Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
132     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
133     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171         fix3             = _mm_setzero_pd();
172         fiy3             = _mm_setzero_pd();
173         fiz3             = _mm_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_pd();
177         vvdwsum          = _mm_setzero_pd();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_pd(ix0,jx0);
195             dy00             = _mm_sub_pd(iy0,jy0);
196             dz00             = _mm_sub_pd(iz0,jz0);
197             dx10             = _mm_sub_pd(ix1,jx0);
198             dy10             = _mm_sub_pd(iy1,jy0);
199             dz10             = _mm_sub_pd(iz1,jz0);
200             dx20             = _mm_sub_pd(ix2,jx0);
201             dy20             = _mm_sub_pd(iy2,jy0);
202             dz20             = _mm_sub_pd(iz2,jz0);
203             dx30             = _mm_sub_pd(ix3,jx0);
204             dy30             = _mm_sub_pd(iy3,jy0);
205             dz30             = _mm_sub_pd(iz3,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
212
213             rinv00           = sse41_invsqrt_d(rsq00);
214             rinv10           = sse41_invsqrt_d(rsq10);
215             rinv20           = sse41_invsqrt_d(rsq20);
216             rinv30           = sse41_invsqrt_d(rsq30);
217
218             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
219             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
220             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r00              = _mm_mul_pd(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
240
241             /* Calculate table index by multiplying r with table scale and truncate to integer */
242             rt               = _mm_mul_pd(r00,vftabscale);
243             vfitab           = _mm_cvttpd_epi32(rt);
244             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
245             vfitab           = _mm_slli_epi32(vfitab,3);
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Heps             = _mm_mul_pd(vfeps,H);
255             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
256             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
257             vvdw6            = _mm_mul_pd(c6_00,VV);
258             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
259             fvdw6            = _mm_mul_pd(c6_00,FF);
260
261             /* CUBIC SPLINE TABLE REPULSION */
262             vfitab           = _mm_add_epi32(vfitab,ifour);
263             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
265             GMX_MM_TRANSPOSE2_PD(Y,F);
266             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
267             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
268             GMX_MM_TRANSPOSE2_PD(G,H);
269             Heps             = _mm_mul_pd(vfeps,H);
270             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
271             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
272             vvdw12           = _mm_mul_pd(c12_00,VV);
273             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
274             fvdw12           = _mm_mul_pd(c12_00,FF);
275             vvdw             = _mm_add_pd(vvdw12,vvdw6);
276             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
280
281             fscal            = fvdw;
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_pd(fscal,dx00);
285             ty               = _mm_mul_pd(fscal,dy00);
286             tz               = _mm_mul_pd(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_pd(fix0,tx);
290             fiy0             = _mm_add_pd(fiy0,ty);
291             fiz0             = _mm_add_pd(fiz0,tz);
292
293             fjx0             = _mm_add_pd(fjx0,tx);
294             fjy0             = _mm_add_pd(fjy0,ty);
295             fjz0             = _mm_add_pd(fjz0,tz);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_pd(iq1,jq0);
303
304             /* COULOMB ELECTROSTATICS */
305             velec            = _mm_mul_pd(qq10,rinv10);
306             felec            = _mm_mul_pd(velec,rinvsq10);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm_add_pd(velecsum,velec);
310
311             fscal            = felec;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_pd(fscal,dx10);
315             ty               = _mm_mul_pd(fscal,dy10);
316             tz               = _mm_mul_pd(fscal,dz10);
317
318             /* Update vectorial force */
319             fix1             = _mm_add_pd(fix1,tx);
320             fiy1             = _mm_add_pd(fiy1,ty);
321             fiz1             = _mm_add_pd(fiz1,tz);
322
323             fjx0             = _mm_add_pd(fjx0,tx);
324             fjy0             = _mm_add_pd(fjy0,ty);
325             fjz0             = _mm_add_pd(fjz0,tz);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm_mul_pd(iq2,jq0);
333
334             /* COULOMB ELECTROSTATICS */
335             velec            = _mm_mul_pd(qq20,rinv20);
336             felec            = _mm_mul_pd(velec,rinvsq20);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_pd(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_pd(fscal,dx20);
