f3eb1947f30c5e079ba46b34545256a9ff06d4fa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
125     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
126     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
153                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158         fix1             = _mm_setzero_pd();
159         fiy1             = _mm_setzero_pd();
160         fiz1             = _mm_setzero_pd();
161         fix2             = _mm_setzero_pd();
162         fiy2             = _mm_setzero_pd();
163         fiz2             = _mm_setzero_pd();
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_pd(ix0,jx0);
185             dy00             = _mm_sub_pd(iy0,jy0);
186             dz00             = _mm_sub_pd(iz0,jz0);
187             dx10             = _mm_sub_pd(ix1,jx0);
188             dy10             = _mm_sub_pd(iy1,jy0);
189             dz10             = _mm_sub_pd(iz1,jz0);
190             dx20             = _mm_sub_pd(ix2,jx0);
191             dy20             = _mm_sub_pd(iy2,jy0);
192             dz20             = _mm_sub_pd(iz2,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198
199             rinv00           = gmx_mm_invsqrt_pd(rsq00);
200             rinv10           = gmx_mm_invsqrt_pd(rsq10);
201             rinv20           = gmx_mm_invsqrt_pd(rsq20);
202
203             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
204             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
205             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211
212             fjx0             = _mm_setzero_pd();
213             fjy0             = _mm_setzero_pd();
214             fjz0             = _mm_setzero_pd();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_pd(iq0,jq0);
222             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
224
225             /* COULOMB ELECTROSTATICS */
226             velec            = _mm_mul_pd(qq00,rinv00);
227             felec            = _mm_mul_pd(velec,rinvsq00);
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
233             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
234             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
235             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm_add_pd(velecsum,velec);
239             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
240
241             fscal            = _mm_add_pd(felec,fvdw);
242
243             /* Calculate temporary vectorial force */
244             tx               = _mm_mul_pd(fscal,dx00);
245             ty               = _mm_mul_pd(fscal,dy00);
246             tz               = _mm_mul_pd(fscal,dz00);
247
248             /* Update vectorial force */
249             fix0             = _mm_add_pd(fix0,tx);
250             fiy0             = _mm_add_pd(fiy0,ty);
251             fiz0             = _mm_add_pd(fiz0,tz);
252
253             fjx0             = _mm_add_pd(fjx0,tx);
254             fjy0             = _mm_add_pd(fjy0,ty);
255             fjz0             = _mm_add_pd(fjz0,tz);
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq10             = _mm_mul_pd(iq1,jq0);
263
264             /* COULOMB ELECTROSTATICS */
265             velec            = _mm_mul_pd(qq10,rinv10);
266             felec            = _mm_mul_pd(velec,rinvsq10);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_pd(velecsum,velec);
270
271             fscal            = felec;
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_pd(fscal,dx10);
275             ty               = _mm_mul_pd(fscal,dy10);
276             tz               = _mm_mul_pd(fscal,dz10);
277
278             /* Update vectorial force */
279             fix1             = _mm_add_pd(fix1,tx);
280             fiy1             = _mm_add_pd(fiy1,ty);
281             fiz1             = _mm_add_pd(fiz1,tz);
282
283             fjx0             = _mm_add_pd(fjx0,tx);
284             fjy0             = _mm_add_pd(fjy0,ty);
285             fjz0             = _mm_add_pd(fjz0,tz);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq20             = _mm_mul_pd(iq2,jq0);
293
294             /* COULOMB ELECTROSTATICS */
295             velec            = _mm_mul_pd(qq20,rinv20);
296             felec            = _mm_mul_pd(velec,rinvsq20);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_pd(velecsum,velec);
300
301             fscal            = felec;
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_pd(fscal,dx20);
305             ty               = _mm_mul_pd(fscal,dy20);
306             tz               = _mm_mul_pd(fscal,dz20);
307
308             /* Update vectorial force */
309             fix2             = _mm_add_pd(fix2,tx);
310             fiy2             = _mm_add_pd(fiy2,ty);
311             fiz2             = _mm_add_pd(fiz2,tz);
312
313             fjx0             = _mm_add_pd(fjx0,tx);
314             fjy0             = _mm_add_pd(fjy0,ty);
315             fjz0             = _mm_add_pd(fjz0,tz);
316
317             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
318
319             /* Inner loop uses 99 flops */
320         }
321
322         if(jidx<j_index_end)
323         {
324
325             jnrA             = jjnr[jidx];
326             j_coord_offsetA  = DIM*jnrA;
327
328             /* load j atom coordinates */
329             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
330                                               &jx0,&jy0,&jz0);
331
332             /* Calculate displacement vector */
333             dx00             = _mm_sub_pd(ix0,jx0);
334             dy00             = _mm_sub_pd(iy0,jy0);
335             dz00             = _mm_sub_pd(iz0,jz0);
336             dx10             = _mm_sub_pd(ix1,jx0);
337             dy10             = _mm_sub_pd(iy1,jy0);
338             dz10             = _mm_sub_pd(iz1,jz0);
339             dx20             = _mm_sub_pd(ix2,jx0);
340             dy20             = _mm_sub_pd(iy2,jy0);
341             dz20             = _mm_sub_pd(iz2,jz0);
342
343             /* Calculate squared distance and things based on it */
344             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
345             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
