Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwNone_GeomW4P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset1;
80     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
81     int              vdwioffset2;
82     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
83     int              vdwioffset3;
84     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
88     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109
110     /* Setup water-specific parameters */
111     inr              = nlist->iinr[0];
112     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
113     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
114     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
140                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
141
142         fix1             = _mm_setzero_pd();
143         fiy1             = _mm_setzero_pd();
144         fiz1             = _mm_setzero_pd();
145         fix2             = _mm_setzero_pd();
146         fiy2             = _mm_setzero_pd();
147         fiz2             = _mm_setzero_pd();
148         fix3             = _mm_setzero_pd();
149         fiy3             = _mm_setzero_pd();
150         fiz3             = _mm_setzero_pd();
151
152         /* Reset potential sums */
153         velecsum         = _mm_setzero_pd();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             j_coord_offsetA  = DIM*jnrA;
163             j_coord_offsetB  = DIM*jnrB;
164
165             /* load j atom coordinates */
166             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx10             = _mm_sub_pd(ix1,jx0);
171             dy10             = _mm_sub_pd(iy1,jy0);
172             dz10             = _mm_sub_pd(iz1,jz0);
173             dx20             = _mm_sub_pd(ix2,jx0);
174             dy20             = _mm_sub_pd(iy2,jy0);
175             dz20             = _mm_sub_pd(iz2,jz0);
176             dx30             = _mm_sub_pd(ix3,jx0);
177             dy30             = _mm_sub_pd(iy3,jy0);
178             dz30             = _mm_sub_pd(iz3,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
182             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
183             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
184
185             rinv10           = sse41_invsqrt_d(rsq10);
186             rinv20           = sse41_invsqrt_d(rsq20);
187             rinv30           = sse41_invsqrt_d(rsq30);
188
189             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
190             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
191             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195
196             fjx0             = _mm_setzero_pd();
197             fjy0             = _mm_setzero_pd();
198             fjz0             = _mm_setzero_pd();
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq10             = _mm_mul_pd(iq1,jq0);
206
207             /* COULOMB ELECTROSTATICS */
208             velec            = _mm_mul_pd(qq10,rinv10);
209             felec            = _mm_mul_pd(velec,rinvsq10);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             velecsum         = _mm_add_pd(velecsum,velec);
213
214             fscal            = felec;
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm_mul_pd(fscal,dx10);
218             ty               = _mm_mul_pd(fscal,dy10);
219             tz               = _mm_mul_pd(fscal,dz10);
220
221             /* Update vectorial force */
222             fix1             = _mm_add_pd(fix1,tx);
223             fiy1             = _mm_add_pd(fiy1,ty);
224             fiz1             = _mm_add_pd(fiz1,tz);
225
226             fjx0             = _mm_add_pd(fjx0,tx);
227             fjy0             = _mm_add_pd(fjy0,ty);
228             fjz0             = _mm_add_pd(fjz0,tz);
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq20             = _mm_mul_pd(iq2,jq0);
236
237             /* COULOMB ELECTROSTATICS */
238             velec            = _mm_mul_pd(qq20,rinv20);
239             felec            = _mm_mul_pd(velec,rinvsq20);
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             velecsum         = _mm_add_pd(velecsum,velec);
243
244             fscal            = felec;
245
246             /* Calculate temporary vectorial force */
247             tx               = _mm_mul_pd(fscal,dx20);
248             ty               = _mm_mul_pd(fscal,dy20);
249             tz               = _mm_mul_pd(fscal,dz20);
250
251             /* Update vectorial force */
252             fix2             = _mm_add_pd(fix2,tx);
253             fiy2             = _mm_add_pd(fiy2,ty);
254             fiz2             = _mm_add_pd(fiz2,tz);
255
256             fjx0             = _mm_add_pd(fjx0,tx);
257             fjy0             = _mm_add_pd(fjy0,ty);
258             fjz0             = _mm_add_pd(fjz0,tz);
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq30             = _mm_mul_pd(iq3,jq0);
266
267             /* COULOMB ELECTROSTATICS */
268             velec            = _mm_mul_pd(qq30,rinv30);
269             felec            = _mm_mul_pd(velec,rinvsq30);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velecsum         = _mm_add_pd(velecsum,velec);
273
274             fscal            = felec;
