(fjy0,ty);
949             fjz0             = _mm_add_pd(fjz0,tz);
950
951             }
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             if (gmx_mm_any_lt(rsq10,rcutoff2))
958             {
959
960             r10              = _mm_mul_pd(rsq10,rinv10);
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq10             = _mm_mul_pd(iq1,jq0);
964
965             /* EWALD ELECTROSTATICS */
966
967             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968             ewrt             = _mm_mul_pd(r10,ewtabscale);
969             ewitab           = _mm_cvttpd_epi32(ewrt);
970             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
971             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
972                                          &ewtabF,&ewtabFn);
973             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
974             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
975
976             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
977
978             fscal            = felec;
979
980             fscal            = _mm_and_pd(fscal,cutoff_mask);
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm_mul_pd(fscal,dx10);
984             ty               = _mm_mul_pd(fscal,dy10);
985             tz               = _mm_mul_pd(fscal,dz10);
986
987             /* Update vectorial force */
988             fix1             = _mm_add_pd(fix1,tx);
989             fiy1             = _mm_add_pd(fiy1,ty);
990             fiz1             = _mm_add_pd(fiz1,tz);
991
992             fjx0             = _mm_add_pd(fjx0,tx);
993             fjy0             = _mm_add_pd(fjy0,ty);
994             fjz0             = _mm_add_pd(fjz0,tz);
995
996             }
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             if (gmx_mm_any_lt(rsq20,rcutoff2))
1003             {
1004
1005             r20              = _mm_mul_pd(rsq20,rinv20);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq20             = _mm_mul_pd(iq2,jq0);
1009
1010             /* EWALD ELECTROSTATICS */
1011
1012             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1013             ewrt             = _mm_mul_pd(r20,ewtabscale);
1014             ewitab           = _mm_cvttpd_epi32(ewrt);
1015             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1016             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1017                                          &ewtabF,&ewtabFn);
1018             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1019             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1020
1021             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1022
1023             fscal            = felec;
1024
1025             fscal            = _mm_and_pd(fscal,cutoff_mask);
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm_mul_pd(fscal,dx20);
1029             ty               = _mm_mul_pd(fscal,dy20);
1030             tz               = _mm_mul_pd(fscal,dz20);
1031
1032             /* Update vectorial force */
1033             fix2             = _mm_add_pd(fix2,tx);
1034             fiy2             = _mm_add_pd(fiy2,ty);
1035             fiz2             = _mm_add_pd(fiz2,tz);
1036
1037             fjx0             = _mm_add_pd(fjx0,tx);
1038             fjy0             = _mm_add_pd(fjy0,ty);
1039             fjz0             = _mm_add_pd(fjz0,tz);
1040
1041             }
1042
1043             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1044
1045             /* Inner loop uses 143 flops */
1046         }
1047
1048         if(jidx<j_index_end)
1049         {
1050
1051             jnrA             = jjnr[jidx];
1052             j_coord_offsetA  = DIM*jnrA;
1053
1054             /* load j atom coordinates */
1055             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1056                                               &jx0,&jy0,&jz0);
1057
1058             /* Calculate displacement vector */
1059             dx00             = _mm_sub_pd(ix0,jx0);
1060             dy00             = _mm_sub_pd(iy0,jy0);
1061             dz00             = _mm_sub_pd(iz0,jz0);
1062             dx10             = _mm_sub_pd(ix1,jx0);
1063             dy10             = _mm_sub_pd(iy1,jy0);
1064             dz10             = _mm_sub_pd(iz1,jz0);
1065             dx20             = _mm_sub_pd(ix2,jx0);
1066             dy20             = _mm_sub_pd(iy2,jy0);
1067             dz20             = _mm_sub_pd(iz2,jz0);
1068
1069             /* Calculate squared distance and things based on it */
1070             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1071             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1072             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1073
1074             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1075             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1076             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1077
1078             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1079             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1080             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1081
1082             /* Load parameters for j particles */
1083             jq0              = _mm_load_sd(charge+jnrA+0);
1084             vdwjidx0A        = 2*vdwtype[jnrA+0];
1085
1086             fjx0             = _mm_setzero_pd();
1087             fjy0             = _mm_setzero_pd();
1088             fjz0             = _mm_setzero_pd();
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             if (gmx_mm_any_lt(rsq00,rcutoff2))
1095             {
1096
1097             r00              = _mm_mul_pd(rsq00,rinv00);
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq00             = _mm_mul_pd(iq0,jq0);
1101             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1102
1103             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _mm_mul_pd(r00,ewtabscale);
1109             ewitab           = _mm_cvttpd_epi32(ewrt);