346             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
347
348             rinv00           = gmx_mm_invsqrt_pd(rsq00);
349             rinv10           = gmx_mm_invsqrt_pd(rsq10);
350             rinv20           = gmx_mm_invsqrt_pd(rsq20);
351
352             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
353             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
354             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
355
356             /* Load parameters for j particles */
357             jq0              = _mm_load_sd(charge+jnrA+0);
358             vdwjidx0A        = 2*vdwtype[jnrA+0];
359
360             fjx0             = _mm_setzero_pd();
361             fjy0             = _mm_setzero_pd();
362             fjz0             = _mm_setzero_pd();
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq00             = _mm_mul_pd(iq0,jq0);
370             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
371
372             /* COULOMB ELECTROSTATICS */
373             velec            = _mm_mul_pd(qq00,rinv00);
374             felec            = _mm_mul_pd(velec,rinvsq00);
375
376             /* LENNARD-JONES DISPERSION/REPULSION */
377
378             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
379             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
380             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
381             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
382             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
386             velecsum         = _mm_add_pd(velecsum,velec);
387             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
388             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
389
390             fscal            = _mm_add_pd(felec,fvdw);
391
392             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_pd(fscal,dx00);
396             ty               = _mm_mul_pd(fscal,dy00);
397             tz               = _mm_mul_pd(fscal,dz00);
398
399             /* Update vectorial force */
400             fix0             = _mm_add_pd(fix0,tx);
401             fiy0             = _mm_add_pd(fiy0,ty);
402             fiz0             = _mm_add_pd(fiz0,tz);
403
404             fjx0             = _mm_add_pd(fjx0,tx);
405             fjy0             = _mm_add_pd(fjy0,ty);
406             fjz0             = _mm_add_pd(fjz0,tz);
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq10             = _mm_mul_pd(iq1,jq0);
414
415             /* COULOMB ELECTROSTATICS */
416             velec            = _mm_mul_pd(qq10,rinv10);
417             felec            = _mm_mul_pd(velec,rinvsq10);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
421             velecsum         = _mm_add_pd(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_pd(fscal,dx10);
429             ty               = _mm_mul_pd(fscal,dy10);
430             tz               = _mm_mul_pd(fscal,dz10);
431
432             /* Update vectorial force */
433             fix1             = _mm_add_pd(fix1,tx);
434             fiy1             = _mm_add_pd(fiy1,ty);
435             fiz1             = _mm_add_pd(fiz1,tz);
436
437             fjx0             = _mm_add_pd(fjx0,tx);
438             fjy0             = _mm_add_pd(fjy0,ty);
439             fjz0             = _mm_add_pd(fjz0,tz);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq20             = _mm_mul_pd(iq2,jq0);
447
448             /* COULOMB ELECTROSTATICS */
449             velec            = _mm_mul_pd(qq20,rinv20);
450             felec            = _mm_mul_pd(velec,rinvsq20);
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
454             velecsum         = _mm_add_pd(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_pd(fscal,dx20);
462             ty               = _mm_mul_pd(fscal,dy20);
463             tz               = _mm_mul_pd(fscal,dz20);
464
465             /* Update vectorial force */
466             fix2             = _mm_add_pd(fix2,tx);
467             fiy2             = _mm_add_pd(fiy2,ty);
468             fiz2             = _mm_add_pd(fiz2,tz);
469
470             fjx0             = _mm_add_pd(fjx0,tx);
471             fjy0             = _mm_add_pd(fjy0,ty);
472             fjz0             = _mm_add_pd(fjz0,tz);
473
474             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
475
476             /* Inner loop uses 99 flops */
477         }
478
479         /* End of innermost loop */
480
481         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
482                                               f+i_coord_offset,fshift+i_shift_offset);
483
484         ggid                        = gid[iidx];
485         /* Update potential energies */
486         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
487         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
488
489         /* Increment number of inner iterations */
490         inneriter                  += j_index_end - j_index_start;
491
492         /* Outer loop uses 20 flops */
493     }
494
495     /* Increment number of outer iterations */
496     outeriter        += nri;
497
498     /* Update outer/inner flops */
499
500     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*99);
501 }
502 /*
503  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_double
504  * Electrostatics interaction: Coulomb
505  * VdW interaction:            LennardJones
506  * Geometry:                   Water3-Particle
507  * Calculate force/pot:        Force
508  */
509 void
510 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_sse4_1_double
511                     (t_nblist                    * gmx_restrict       nlist,
512                      rvec                        * gmx_restrict          xx,
513                      rvec                        * gmx_restrict          ff,
514                      t_forcerec                  * gmx_restrict          fr,
515                      t_mdatoms                   * gmx_restrict     mdatoms,
516                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
517                      t_nrnb                      * gmx_restrict        nrnb)
518 {
519     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
520      * just 0 for non-waters.