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_pd(fscal,dx30);
278             ty               = _mm_mul_pd(fscal,dy30);
279             tz               = _mm_mul_pd(fscal,dz30);
280
281             /* Update vectorial force */
282             fix3             = _mm_add_pd(fix3,tx);
283             fiy3             = _mm_add_pd(fiy3,ty);
284             fiz3             = _mm_add_pd(fiz3,tz);
285
286             fjx0             = _mm_add_pd(fjx0,tx);
287             fjy0             = _mm_add_pd(fjy0,ty);
288             fjz0             = _mm_add_pd(fjz0,tz);
289
290             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
291
292             /* Inner loop uses 87 flops */
293         }
294
295         if(jidx<j_index_end)
296         {
297
298             jnrA             = jjnr[jidx];
299             j_coord_offsetA  = DIM*jnrA;
300
301             /* load j atom coordinates */
302             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
303                                               &jx0,&jy0,&jz0);
304
305             /* Calculate displacement vector */
306             dx10             = _mm_sub_pd(ix1,jx0);
307             dy10             = _mm_sub_pd(iy1,jy0);
308             dz10             = _mm_sub_pd(iz1,jz0);
309             dx20             = _mm_sub_pd(ix2,jx0);
310             dy20             = _mm_sub_pd(iy2,jy0);
311             dz20             = _mm_sub_pd(iz2,jz0);
312             dx30             = _mm_sub_pd(ix3,jx0);
313             dy30             = _mm_sub_pd(iy3,jy0);
314             dz30             = _mm_sub_pd(iz3,jz0);
315
316             /* Calculate squared distance and things based on it */
317             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
318             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
319             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
320
321             rinv10           = sse41_invsqrt_d(rsq10);
322             rinv20           = sse41_invsqrt_d(rsq20);
323             rinv30           = sse41_invsqrt_d(rsq30);
324
325             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
326             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
327             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
328
329             /* Load parameters for j particles */
330             jq0              = _mm_load_sd(charge+jnrA+0);
331
332             fjx0             = _mm_setzero_pd();
333             fjy0             = _mm_setzero_pd();
334             fjz0             = _mm_setzero_pd();
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm_mul_pd(iq1,jq0);
342
343             /* COULOMB ELECTROSTATICS */
344             velec            = _mm_mul_pd(qq10,rinv10);
345             felec            = _mm_mul_pd(velec,rinvsq10);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
349             velecsum         = _mm_add_pd(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm_mul_pd(fscal,dx10);
357             ty               = _mm_mul_pd(fscal,dy10);
358             tz               = _mm_mul_pd(fscal,dz10);
359
360             /* Update vectorial force */
361             fix1             = _mm_add_pd(fix1,tx);
362             fiy1             = _mm_add_pd(fiy1,ty);
363             fiz1             = _mm_add_pd(fiz1,tz);
364
365             fjx0             = _mm_add_pd(fjx0,tx);
366             fjy0             = _mm_add_pd(fjy0,ty);
367             fjz0             = _mm_add_pd(fjz0,tz);
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_pd(iq2,jq0);
375
376             /* COULOMB ELECTROSTATICS */
377             velec            = _mm_mul_pd(qq20,rinv20);
378             felec            = _mm_mul_pd(velec,rinvsq20);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
382             velecsum         = _mm_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm_mul_pd(fscal,dx20);
390             ty               = _mm_mul_pd(fscal,dy20);
391             tz               = _mm_mul_pd(fscal,dz20);
392
393             /* Update vectorial force */
394             fix2             = _mm_add_pd(fix2,tx);
395             fiy2             = _mm_add_pd(fiy2,ty);
396             fiz2             = _mm_add_pd(fiz2,tz);
397
398             fjx0             = _mm_add_pd(fjx0,tx);
399             fjy0             = _mm_add_pd(fjy0,ty);
400             fjz0             = _mm_add_pd(fjz0,tz);
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq30             = _mm_mul_pd(iq3,jq0);
408
409             /* COULOMB ELECTROSTATICS */
410             velec            = _mm_mul_pd(qq30,rinv30);
411             felec            = _mm_mul_pd(velec,rinvsq30);
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
415             velecsum         = _mm_add_pd(velecsum,velec);
416
417             fscal            = felec;
418
419             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm_mul_pd(fscal,dx30);
423             ty               = _mm_mul_pd(fscal,dy30);
424             tz               = _mm_mul_pd(fscal,dz30);
425
426             /* Update vectorial force */
427             fix3             = _mm_add_pd(fix3,tx);
428             fiy3             = _mm_add_pd(fiy3,ty);
429             fiz3             = _mm_add_pd(fiz3,tz);
430
431             fjx0             = _mm_add_pd(fjx0,tx);
