Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d           c6grid_00;
93     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
94     real             *vdwgridparam;
95     __m128d           one_half = _mm_set1_pd(0.5);
96     __m128d           minus_one = _mm_set1_pd(-1.0);
97     __m128i          ewitab;
98     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
122     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
123     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff_scalar   = fr->ic->rcoulomb;
132     rcutoff          = _mm_set1_pd(rcutoff_scalar);
133     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
134
135     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
136     rvdw             = _mm_set1_pd(fr->ic->rvdw);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = sse41_invsqrt_d(rsq00);
198
199             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             if (gmx_mm_any_lt(rsq00,rcutoff2))
211             {
212
213             r00              = _mm_mul_pd(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_pd(iq0,jq0);
217             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
219             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
220                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
221
222             /* EWALD ELECTROSTATICS */
223
224             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
225             ewrt             = _mm_mul_pd(r00,ewtabscale);
226             ewitab           = _mm_cvttpd_epi32(ewrt);
227             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
228             ewitab           = _mm_slli_epi32(ewitab,2);
229             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
230             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
231             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
232             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
233             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
234             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
235             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
236             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
237             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
238             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
239
240             /* Analytical LJ-PME */
241             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
242             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
243             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
244             exponent         = sse41_exp_d(ewcljrsq);
245             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
246             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
247             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
248             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
249             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
250             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
251                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
252             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
253             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
254
255             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velec            = _mm_and_pd(velec,cutoff_mask);
259             velecsum         = _mm_add_pd(velecsum,velec);
260             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
261             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
262
263             fscal            = _mm_add_pd(felec,fvdw);
264
265             fscal            = _mm_and_pd(fscal,cutoff_mask);
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm_mul_pd(fscal,dx00);
269             ty               = _mm_mul_pd(fscal,dy00);
270             tz               = _mm_mul_pd(fscal,dz00);
271
272             /* Update vectorial force */
273             fix0             = _mm_add_pd(fix0,tx);
274             fiy0             = _mm_add_pd(fiy0,ty);
275             fiz0             = _mm_add_pd(fiz0,tz);
276
277             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
278
279             }
280
281             /* Inner loop uses 81 flops */
282         }
283
284         if(jidx<j_index_end)
285         {
286
287             jnrA             = jjnr[jidx];
288             j_coord_offsetA  = DIM*jnrA;
289
290             /* load j atom coordinates */
291             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
292                                               &jx0,&jy0,&jz0);
293
294             /* Calculate displacement vector */
295             dx00             = _mm_sub_pd(ix0,jx0);
296             dy00             = _mm_sub_pd(iy0,jy0);
297             dz00             = _mm_sub_pd(iz0,jz0);
298
299             /* Calculate squared distance and things based on it */
300             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
301
302             rinv00           = sse41_invsqrt_d(rsq00);
303
304             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
305
306             /* Load parameters for j particles */
307             jq0              = _mm_load_sd(charge+jnrA+0);
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq00,rcutoff2))
315             {
316
317             r00              = _mm_mul_pd(rsq00,rinv00);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq00             = _mm_mul_pd(iq0,jq0);
321             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
322
323             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_pd(r00,ewtabscale);
329             ewitab           = _mm_cvttpd_epi32(ewrt);
330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_setzero_pd();
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
339             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
340             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
342
343             /* Analytical LJ-PME */
344             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
345             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
346             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
347             exponent         = sse41_exp_d(ewcljrsq);
348             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
349             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
350             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
351             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
352             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
353             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
354                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
355             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
356             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
357
358             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velec            = _mm_and_pd(velec,cutoff_mask);
362             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
363             velecsum         = _mm_add_pd(velecsum,velec);
364             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
365             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
366             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
367
368             fscal            = _mm_add_pd(felec,fvdw);
369
370             fscal            = _mm_and_pd(fscal,cutoff_mask);
371
372             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm_mul_pd(fscal,dx00);
376             ty               = _mm_mul_pd(fscal,dy00);
377             tz               = _mm_mul_pd(fscal,dz00);
378
379             /* Update vectorial force */
380             fix0             = _mm_add_pd(fix0,tx);
381             fiy0             = _mm_add_pd(fiy0,ty);
382             fiz0             = _mm_add_pd(fiz0,tz);
383
384             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
385
386             }
387
388             /* Inner loop uses 81 flops */
389         }
390
391         /* End of innermost loop */
392
393         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
394                                               f+i_coord_offset,fshift+i_shift_offset);
395
396         ggid                        = gid[iidx];
397         /* Update potential energies */
398         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
399         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
400
401         /* Increment number of inner iterations */
402         inneriter                  += j_index_end - j_index_start;
403
404         /* Outer loop uses 9 flops */
405     }
406
407     /* Increment number of outer iterations */
408     outeriter        += nri;
409
410     /* Update outer/inner flops */
411
412     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*81);
413 }
414 /*
415  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_double
416  * Electrostatics interaction: Ewald
417  * VdW interaction:            LJEwald
418  * Geometry:                   Particle-Particle
419  * Calculate force/pot:        Force
420  */
421 void
422 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_double
423                     (t_nblist                    * gmx_restrict       nlist,
424                      rvec                        * gmx_restrict          xx,
425                      rvec                        * gmx_restrict          ff,
426                      struct t_forcerec           * gmx_restrict          fr,
427                      t_mdatoms                   * gmx_restrict     mdatoms,
428                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
429                      t_nrnb                      * gmx_restrict        nrnb)
430 {
431     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
432      * just 0 for non-waters.