521      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
522      * jnr indices corresponding to data put in the four positions in the SIMD register.
523      */
524     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
525     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
526     int              jnrA,jnrB;
527     int              j_coord_offsetA,j_coord_offsetB;
528     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
529     real             rcutoff_scalar;
530     real             *shiftvec,*fshift,*x,*f;
531     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
532     int              vdwioffset0;
533     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
534     int              vdwioffset1;
535     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
536     int              vdwioffset2;
537     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
538     int              vdwjidx0A,vdwjidx0B;
539     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
540     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
541     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
542     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
543     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
544     real             *charge;
545     int              nvdwtype;
546     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
547     int              *vdwtype;
548     real             *vdwparam;
549     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
550     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
551     __m128d          dummy_mask,cutoff_mask;
552     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
553     __m128d          one     = _mm_set1_pd(1.0);
554     __m128d          two     = _mm_set1_pd(2.0);
555     x                = xx[0];
556     f                = ff[0];
557
558     nri              = nlist->nri;
559     iinr             = nlist->iinr;
560     jindex           = nlist->jindex;
561     jjnr             = nlist->jjnr;
562     shiftidx         = nlist->shift;
563     gid              = nlist->gid;
564     shiftvec         = fr->shift_vec[0];
565     fshift           = fr->fshift[0];
566     facel            = _mm_set1_pd(fr->epsfac);
567     charge           = mdatoms->chargeA;
568     nvdwtype         = fr->ntype;
569     vdwparam         = fr->nbfp;
570     vdwtype          = mdatoms->typeA;
571
572     /* Setup water-specific parameters */
573     inr              = nlist->iinr[0];
574     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
575     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
576     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
577     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
578
579     /* Avoid stupid compiler warnings */
580     jnrA = jnrB = 0;
581     j_coord_offsetA = 0;
582     j_coord_offsetB = 0;
583
584     outeriter        = 0;
585     inneriter        = 0;
586
587     /* Start outer loop over neighborlists */
588     for(iidx=0; iidx<nri; iidx++)
589     {
590         /* Load shift vector for this list */
591         i_shift_offset   = DIM*shiftidx[iidx];
592
593         /* Load limits for loop over neighbors */
594         j_index_start    = jindex[iidx];
595         j_index_end      = jindex[iidx+1];
596
597         /* Get outer coordinate index */
598         inr              = iinr[iidx];
599         i_coord_offset   = DIM*inr;
600
601         /* Load i particle coords and add shift vector */
602         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
603                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
604
605         fix0             = _mm_setzero_pd();
606         fiy0             = _mm_setzero_pd();
607         fiz0             = _mm_setzero_pd();
608         fix1             = _mm_setzero_pd();
609         fiy1             = _mm_setzero_pd();
610         fiz1             = _mm_setzero_pd();
611         fix2             = _mm_setzero_pd();
612         fiy2             = _mm_setzero_pd();
613         fiz2             = _mm_setzero_pd();
614
615         /* Start inner kernel loop */
616         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
617         {
618
619             /* Get j neighbor index, and coordinate index */
620             jnrA             = jjnr[jidx];
621             jnrB             = jjnr[jidx+1];
622             j_coord_offsetA  = DIM*jnrA;
623             j_coord_offsetB  = DIM*jnrB;
624
625             /* load j atom coordinates */
626             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
627                                               &jx0,&jy0,&jz0);
628
629             /* Calculate displacement vector */
630             dx00             = _mm_sub_pd(ix0,jx0);
631             dy00             = _mm_sub_pd(iy0,jy0);
632             dz00             = _mm_sub_pd(iz0,jz0);
633             dx10             = _mm_sub_pd(ix1,jx0);
634             dy10             = _mm_sub_pd(iy1,jy0);
635             dz10             = _mm_sub_pd(iz1,jz0);
636             dx20             = _mm_sub_pd(ix2,jx0);
637             dy20             = _mm_sub_pd(iy2,jy0);
638             dz20             = _mm_sub_pd(iz2,jz0);
639
640             /* Calculate squared distance and things based on it */