432             fjy0             = _mm_add_pd(fjy0,ty);
433             fjz0             = _mm_add_pd(fjz0,tz);
434
435             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
436
437             /* Inner loop uses 87 flops */
438         }
439
440         /* End of innermost loop */
441
442         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
443                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
444
445         ggid                        = gid[iidx];
446         /* Update potential energies */
447         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
448
449         /* Increment number of inner iterations */
450         inneriter                  += j_index_end - j_index_start;
451
452         /* Outer loop uses 19 flops */
453     }
454
455     /* Increment number of outer iterations */
456     outeriter        += nri;
457
458     /* Update outer/inner flops */
459
460     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*87);
461 }
462 /*
463  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_sse4_1_double
464  * Electrostatics interaction: Coulomb
465  * VdW interaction:            None
466  * Geometry:                   Water4-Particle
467  * Calculate force/pot:        Force
468  */
469 void
470 nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_sse4_1_double
471                     (t_nblist                    * gmx_restrict       nlist,
472                      rvec                        * gmx_restrict          xx,
473                      rvec                        * gmx_restrict          ff,
474                      struct t_forcerec           * gmx_restrict          fr,
475                      t_mdatoms                   * gmx_restrict     mdatoms,
476                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
477                      t_nrnb                      * gmx_restrict        nrnb)
478 {
479     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
480      * just 0 for non-waters.
481      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
482      * jnr indices corresponding to data put in the four positions in the SIMD register.
483      */
484     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
485     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
486     int              jnrA,jnrB;
487     int              j_coord_offsetA,j_coord_offsetB;
488     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
489     real             rcutoff_scalar;
490     real             *shiftvec,*fshift,*x,*f;
491     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
492     int              vdwioffset1;
493     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
494     int              vdwioffset2;
495     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
496     int              vdwioffset3;
497     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
498     int              vdwjidx0A,vdwjidx0B;
499     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
500     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
501     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
502     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
503     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
504     real             *charge;
505     __m128d          dummy_mask,cutoff_mask;
506     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
507     __m128d          one     = _mm_set1_pd(1.0);
508     __m128d          two     = _mm_set1_pd(2.0);
509     x                = xx[0];
510     f                = ff[0];
511
512     nri              = nlist->nri;
513     iinr             = nlist->iinr;
514     jindex           = nlist->jindex;
515     jjnr             = nlist->jjnr;
516     shiftidx         = nlist->shift;
517     gid              = nlist->gid;
518     shiftvec         = fr->shift_vec[0];
519     fshift           = fr->fshift[0];
520     facel            = _mm_set1_pd(fr->ic->epsfac);
521     charge           = mdatoms->chargeA;
522
523     /* Setup water-specific parameters */
524     inr              = nlist->iinr[0];
525     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
526     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
527     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
528
529     /* Avoid stupid compiler warnings */
530     jnrA = jnrB = 0;
531     j_coord_offsetA = 0;
532     j_coord_offsetB = 0;
533
534     outeriter        = 0;
535     inneriter        = 0;
536
537     /* Start outer loop over neighborlists */
538     for(iidx=0; iidx<nri; iidx++)
539     {
540         /* Load shift vector for this list */
541         i_shift_offset   = DIM*shiftidx[iidx];
542
543         /* Load limits for loop over neighbors */
544         j_index_start    = jindex[iidx];
545         j_index_end      = jindex[iidx+1];
546
547         /* Get outer coordinate index */
548         inr              = iinr[iidx];
549         i_coord_offset   = DIM*inr;
550
551         /* Load i particle coords and add shift vector */
552         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
553                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
554
555         fix1             = _mm_setzero_pd();
556         fiy1             = _mm_setzero_pd();
557         fiz1             = _mm_setzero_pd();