1110             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1111             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1112             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1113             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1114
1115             /* Analytical LJ-PME */
1116             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1117             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1118             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1119             exponent         = gmx_simd_exp_d(ewcljrsq);
1120             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1121             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1122             /* f6A = 6 * C6grid * (1 - poly) */
1123             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1124             /* f6B = C6grid * exponent * beta^6 */
1125             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1126             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1127             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1128
1129             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1130
1131             fscal            = _mm_add_pd(felec,fvdw);
1132
1133             fscal            = _mm_and_pd(fscal,cutoff_mask);
1134
1135             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1136
1137             /* Calculate temporary vectorial force */
1138             tx               = _mm_mul_pd(fscal,dx00);
1139             ty               = _mm_mul_pd(fscal,dy00);
1140             tz               = _mm_mul_pd(fscal,dz00);
1141
1142             /* Update vectorial force */
1143             fix0             = _mm_add_pd(fix0,tx);
1144             fiy0             = _mm_add_pd(fiy0,ty);
1145             fiz0             = _mm_add_pd(fiz0,tz);
1146
1147             fjx0             = _mm_add_pd(fjx0,tx);
1148             fjy0             = _mm_add_pd(fjy0,ty);
1149             fjz0             = _mm_add_pd(fjz0,tz);
1150
1151             }
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             if (gmx_mm_any_lt(rsq10,rcutoff2))
1158             {
1159
1160             r10              = _mm_mul_pd(rsq10,rinv10);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq10             = _mm_mul_pd(iq1,jq0);
1164
1165             /* EWALD ELECTROSTATICS */
1166
1167             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1168             ewrt             = _mm_mul_pd(r10,ewtabscale);
1169             ewitab           = _mm_cvttpd_epi32(ewrt);
1170             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1171             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1172             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1173             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1174
1175             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1176
1177             fscal            = felec;
1178
1179             fscal            = _mm_and_pd(fscal,cutoff_mask);
1180
1181             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = _mm_mul_pd(fscal,dx10);
1185             ty               = _mm_mul_pd(fscal,dy10);
1186             tz               = _mm_mul_pd(fscal,dz10);
1187
1188             /* Update vectorial force */
1189             fix1             = _mm_add_pd(fix1,tx);
1190             fiy1             = _mm_add_pd(fiy1,ty);
1191             fiz1             = _mm_add_pd(fiz1,tz);
1192
1193             fjx0             = _mm_add_pd(fjx0,tx);
1194             fjy0             = _mm_add_pd(fjy0,ty);
1195             fjz0             = _mm_add_pd(fjz0,tz);
1196
1197             }
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             if (gmx_mm_any_lt(rsq20,rcutoff2))
1204             {
1205
1206             r20              = _mm_mul_pd(rsq20,rinv20);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq20             = _mm_mul_pd(iq2,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm_mul_pd(r20,ewtabscale);
1215             ewitab           = _mm_cvttpd_epi32(ewrt);
1216             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1217             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1218             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1219             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1220
1221             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_and_pd(fscal,cutoff_mask);
1226
1227             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1228
1229             /* Calculate temporary vectorial force */
1230             tx               = _mm_mul_pd(fscal,dx20);
1231             ty               = _mm_mul_pd(fscal,dy20);
1232             tz               = _mm_mul_pd(fscal,dz20);
1233
1234             /* Update vectorial force */
1235             fix2             = _mm_add_pd(fix2,tx);
1236             fiy2             = _mm_add_pd(fiy2,ty);
1237             fiz2             = _mm_add_pd(fiz2,tz);
1238
1239             fjx0             = _mm_add_pd(fjx0,tx);
1240             fjy0             = _mm_add_pd(fjy0,ty);
1241             fjz0             = _mm_add_pd(fjz0,tz);
1242
1243             }
1244
1245             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1246
1247             /* Inner loop uses 143 flops */
1248         }
1249
1250         /* End of innermost loop */
1251
1252         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1253                                               f+i_coord_offset,fshift+i_shift_offset);
1254
1255         /* Increment number of inner iterations */
1256         inneriter                  += j_index_end - j_index_start;
1257
1258         /* Outer loop uses 18 flops */
1259     }
1260
1261     /* Increment number of outer iterations */
1262     outeriter        += nri;
1263
1264     /* Update outer/inner flops */
1265
1266     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1267 }