641             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
642             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
643             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
644
645             rinv00           = gmx_mm_invsqrt_pd(rsq00);
646             rinv10           = gmx_mm_invsqrt_pd(rsq10);
647             rinv20           = gmx_mm_invsqrt_pd(rsq20);
648
649             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
650             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
651             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
652
653             /* Load parameters for j particles */
654             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
655             vdwjidx0A        = 2*vdwtype[jnrA+0];
656             vdwjidx0B        = 2*vdwtype[jnrB+0];
657
658             fjx0             = _mm_setzero_pd();
659             fjy0             = _mm_setzero_pd();
660             fjz0             = _mm_setzero_pd();
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq00             = _mm_mul_pd(iq0,jq0);
668             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
669                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
670
671             /* COULOMB ELECTROSTATICS */
672             velec            = _mm_mul_pd(qq00,rinv00);
673             felec            = _mm_mul_pd(velec,rinvsq00);
674
675             /* LENNARD-JONES DISPERSION/REPULSION */
676
677             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
678             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
679
680             fscal            = _mm_add_pd(felec,fvdw);
681
682             /* Calculate temporary vectorial force */
683             tx               = _mm_mul_pd(fscal,dx00);
684             ty               = _mm_mul_pd(fscal,dy00);
685             tz               = _mm_mul_pd(fscal,dz00);
686
687             /* Update vectorial force */
688             fix0             = _mm_add_pd(fix0,tx);
689             fiy0             = _mm_add_pd(fiy0,ty);
690             fiz0             = _mm_add_pd(fiz0,tz);
691
692             fjx0             = _mm_add_pd(fjx0,tx);
693             fjy0             = _mm_add_pd(fjy0,ty);
694             fjz0             = _mm_add_pd(fjz0,tz);
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             /* Compute parameters for interactions between i and j atoms */
701             qq10             = _mm_mul_pd(iq1,jq0);
702
703             /* COULOMB ELECTROSTATICS */
704             velec            = _mm_mul_pd(qq10,rinv10);
705             felec            = _mm_mul_pd(velec,rinvsq10);
706
707             fscal            = felec;
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm_mul_pd(fscal,dx10);
711             ty               = _mm_mul_pd(fscal,dy10);
712             tz               = _mm_mul_pd(fscal,dz10);
713
714             /* Update vectorial force */
715             fix1             = _mm_add_pd(fix1,tx);
716             fiy1             = _mm_add_pd(fiy1,ty);
717             fiz1             = _mm_add_pd(fiz1,tz);
718
719             fjx0             = _mm_add_pd(fjx0,tx);
720             fjy0             = _mm_add_pd(fjy0,ty);
721             fjz0             = _mm_add_pd(fjz0,tz);
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             /* Compute parameters for interactions between i and j atoms */
728             qq20             = _mm_mul_pd(iq2,jq0);
729
730             /* COULOMB ELECTROSTATICS */
731             velec            = _mm_mul_pd(qq20,rinv20);
732             felec            = _mm_mul_pd(velec,rinvsq20);
733
734             fscal            = felec;
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm_mul_pd(fscal,dx20);
738             ty               = _mm_mul_pd(fscal,dy20);
739             tz               = _mm_mul_pd(fscal,dz20);
740
741             /* Update vectorial force */
742             fix2             = _mm_add_pd(fix2,tx);
743             fiy2             = _mm_add_pd(fiy2,ty);
744             fiz2             = _mm_add_pd(fiz2,tz);
745
746             fjx0             = _mm_add_pd(fjx0,tx);
747             fjy0             = _mm_add_pd(fjy0,ty);
748             fjz0             = _mm_add_pd(fjz0,tz);
749
750             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
751
752             /* Inner loop uses 91 flops */
753         }
754
755         if(jidx<j_index_end)
756         {
757
758             jnrA             = jjnr[jidx];
759             j_coord_offsetA  = DIM*jnrA;
760
761             /* load j atom coordinates */
762             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
763                                               &jx0,&jy0,&jz0);
764
765             /* Calculate displacement vector */
766             dx00             = _mm_sub_pd(ix0,jx0);
767             dy00             = _mm_sub_pd(iy0,jy0);
768             dz00             = _mm_sub_pd(iz0,jz0);
769             dx10             = _mm_sub_pd(ix1,jx0);
770             dy10             = _mm_sub_pd(iy1,jy0);
771             dz10             = _mm_sub_pd(iz1,jz0);
772             dx20             = _mm_sub_pd(ix2,jx0);
773             dy20             = _mm_sub_pd(iy2,jy0);