345             ty               = _mm_mul_pd(fscal,dy20);
346             tz               = _mm_mul_pd(fscal,dz20);
347
348             /* Update vectorial force */
349             fix2             = _mm_add_pd(fix2,tx);
350             fiy2             = _mm_add_pd(fiy2,ty);
351             fiz2             = _mm_add_pd(fiz2,tz);
352
353             fjx0             = _mm_add_pd(fjx0,tx);
354             fjy0             = _mm_add_pd(fjy0,ty);
355             fjz0             = _mm_add_pd(fjz0,tz);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq30             = _mm_mul_pd(iq3,jq0);
363
364             /* COULOMB ELECTROSTATICS */
365             velec            = _mm_mul_pd(qq30,rinv30);
366             felec            = _mm_mul_pd(velec,rinvsq30);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velecsum         = _mm_add_pd(velecsum,velec);
370
371             fscal            = felec;
372
373             /* Calculate temporary vectorial force */
374             tx               = _mm_mul_pd(fscal,dx30);
375             ty               = _mm_mul_pd(fscal,dy30);
376             tz               = _mm_mul_pd(fscal,dz30);
377
378             /* Update vectorial force */
379             fix3             = _mm_add_pd(fix3,tx);
380             fiy3             = _mm_add_pd(fiy3,ty);
381             fiz3             = _mm_add_pd(fiz3,tz);
382
383             fjx0             = _mm_add_pd(fjx0,tx);
384             fjy0             = _mm_add_pd(fjy0,ty);
385             fjz0             = _mm_add_pd(fjz0,tz);
386
387             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
388
389             /* Inner loop uses 143 flops */
390         }
391
392         if(jidx<j_index_end)
393         {
394
395             jnrA             = jjnr[jidx];
396             j_coord_offsetA  = DIM*jnrA;
397
398             /* load j atom coordinates */
399             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
400                                               &jx0,&jy0,&jz0);
401
402             /* Calculate displacement vector */
403             dx00             = _mm_sub_pd(ix0,jx0);
404             dy00             = _mm_sub_pd(iy0,jy0);
405             dz00             = _mm_sub_pd(iz0,jz0);
406             dx10             = _mm_sub_pd(ix1,jx0);
407             dy10             = _mm_sub_pd(iy1,jy0);
408             dz10             = _mm_sub_pd(iz1,jz0);
409             dx20             = _mm_sub_pd(ix2,jx0);
410             dy20             = _mm_sub_pd(iy2,jy0);
411             dz20             = _mm_sub_pd(iz2,jz0);
412             dx30             = _mm_sub_pd(ix3,jx0);
413             dy30             = _mm_sub_pd(iy3,jy0);
414             dz30             = _mm_sub_pd(iz3,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
420             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
421
422             rinv00           = sse41_invsqrt_d(rsq00);
423             rinv10           = sse41_invsqrt_d(rsq10);
424             rinv20           = sse41_invsqrt_d(rsq20);
425             rinv30           = sse41_invsqrt_d(rsq30);
426
427             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
428             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
429             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
430
431             /* Load parameters for j particles */
432             jq0              = _mm_load_sd(charge+jnrA+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434
435             fjx0             = _mm_setzero_pd();
436             fjy0             = _mm_setzero_pd();
437             fjz0             = _mm_setzero_pd();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             r00              = _mm_mul_pd(rsq00,rinv00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
447
448             /* Calculate table index by multiplying r with table scale and truncate to integer */
449             rt               = _mm_mul_pd(r00,vftabscale);
450             vfitab           = _mm_cvttpd_epi32(rt);
451             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
452             vfitab           = _mm_slli_epi32(vfitab,3);
453
454             /* CUBIC SPLINE TABLE DISPERSION */
455             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
456             F                = _mm_setzero_pd();
457             GMX_MM_TRANSPOSE2_PD(Y,F);
458             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
459             H                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(G,H);
461             Heps             = _mm_mul_pd(vfeps,H);
462             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
463             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
464             vvdw6            = _mm_mul_pd(c6_00,VV);
465             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
466             fvdw6            = _mm_mul_pd(c6_00,FF);
467
468             /* CUBIC SPLINE TABLE REPULSION */
469             vfitab           = _mm_add_epi32(vfitab,ifour);
470             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
471             F                = _mm_setzero_pd();
