Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d           c6grid_00;
96     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     real             *vdwgridparam;
98     __m128d           one_half = _mm_set1_pd(0.5);
99     __m128d           minus_one = _mm_set1_pd(-1.0);
100     __m128i          ewitab;
101     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_pd(rcutoff_scalar);
136     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
139     rvdw             = _mm_set1_pd(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
223                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
224
225             /* EWALD ELECTROSTATICS */
226
227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
228             ewrt             = _mm_mul_pd(r00,ewtabscale);
229             ewitab           = _mm_cvttpd_epi32(ewrt);
230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
231             ewitab           = _mm_slli_epi32(ewitab,2);
232             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
233             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
234             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
235             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
236             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
238             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
239             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
240             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
241             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
242
243             /* Analytical LJ-PME */
244             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
245             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
246             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
247             exponent         = gmx_simd_exp_d(ewcljrsq);
248             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
249             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
250             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
251             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
252             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
253             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
254                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
255             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
256             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
257
258             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velec            = _mm_and_pd(velec,cutoff_mask);
262             velecsum         = _mm_add_pd(velecsum,velec);
263             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
264             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
265
266             fscal            = _mm_add_pd(felec,fvdw);
267
268             fscal            = _mm_and_pd(fscal,cutoff_mask);
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm_mul_pd(fscal,dx00);
272             ty               = _mm_mul_pd(fscal,dy00);
273             tz               = _mm_mul_pd(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm_add_pd(fix0,tx);
277             fiy0             = _mm_add_pd(fiy0,ty);
278             fiz0             = _mm_add_pd(fiz0,tz);
279
280             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
281
282             }
283
284             /* Inner loop uses 81 flops */
285         }
286
287         if(jidx<j_index_end)
288         {
289
290             jnrA             = jjnr[jidx];
291             j_coord_offsetA  = DIM*jnrA;
292
293             /* load j atom coordinates */
294             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
295                                               &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _mm_sub_pd(ix0,jx0);
299             dy00             = _mm_sub_pd(iy0,jy0);
300             dz00             = _mm_sub_pd(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
304
305             rinv00           = gmx_mm_invsqrt_pd(rsq00);
306
307             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
308
309             /* Load parameters for j particles */
310             jq0              = _mm_load_sd(charge+jnrA+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm_any_lt(rsq00,rcutoff2))
318             {
319
320             r00              = _mm_mul_pd(rsq00,rinv00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _mm_mul_pd(iq0,jq0);
324             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
325
326             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _mm_mul_pd(r00,ewtabscale);
332             ewitab           = _mm_cvttpd_epi32(ewrt);
333             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
334             ewitab           = _mm_slli_epi32(ewitab,2);
335             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
336             ewtabD           = _mm_setzero_pd();
337             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
338             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
339             ewtabFn          = _mm_setzero_pd();
340             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
341             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
342             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
343             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
344             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
345
346             /* Analytical LJ-PME */
347             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
348             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
349             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
350             exponent         = gmx_simd_exp_d(ewcljrsq);
351             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
352             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
353             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
354             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
355             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
356             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
357                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
358             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
359             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
360
361             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_pd(velec,cutoff_mask);
365             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
366             velecsum         = _mm_add_pd(velecsum,velec);
367             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
368             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
369             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
370
371             fscal            = _mm_add_pd(felec,fvdw);
372
373             fscal            = _mm_and_pd(fscal,cutoff_mask);
374
375             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_pd(fscal,dx00);
379             ty               = _mm_mul_pd(fscal,dy00);
380             tz               = _mm_mul_pd(fscal,dz00);
381
382             /* Update vectorial force */
383             fix0             = _mm_add_pd(fix0,tx);
384             fiy0             = _mm_add_pd(fiy0,ty);
385             fiz0             = _mm_add_pd(fiz0,tz);
386
387             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
388
389             }
390
391             /* Inner loop uses 81 flops */
392         }
393
394         /* End of innermost loop */
395
396         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
397                                               f+i_coord_offset,fshift+i_shift_offset);
398
399         ggid                        = gid[iidx];
400         /* Update potential energies */
401         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
402         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
403
404         /* Increment number of inner iterations */
405         inneriter                  += j_index_end - j_index_start;
406
407         /* Outer loop uses 9 flops */
408     }
409
410     /* Increment number of outer iterations */
411     outeriter        += nri;
412
413     /* Update outer/inner flops */
414
415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*81);
416 }
417 /*
418  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_double
419  * Electrostatics interaction: Ewald
420  * VdW interaction:            LJEwald
421  * Geometry:                   Particle-Particle
422  * Calculate force/pot:        Force
423  */
424 void
425 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse4_1_double
426                     (t_nblist                    * gmx_restrict       nlist,
427                      rvec                        * gmx_restrict          xx,
428                      rvec                        * gmx_restrict          ff,
429                      t_forcerec                  * gmx_restrict          fr,
430                      t_mdatoms                   * gmx_restrict     mdatoms,
431                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
432                      t_nrnb                      * gmx_restrict        nrnb)
433 {
434     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
435      * just 0 for non-waters.