558         fix2             = _mm_setzero_pd();
559         fiy2             = _mm_setzero_pd();
560         fiz2             = _mm_setzero_pd();
561         fix3             = _mm_setzero_pd();
562         fiy3             = _mm_setzero_pd();
563         fiz3             = _mm_setzero_pd();
564
565         /* Start inner kernel loop */
566         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
567         {
568
569             /* Get j neighbor index, and coordinate index */
570             jnrA             = jjnr[jidx];
571             jnrB             = jjnr[jidx+1];
572             j_coord_offsetA  = DIM*jnrA;
573             j_coord_offsetB  = DIM*jnrB;
574
575             /* load j atom coordinates */
576             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
577                                               &jx0,&jy0,&jz0);
578
579             /* Calculate displacement vector */
580             dx10             = _mm_sub_pd(ix1,jx0);
581             dy10             = _mm_sub_pd(iy1,jy0);
582             dz10             = _mm_sub_pd(iz1,jz0);
583             dx20             = _mm_sub_pd(ix2,jx0);
584             dy20             = _mm_sub_pd(iy2,jy0);
585             dz20             = _mm_sub_pd(iz2,jz0);
586             dx30             = _mm_sub_pd(ix3,jx0);
587             dy30             = _mm_sub_pd(iy3,jy0);
588             dz30             = _mm_sub_pd(iz3,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
592             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
593             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
594
595             rinv10           = sse41_invsqrt_d(rsq10);
596             rinv20           = sse41_invsqrt_d(rsq20);
597             rinv30           = sse41_invsqrt_d(rsq30);
598
599             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
600             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
601             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
602
603             /* Load parameters for j particles */
604             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
605
606             fjx0             = _mm_setzero_pd();
607             fjy0             = _mm_setzero_pd();
608             fjz0             = _mm_setzero_pd();
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq10             = _mm_mul_pd(iq1,jq0);
616
617             /* COULOMB ELECTROSTATICS */
618             velec            = _mm_mul_pd(qq10,rinv10);
619             felec            = _mm_mul_pd(velec,rinvsq10);
620
621             fscal            = felec;
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_pd(fscal,dx10);
625             ty               = _mm_mul_pd(fscal,dy10);
626             tz               = _mm_mul_pd(fscal,dz10);
627
628             /* Update vectorial force */
629             fix1             = _mm_add_pd(fix1,tx);
630             fiy1             = _mm_add_pd(fiy1,ty);
631             fiz1             = _mm_add_pd(fiz1,tz);
632
633             fjx0             = _mm_add_pd(fjx0,tx);
634             fjy0             = _mm_add_pd(fjy0,ty);
635             fjz0             = _mm_add_pd(fjz0,tz);
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq20             = _mm_mul_pd(iq2,jq0);
643
644             /* COULOMB ELECTROSTATICS */
645             velec            = _mm_mul_pd(qq20,rinv20);
646             felec            = _mm_mul_pd(velec,rinvsq20);
647
648             fscal            = felec;
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_pd(fscal,dx20);
652             ty               = _mm_mul_pd(fscal,dy20);
653             tz               = _mm_mul_pd(fscal,dz20);
654
655             /* Update vectorial force */
656             fix2             = _mm_add_pd(fix2,tx);
657             fiy2             = _mm_add_pd(fiy2,ty);
658             fiz2             = _mm_add_pd(fiz2,tz);
659
660             fjx0             = _mm_add_pd(fjx0,tx);
661             fjy0             = _mm_add_pd(fjy0,ty);
662             fjz0             = _mm_add_pd(fjz0,tz);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq30             = _mm_mul_pd(iq3,jq0);
670
671             /* COULOMB ELECTROSTATICS */
672             velec            = _mm_mul_pd(qq30,rinv30);
673             felec            = _mm_mul_pd(velec,rinvsq30);
674
675             fscal            = felec;
676
677             /* Calculate temporary vectorial force */
678             tx               = _mm_mul_pd(fscal,dx30);
679             ty               = _mm_mul_pd(fscal,dy30);
680             tz               = _mm_mul_pd(fscal,dz30);
681
682             /* Update vectorial force */
683             fix3             = _mm_add_pd(fix3,tx);
684             fiy3             = _mm_add_pd(fiy3,ty);
685             fiz3             = _mm_add_pd(fiz3,tz);
686
687             fjx0             = _mm_add_pd(fjx0,tx);
688             fjy0             = _mm_add_pd(fjy0,ty);
689             fjz0             = _mm_add_pd(fjz0,tz);
690
691             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
692
693             /* Inner loop uses 84 flops */
694         }
695
696         if(jidx<j_index_end)
697         {
698
699             jnrA             = jjnr[jidx];
700             j_coord_offsetA  = DIM*jnrA;
701
702             /* load j atom coordinates */