472             GMX_MM_TRANSPOSE2_PD(Y,F);
473             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
474             H                = _mm_setzero_pd();
475             GMX_MM_TRANSPOSE2_PD(G,H);
476             Heps             = _mm_mul_pd(vfeps,H);
477             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
478             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
479             vvdw12           = _mm_mul_pd(c12_00,VV);
480             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
481             fvdw12           = _mm_mul_pd(c12_00,FF);
482             vvdw             = _mm_add_pd(vvdw12,vvdw6);
483             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
487             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
488
489             fscal            = fvdw;
490
491             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
492
493             /* Calculate temporary vectorial force */
494             tx               = _mm_mul_pd(fscal,dx00);
495             ty               = _mm_mul_pd(fscal,dy00);
496             tz               = _mm_mul_pd(fscal,dz00);
497
498             /* Update vectorial force */
499             fix0             = _mm_add_pd(fix0,tx);
500             fiy0             = _mm_add_pd(fiy0,ty);
501             fiz0             = _mm_add_pd(fiz0,tz);
502
503             fjx0             = _mm_add_pd(fjx0,tx);
504             fjy0             = _mm_add_pd(fjy0,ty);
505             fjz0             = _mm_add_pd(fjz0,tz);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq10             = _mm_mul_pd(iq1,jq0);
513
514             /* COULOMB ELECTROSTATICS */
515             velec            = _mm_mul_pd(qq10,rinv10);
516             felec            = _mm_mul_pd(velec,rinvsq10);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm_mul_pd(fscal,dx10);
528             ty               = _mm_mul_pd(fscal,dy10);
529             tz               = _mm_mul_pd(fscal,dz10);
530
531             /* Update vectorial force */
532             fix1             = _mm_add_pd(fix1,tx);
533             fiy1             = _mm_add_pd(fiy1,ty);
534             fiz1             = _mm_add_pd(fiz1,tz);
535
536             fjx0             = _mm_add_pd(fjx0,tx);
537             fjy0             = _mm_add_pd(fjy0,ty);
538             fjz0             = _mm_add_pd(fjz0,tz);
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq20             = _mm_mul_pd(iq2,jq0);
546
547             /* COULOMB ELECTROSTATICS */
548             velec            = _mm_mul_pd(qq20,rinv20);
549             felec            = _mm_mul_pd(velec,rinvsq20);
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
553             velecsum         = _mm_add_pd(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_pd(fscal,dx20);
561             ty               = _mm_mul_pd(fscal,dy20);
562             tz               = _mm_mul_pd(fscal,dz20);
563
564             /* Update vectorial force */
565             fix2             = _mm_add_pd(fix2,tx);
566             fiy2             = _mm_add_pd(fiy2,ty);
567             fiz2             = _mm_add_pd(fiz2,tz);
568
569             fjx0             = _mm_add_pd(fjx0,tx);
570             fjy0             = _mm_add_pd(fjy0,ty);
571             fjz0             = _mm_add_pd(fjz0,tz);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq30             = _mm_mul_pd(iq3,jq0);
579
580             /* COULOMB ELECTROSTATICS */
581             velec            = _mm_mul_pd(qq30,rinv30);
582             felec            = _mm_mul_pd(velec,rinvsq30);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
586             velecsum         = _mm_add_pd(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm_mul_pd(fscal,dx30);
594             ty               = _mm_mul_pd(fscal,dy30);
595             tz               = _mm_mul_pd(fscal,dz30);
596
597             /* Update vectorial force */
598             fix3             = _mm_add_pd(fix3,tx);
599             fiy3             = _mm_add_pd(fiy3,ty);
600             fiz3             = _mm_add_pd(fiz3,tz);
601
602             fjx0             = _mm_add_pd(fjx0,tx);
603             fjy0             = _mm_add_pd(fjy0,ty);
604             fjz0             = _mm_add_pd(fjz0,tz);
605
606             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
607
608             /* Inner loop uses 143 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
614                                               f+i_coord_offset,fshift+i_shift_offset);
615
616         ggid                        = gid[iidx];
617         /* Update potential energies */
618         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
619         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 26 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*143);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
636  * Electrostatics interaction: Coulomb
637  * VdW interaction:            CubicSplineTable
638  * Geometry:                   Water4-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      struct t_forcerec           * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
652      * just 0 for non-waters.