436      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
437      * jnr indices corresponding to data put in the four positions in the SIMD register.
438      */
439     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
440     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
441     int              jnrA,jnrB;
442     int              j_coord_offsetA,j_coord_offsetB;
443     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
444     real             rcutoff_scalar;
445     real             *shiftvec,*fshift,*x,*f;
446     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
447     int              vdwioffset0;
448     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
449     int              vdwjidx0A,vdwjidx0B;
450     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
452     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
453     real             *charge;
454     int              nvdwtype;
455     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
456     int              *vdwtype;
457     real             *vdwparam;
458     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
459     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
460     __m128d           c6grid_00;
461     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
462     real             *vdwgridparam;
463     __m128d           one_half = _mm_set1_pd(0.5);
464     __m128d           minus_one = _mm_set1_pd(-1.0);
465     __m128i          ewitab;
466     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
467     real             *ewtab;
468     __m128d          dummy_mask,cutoff_mask;
469     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
470     __m128d          one     = _mm_set1_pd(1.0);
471     __m128d          two     = _mm_set1_pd(2.0);
472     x                = xx[0];
473     f                = ff[0];
474
475     nri              = nlist->nri;
476     iinr             = nlist->iinr;
477     jindex           = nlist->jindex;
478     jjnr             = nlist->jjnr;
479     shiftidx         = nlist->shift;
480     gid              = nlist->gid;
481     shiftvec         = fr->shift_vec[0];
482     fshift           = fr->fshift[0];
483     facel            = _mm_set1_pd(fr->epsfac);
484     charge           = mdatoms->chargeA;
485     nvdwtype         = fr->ntype;
486     vdwparam         = fr->nbfp;
487     vdwtype          = mdatoms->typeA;
488     vdwgridparam     = fr->ljpme_c6grid;
489     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
490     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
491     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
492
493     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
494     ewtab            = fr->ic->tabq_coul_F;
495     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
496     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
497
498     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
499     rcutoff_scalar   = fr->rcoulomb;
500     rcutoff          = _mm_set1_pd(rcutoff_scalar);
501     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
502
503     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
504     rvdw             = _mm_set1_pd(fr->rvdw);
505
506     /* Avoid stupid compiler warnings */
507     jnrA = jnrB = 0;
508     j_coord_offsetA = 0;
509     j_coord_offsetB = 0;
510
511     outeriter        = 0;
512     inneriter        = 0;
513
514     /* Start outer loop over neighborlists */
515     for(iidx=0; iidx<nri; iidx++)
516     {
517         /* Load shift vector for this list */
518         i_shift_offset   = DIM*shiftidx[iidx];
519
520         /* Load limits for loop over neighbors */
521         j_index_start    = jindex[iidx];
522         j_index_end      = jindex[iidx+1];
523
524         /* Get outer coordinate index */
525         inr              = iinr[iidx];
526         i_coord_offset   = DIM*inr;
527
528         /* Load i particle coords and add shift vector */
529         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
530
531         fix0             = _mm_setzero_pd();
532         fiy0             = _mm_setzero_pd();
533         fiz0             = _mm_setzero_pd();
534
535         /* Load parameters for i particles */
536         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
537         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
538
539         /* Start inner kernel loop */
540         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
541         {
542
543             /* Get j neighbor index, and coordinate index */
544             jnrA             = jjnr[jidx];
545             jnrB             = jjnr[jidx+1];
546             j_coord_offsetA  = DIM*jnrA;
547             j_coord_offsetB  = DIM*jnrB;
548
549             /* load j atom coordinates */
550             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
551                                               &jx0,&jy0,&jz0);
552
553             /* Calculate displacement vector */
554             dx00             = _mm_sub_pd(ix0,jx0);
555             dy00             = _mm_sub_pd(iy0,jy0);
556             dz00             = _mm_sub_pd(iz0,jz0);
557
558             /* Calculate squared distance and things based on it */
559             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
560
561             rinv00           = gmx_mm_invsqrt_pd(rsq00);
562
563             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
564
565             /* Load parameters for j particles */
566             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
567             vdwjidx0A        = 2*vdwtype[jnrA+0];
568             vdwjidx0B        = 2*vdwtype[jnrB+0];
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             if (gmx_mm_any_lt(rsq00,rcutoff2))
575             {
576
577             r00              = _mm_mul_pd(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq00             = _mm_mul_pd(iq0,jq0);
581             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
582                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
583             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
584                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
585
586             /* EWALD ELECTROSTATICS */
587
588             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