433      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
434      * jnr indices corresponding to data put in the four positions in the SIMD register.
435      */
436     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
437     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
438     int              jnrA,jnrB;
439     int              j_coord_offsetA,j_coord_offsetB;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             rcutoff_scalar;
442     real             *shiftvec,*fshift,*x,*f;
443     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
444     int              vdwioffset0;
445     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
446     int              vdwjidx0A,vdwjidx0B;
447     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
448     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
449     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
450     real             *charge;
451     int              nvdwtype;
452     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
453     int              *vdwtype;
454     real             *vdwparam;
455     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
456     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
457     __m128d           c6grid_00;
458     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
459     real             *vdwgridparam;
460     __m128d           one_half = _mm_set1_pd(0.5);
461     __m128d           minus_one = _mm_set1_pd(-1.0);
462     __m128i          ewitab;
463     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
464     real             *ewtab;
465     __m128d          dummy_mask,cutoff_mask;
466     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
467     __m128d          one     = _mm_set1_pd(1.0);
468     __m128d          two     = _mm_set1_pd(2.0);
469     x                = xx[0];
470     f                = ff[0];
471
472     nri              = nlist->nri;
473     iinr             = nlist->iinr;
474     jindex           = nlist->jindex;
475     jjnr             = nlist->jjnr;
476     shiftidx         = nlist->shift;
477     gid              = nlist->gid;
478     shiftvec         = fr->shift_vec[0];
479     fshift           = fr->fshift[0];
480     facel            = _mm_set1_pd(fr->ic->epsfac);
481     charge           = mdatoms->chargeA;
482     nvdwtype         = fr->ntype;
483     vdwparam         = fr->nbfp;
484     vdwtype          = mdatoms->typeA;
485     vdwgridparam     = fr->ljpme_c6grid;
486     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
487     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
488     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
489
490     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
491     ewtab            = fr->ic->tabq_coul_F;
492     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
493     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
494
495     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
496     rcutoff_scalar   = fr->ic->rcoulomb;
497     rcutoff          = _mm_set1_pd(rcutoff_scalar);
498     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
499
500     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
501     rvdw             = _mm_set1_pd(fr->ic->rvdw);
502
503     /* Avoid stupid compiler warnings */
504     jnrA = jnrB = 0;
505     j_coord_offsetA = 0;
506     j_coord_offsetB = 0;
507
508     outeriter        = 0;
509     inneriter        = 0;
510
511     /* Start outer loop over neighborlists */
512     for(iidx=0; iidx<nri; iidx++)
513     {
514         /* Load shift vector for this list */
515         i_shift_offset   = DIM*shiftidx[iidx];
516
517         /* Load limits for loop over neighbors */
518         j_index_start    = jindex[iidx];
519         j_index_end      = jindex[iidx+1];
520
521         /* Get outer coordinate index */
522         inr              = iinr[iidx];
523         i_coord_offset   = DIM*inr;
524
525         /* Load i particle coords and add shift vector */
526         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
527
528         fix0             = _mm_setzero_pd();
529         fiy0             = _mm_setzero_pd();
530         fiz0             = _mm_setzero_pd();
531
532         /* Load parameters for i particles */
533         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
534         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
535
536         /* Start inner kernel loop */
537         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
538         {
539
540             /* Get j neighbor index, and coordinate index */
541             jnrA             = jjnr[jidx];
542             jnrB             = jjnr[jidx+1];
543             j_coord_offsetA  = DIM*jnrA;
544             j_coord_offsetB  = DIM*jnrB;
545
546             /* load j atom coordinates */
547             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
548                                               &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_pd(ix0,jx0);
552             dy00             = _mm_sub_pd(iy0,jy0);
553             dz00             = _mm_sub_pd(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
557
558             rinv00           = sse41_invsqrt_d(rsq00);
559
560             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
561
562             /* Load parameters for j particles */
563             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
564             vdwjidx0A        = 2*vdwtype[jnrA+0];
565             vdwjidx0B        = 2*vdwtype[jnrB+0];
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             if (gmx_mm_any_lt(rsq00,rcutoff2))
572             {
573
574             r00              = _mm_mul_pd(rsq00,rinv00);
575
576             /* Compute parameters for interactions between i and j atoms */
577             qq00             = _mm_mul_pd(iq0,jq0);
578             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
579                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
580             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