653      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB;
659     int              j_coord_offsetA,j_coord_offsetB;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
664     int              vdwioffset0;
665     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
666     int              vdwioffset1;
667     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
668     int              vdwioffset2;
669     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
670     int              vdwioffset3;
671     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
672     int              vdwjidx0A,vdwjidx0B;
673     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
678     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
679     real             *charge;
680     int              nvdwtype;
681     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
682     int              *vdwtype;
683     real             *vdwparam;
684     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
685     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
686     __m128i          vfitab;
687     __m128i          ifour       = _mm_set1_epi32(4);
688     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
689     real             *vftab;
690     __m128d          dummy_mask,cutoff_mask;
691     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
692     __m128d          one     = _mm_set1_pd(1.0);
693     __m128d          two     = _mm_set1_pd(2.0);
694     x                = xx[0];
695     f                = ff[0];
696
697     nri              = nlist->nri;
698     iinr             = nlist->iinr;
699     jindex           = nlist->jindex;
700     jjnr             = nlist->jjnr;
701     shiftidx         = nlist->shift;
702     gid              = nlist->gid;
703     shiftvec         = fr->shift_vec[0];
704     fshift           = fr->fshift[0];
705     facel            = _mm_set1_pd(fr->ic->epsfac);
706     charge           = mdatoms->chargeA;
707     nvdwtype         = fr->ntype;
708     vdwparam         = fr->nbfp;
709     vdwtype          = mdatoms->typeA;
710
711     vftab            = kernel_data->table_vdw->data;
712     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
713
714     /* Setup water-specific parameters */
715     inr              = nlist->iinr[0];
716     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
717     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
718     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
719     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
720
721     /* Avoid stupid compiler warnings */
722     jnrA = jnrB = 0;
723     j_coord_offsetA = 0;
724     j_coord_offsetB = 0;
725
726     outeriter        = 0;
727     inneriter        = 0;
728
729     /* Start outer loop over neighborlists */
730     for(iidx=0; iidx<nri; iidx++)
731     {
732         /* Load shift vector for this list */
733         i_shift_offset   = DIM*shiftidx[iidx];
734
735         /* Load limits for loop over neighbors */
736         j_index_start    = jindex[iidx];
737         j_index_end      = jindex[iidx+1];
738
739         /* Get outer coordinate index */
740         inr              = iinr[iidx];
741         i_coord_offset   = DIM*inr;
742
743         /* Load i particle coords and add shift vector */
744         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
745                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
746
747         fix0             = _mm_setzero_pd();
748         fiy0             = _mm_setzero_pd();
749         fiz0             = _mm_setzero_pd();
750         fix1             = _mm_setzero_pd();
751         fiy1             = _mm_setzero_pd();
752         fiz1             = _mm_setzero_pd();
753         fix2             = _mm_setzero_pd();
754         fiy2             = _mm_setzero_pd();
755         fiz2             = _mm_setzero_pd();
756         fix3             = _mm_setzero_pd();
757         fiy3             = _mm_setzero_pd();
758         fiz3             = _mm_setzero_pd();
759
760         /* Start inner kernel loop */
761         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
762         {
763
764             /* Get j neighbor index, and coordinate index */
765             jnrA             = jjnr[jidx];
766             jnrB             = jjnr[jidx+1];
767             j_coord_offsetA  = DIM*jnrA;
768             j_coord_offsetB  = DIM*jnrB;
769
770             /* load j atom coordinates */
771             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
772                                               &jx0,&jy0,&jz0);
773
774             /* Calculate displacement vector */
775             dx00             = _mm_sub_pd(ix0,jx0);
776             dy00             = _mm_sub_pd(iy0,jy0);
777             dz00             = _mm_sub_pd(iz0,jz0);