589             ewrt             = _mm_mul_pd(r00,ewtabscale);
590             ewitab           = _mm_cvttpd_epi32(ewrt);
591             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
592             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
593                                          &ewtabF,&ewtabFn);
594             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
595             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
596
597             /* Analytical LJ-PME */
598             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
599             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
600             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
601             exponent         = gmx_simd_exp_d(ewcljrsq);
602             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
603             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
604             /* f6A = 6 * C6grid * (1 - poly) */
605             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
606             /* f6B = C6grid * exponent * beta^6 */
607             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
608             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
609             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
610
611             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
612
613             fscal            = _mm_add_pd(felec,fvdw);
614
615             fscal            = _mm_and_pd(fscal,cutoff_mask);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_pd(fscal,dx00);
619             ty               = _mm_mul_pd(fscal,dy00);
620             tz               = _mm_mul_pd(fscal,dz00);
621
622             /* Update vectorial force */
623             fix0             = _mm_add_pd(fix0,tx);
624             fiy0             = _mm_add_pd(fiy0,ty);
625             fiz0             = _mm_add_pd(fiz0,tz);
626
627             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
628
629             }
630
631             /* Inner loop uses 62 flops */
632         }
633
634         if(jidx<j_index_end)
635         {
636
637             jnrA             = jjnr[jidx];
638             j_coord_offsetA  = DIM*jnrA;
639
640             /* load j atom coordinates */
641             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
642                                               &jx0,&jy0,&jz0);
643
644             /* Calculate displacement vector */
645             dx00             = _mm_sub_pd(ix0,jx0);
646             dy00             = _mm_sub_pd(iy0,jy0);
647             dz00             = _mm_sub_pd(iz0,jz0);
648
649             /* Calculate squared distance and things based on it */
650             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
651
652             rinv00           = gmx_mm_invsqrt_pd(rsq00);
653
654             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
655
656             /* Load parameters for j particles */
657             jq0              = _mm_load_sd(charge+jnrA+0);
658             vdwjidx0A        = 2*vdwtype[jnrA+0];
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             if (gmx_mm_any_lt(rsq00,rcutoff2))
665             {
666
667             r00              = _mm_mul_pd(rsq00,rinv00);
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq00             = _mm_mul_pd(iq0,jq0);
671             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
672
673             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
674
675             /* EWALD ELECTROSTATICS */
676
677             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
678             ewrt             = _mm_mul_pd(r00,ewtabscale);
679             ewitab           = _mm_cvttpd_epi32(ewrt);
680             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
681             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
682             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
683             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
684
685             /* Analytical LJ-PME */
686             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
687             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
688             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
689             exponent         = gmx_simd_exp_d(ewcljrsq);
690             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
691             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
692             /* f6A = 6 * C6grid * (1 - poly) */
693             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
694             /* f6B = C6grid * exponent * beta^6 */
695             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
696             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
697             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
698
699             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
700
701             fscal            = _mm_add_pd(felec,fvdw);
702
703             fscal            = _mm_and_pd(fscal,cutoff_mask);
704
705             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
706
707             /* Calculate temporary vectorial force */
708             tx               = _mm_mul_pd(fscal,dx00);
709             ty               = _mm_mul_pd(fscal,dy00);
710             tz               = _mm_mul_pd(fscal,dz00);
711
712             /* Update vectorial force */
713             fix0             = _mm_add_pd(fix0,tx);
714             fiy0             = _mm_add_pd(fiy0,ty);
715             fiz0             = _mm_add_pd(fiz0,tz);
716
717             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
718
719             }
720
721             /* Inner loop uses 62 flops */
722         }
723
724         /* End of innermost loop */
725
726         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
727                                               f+i_coord_offset,fshift+i_shift_offset);
728
729         /* Increment number of inner iterations */
730         inneriter                  += j_index_end - j_index_start;
731
732         /* Outer loop uses 7 flops */
733     }
734
735     /* Increment number of outer iterations */
736     outeriter        += nri;
737
738     /* Update outer/inner flops */
739
740     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
741 }