581                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_pd(r00,ewtabscale);
587             ewitab           = _mm_cvttpd_epi32(ewrt);
588             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
589             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
590                                          &ewtabF,&ewtabFn);
591             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
592             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
593
594             /* Analytical LJ-PME */
595             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
596             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
597             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
598             exponent         = sse41_exp_d(ewcljrsq);
599             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
600             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
601             /* f6A = 6 * C6grid * (1 - poly) */
602             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
603             /* f6B = C6grid * exponent * beta^6 */
604             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
605             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
606             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
607
608             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
609
610             fscal            = _mm_add_pd(felec,fvdw);
611
612             fscal            = _mm_and_pd(fscal,cutoff_mask);
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm_mul_pd(fscal,dx00);
616             ty               = _mm_mul_pd(fscal,dy00);
617             tz               = _mm_mul_pd(fscal,dz00);
618
619             /* Update vectorial force */
620             fix0             = _mm_add_pd(fix0,tx);
621             fiy0             = _mm_add_pd(fiy0,ty);
622             fiz0             = _mm_add_pd(fiz0,tz);
623
624             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
625
626             }
627
628             /* Inner loop uses 62 flops */
629         }
630
631         if(jidx<j_index_end)
632         {
633
634             jnrA             = jjnr[jidx];
635             j_coord_offsetA  = DIM*jnrA;
636
637             /* load j atom coordinates */
638             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
639                                               &jx0,&jy0,&jz0);
640
641             /* Calculate displacement vector */
642             dx00             = _mm_sub_pd(ix0,jx0);
643             dy00             = _mm_sub_pd(iy0,jy0);
644             dz00             = _mm_sub_pd(iz0,jz0);
645
646             /* Calculate squared distance and things based on it */
647             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
648
649             rinv00           = sse41_invsqrt_d(rsq00);
650
651             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
652
653             /* Load parameters for j particles */
654             jq0              = _mm_load_sd(charge+jnrA+0);
655             vdwjidx0A        = 2*vdwtype[jnrA+0];
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             if (gmx_mm_any_lt(rsq00,rcutoff2))
662             {
663
664             r00              = _mm_mul_pd(rsq00,rinv00);
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq00             = _mm_mul_pd(iq0,jq0);
668             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
669
670             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
671
672             /* EWALD ELECTROSTATICS */
673
674             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
675             ewrt             = _mm_mul_pd(r00,ewtabscale);
676             ewitab           = _mm_cvttpd_epi32(ewrt);
677             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
678             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
679             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
680             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
681
682             /* Analytical LJ-PME */
683             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
684             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
685             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
686             exponent         = sse41_exp_d(ewcljrsq);
687             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
688             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
689             /* f6A = 6 * C6grid * (1 - poly) */
690             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
691             /* f6B = C6grid * exponent * beta^6 */
692             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
693             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
694             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
695
696             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
697
698             fscal            = _mm_add_pd(felec,fvdw);
699
700             fscal            = _mm_and_pd(fscal,cutoff_mask);
701
702             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
703
704             /* Calculate temporary vectorial force */
705             tx               = _mm_mul_pd(fscal,dx00);
706             ty               = _mm_mul_pd(fscal,dy00);
707             tz               = _mm_mul_pd(fscal,dz00);
708
709             /* Update vectorial force */
710             fix0             = _mm_add_pd(fix0,tx);
711             fiy0             = _mm_add_pd(fiy0,ty);
712             fiz0             = _mm_add_pd(fiz0,tz);
713
714             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
715
716             }
717
718             /* Inner loop uses 62 flops */
719         }
720
721         /* End of innermost loop */
722
723         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
724                                               f+i_coord_offset,fshift+i_shift_offset);
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 7 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
738 }