774             dz20             = _mm_sub_pd(iz2,jz0);
775
776             /* Calculate squared distance and things based on it */
777             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
778             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
779             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
780
781             rinv00           = gmx_mm_invsqrt_pd(rsq00);
782             rinv10           = gmx_mm_invsqrt_pd(rsq10);
783             rinv20           = gmx_mm_invsqrt_pd(rsq20);
784
785             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
786             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
787             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
788
789             /* Load parameters for j particles */
790             jq0              = _mm_load_sd(charge+jnrA+0);
791             vdwjidx0A        = 2*vdwtype[jnrA+0];
792
793             fjx0             = _mm_setzero_pd();
794             fjy0             = _mm_setzero_pd();
795             fjz0             = _mm_setzero_pd();
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq00             = _mm_mul_pd(iq0,jq0);
803             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
804
805             /* COULOMB ELECTROSTATICS */
806             velec            = _mm_mul_pd(qq00,rinv00);
807             felec            = _mm_mul_pd(velec,rinvsq00);
808
809             /* LENNARD-JONES DISPERSION/REPULSION */
810
811             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
812             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
813
814             fscal            = _mm_add_pd(felec,fvdw);
815
816             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
817
818             /* Calculate temporary vectorial force */
819             tx               = _mm_mul_pd(fscal,dx00);
820             ty               = _mm_mul_pd(fscal,dy00);
821             tz               = _mm_mul_pd(fscal,dz00);
822
823             /* Update vectorial force */
824             fix0             = _mm_add_pd(fix0,tx);
825             fiy0             = _mm_add_pd(fiy0,ty);
826             fiz0             = _mm_add_pd(fiz0,tz);
827
828             fjx0             = _mm_add_pd(fjx0,tx);
829             fjy0             = _mm_add_pd(fjy0,ty);
830             fjz0             = _mm_add_pd(fjz0,tz);
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq10             = _mm_mul_pd(iq1,jq0);
838
839             /* COULOMB ELECTROSTATICS */
840             velec            = _mm_mul_pd(qq10,rinv10);
841             felec            = _mm_mul_pd(velec,rinvsq10);
842
843             fscal            = felec;
844
845             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
846
847             /* Calculate temporary vectorial force */
848             tx               = _mm_mul_pd(fscal,dx10);
849             ty               = _mm_mul_pd(fscal,dy10);
850             tz               = _mm_mul_pd(fscal,dz10);
851
852             /* Update vectorial force */
853             fix1             = _mm_add_pd(fix1,tx);
854             fiy1             = _mm_add_pd(fiy1,ty);
855             fiz1             = _mm_add_pd(fiz1,tz);
856
857             fjx0             = _mm_add_pd(fjx0,tx);
858             fjy0             = _mm_add_pd(fjy0,ty);
859             fjz0             = _mm_add_pd(fjz0,tz);
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             /* Compute parameters for interactions between i and j atoms */
866             qq20             = _mm_mul_pd(iq2,jq0);
867
868             /* COULOMB ELECTROSTATICS */
869             velec            = _mm_mul_pd(qq20,rinv20);
870             felec            = _mm_mul_pd(velec,rinvsq20);
871
872             fscal            = felec;
873
874             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
875
876             /* Calculate temporary vectorial force */
877             tx               = _mm_mul_pd(fscal,dx20);
878             ty               = _mm_mul_pd(fscal,dy20);
879             tz               = _mm_mul_pd(fscal,dz20);
880
881             /* Update vectorial force */
882             fix2             = _mm_add_pd(fix2,tx);
883             fiy2             = _mm_add_pd(fiy2,ty);
884             fiz2             = _mm_add_pd(fiz2,tz);
885
886             fjx0             = _mm_add_pd(fjx0,tx);
887             fjy0             = _mm_add_pd(fjy0,ty);
888             fjz0             = _mm_add_pd(fjz0,tz);
889
890             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
891
892             /* Inner loop uses 91 flops */
893         }
894
895         /* End of innermost loop */
896
897         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
898                                               f+i_coord_offset,fshift+i_shift_offset);
899
900         /* Increment number of inner iterations */
901         inneriter                  += j_index_end - j_index_start;
902
903         /* Outer loop uses 18 flops */
904     }
905
906     /* Increment number of outer iterations */
907     outeriter        += nri;
908
909     /* Update outer/inner flops */
910
911     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
912 }