703             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
704                                               &jx0,&jy0,&jz0);
705
706             /* Calculate displacement vector */
707             dx10             = _mm_sub_pd(ix1,jx0);
708             dy10             = _mm_sub_pd(iy1,jy0);
709             dz10             = _mm_sub_pd(iz1,jz0);
710             dx20             = _mm_sub_pd(ix2,jx0);
711             dy20             = _mm_sub_pd(iy2,jy0);
712             dz20             = _mm_sub_pd(iz2,jz0);
713             dx30             = _mm_sub_pd(ix3,jx0);
714             dy30             = _mm_sub_pd(iy3,jy0);
715             dz30             = _mm_sub_pd(iz3,jz0);
716
717             /* Calculate squared distance and things based on it */
718             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
719             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
720             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
721
722             rinv10           = sse41_invsqrt_d(rsq10);
723             rinv20           = sse41_invsqrt_d(rsq20);
724             rinv30           = sse41_invsqrt_d(rsq30);
725
726             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
727             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
728             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
729
730             /* Load parameters for j particles */
731             jq0              = _mm_load_sd(charge+jnrA+0);
732
733             fjx0             = _mm_setzero_pd();
734             fjy0             = _mm_setzero_pd();
735             fjz0             = _mm_setzero_pd();
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             /* Compute parameters for interactions between i and j atoms */
742             qq10             = _mm_mul_pd(iq1,jq0);
743
744             /* COULOMB ELECTROSTATICS */
745             velec            = _mm_mul_pd(qq10,rinv10);
746             felec            = _mm_mul_pd(velec,rinvsq10);
747
748             fscal            = felec;
749
750             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm_mul_pd(fscal,dx10);
754             ty               = _mm_mul_pd(fscal,dy10);
755             tz               = _mm_mul_pd(fscal,dz10);
756
757             /* Update vectorial force */
758             fix1             = _mm_add_pd(fix1,tx);
759             fiy1             = _mm_add_pd(fiy1,ty);
760             fiz1             = _mm_add_pd(fiz1,tz);
761
762             fjx0             = _mm_add_pd(fjx0,tx);
763             fjy0             = _mm_add_pd(fjy0,ty);
764             fjz0             = _mm_add_pd(fjz0,tz);
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq20             = _mm_mul_pd(iq2,jq0);
772
773             /* COULOMB ELECTROSTATICS */
774             velec            = _mm_mul_pd(qq20,rinv20);
775             felec            = _mm_mul_pd(velec,rinvsq20);
776
777             fscal            = felec;
778
779             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
780
781             /* Calculate temporary vectorial force */
782             tx               = _mm_mul_pd(fscal,dx20);
783             ty               = _mm_mul_pd(fscal,dy20);
784             tz               = _mm_mul_pd(fscal,dz20);
785
786             /* Update vectorial force */
787             fix2             = _mm_add_pd(fix2,tx);
788             fiy2             = _mm_add_pd(fiy2,ty);
789             fiz2             = _mm_add_pd(fiz2,tz);
790
791             fjx0             = _mm_add_pd(fjx0,tx);
792             fjy0             = _mm_add_pd(fjy0,ty);
793             fjz0             = _mm_add_pd(fjz0,tz);
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq30             = _mm_mul_pd(iq3,jq0);
801
802             /* COULOMB ELECTROSTATICS */
803             velec            = _mm_mul_pd(qq30,rinv30);
804             felec            = _mm_mul_pd(velec,rinvsq30);
805
806             fscal            = felec;
807
808             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm_mul_pd(fscal,dx30);
812             ty               = _mm_mul_pd(fscal,dy30);
813             tz               = _mm_mul_pd(fscal,dz30);
814
815             /* Update vectorial force */
816             fix3             = _mm_add_pd(fix3,tx);
817             fiy3             = _mm_add_pd(fiy3,ty);
818             fiz3             = _mm_add_pd(fiz3,tz);
819
820             fjx0             = _mm_add_pd(fjx0,tx);
821             fjy0             = _mm_add_pd(fjy0,ty);
822             fjz0             = _mm_add_pd(fjz0,tz);
823
824             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
825
826             /* Inner loop uses 84 flops */
827         }
828
829         /* End of innermost loop */
830
831         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
832                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
833
834         /* Increment number of inner iterations */
835         inneriter                  += j_index_end - j_index_start;
836
837         /* Outer loop uses 18 flops */
838     }
839
840     /* Increment number of outer iterations */
841     outeriter        += nri;
842
843     /* Update outer/inner flops */
844
845     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);
846 }