778             dx10             = _mm_sub_pd(ix1,jx0);
779             dy10             = _mm_sub_pd(iy1,jy0);
780             dz10             = _mm_sub_pd(iz1,jz0);
781             dx20             = _mm_sub_pd(ix2,jx0);
782             dy20             = _mm_sub_pd(iy2,jy0);
783             dz20             = _mm_sub_pd(iz2,jz0);
784             dx30             = _mm_sub_pd(ix3,jx0);
785             dy30             = _mm_sub_pd(iy3,jy0);
786             dz30             = _mm_sub_pd(iz3,jz0);
787
788             /* Calculate squared distance and things based on it */
789             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
790             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
791             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
792             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
793
794             rinv00           = sse41_invsqrt_d(rsq00);
795             rinv10           = sse41_invsqrt_d(rsq10);
796             rinv20           = sse41_invsqrt_d(rsq20);
797             rinv30           = sse41_invsqrt_d(rsq30);
798
799             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
800             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
801             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
802
803             /* Load parameters for j particles */
804             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
805             vdwjidx0A        = 2*vdwtype[jnrA+0];
806             vdwjidx0B        = 2*vdwtype[jnrB+0];
807
808             fjx0             = _mm_setzero_pd();
809             fjy0             = _mm_setzero_pd();
810             fjz0             = _mm_setzero_pd();
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             r00              = _mm_mul_pd(rsq00,rinv00);
817
818             /* Compute parameters for interactions between i and j atoms */
819             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
820                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
821
822             /* Calculate table index by multiplying r with table scale and truncate to integer */
823             rt               = _mm_mul_pd(r00,vftabscale);
824             vfitab           = _mm_cvttpd_epi32(rt);
825             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
826             vfitab           = _mm_slli_epi32(vfitab,3);
827
828             /* CUBIC SPLINE TABLE DISPERSION */
829             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
830             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
831             GMX_MM_TRANSPOSE2_PD(Y,F);
832             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
833             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
834             GMX_MM_TRANSPOSE2_PD(G,H);
835             Heps             = _mm_mul_pd(vfeps,H);
836             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
837             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
838             fvdw6            = _mm_mul_pd(c6_00,FF);
839
840             /* CUBIC SPLINE TABLE REPULSION */
841             vfitab           = _mm_add_epi32(vfitab,ifour);
842             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
843             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
844             GMX_MM_TRANSPOSE2_PD(Y,F);
845             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
846             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
847             GMX_MM_TRANSPOSE2_PD(G,H);
848             Heps             = _mm_mul_pd(vfeps,H);
849             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
850             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
851             fvdw12           = _mm_mul_pd(c12_00,FF);
852             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
853
854             fscal            = fvdw;
855
856             /* Calculate temporary vectorial force */
857             tx               = _mm_mul_pd(fscal,dx00);
858             ty               = _mm_mul_pd(fscal,dy00);
859             tz               = _mm_mul_pd(fscal,dz00);
860
861             /* Update vectorial force */
862             fix0             = _mm_add_pd(fix0,tx);
863             fiy0             = _mm_add_pd(fiy0,ty);
864             fiz0             = _mm_add_pd(fiz0,tz);
865
866             fjx0             = _mm_add_pd(fjx0,tx);
867             fjy0             = _mm_add_pd(fjy0,ty);
868             fjz0             = _mm_add_pd(fjz0,tz);
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq10             = _mm_mul_pd(iq1,jq0);
876
877             /* COULOMB ELECTROSTATICS */
878             velec            = _mm_mul_pd(qq10,rinv10);
879             felec            = _mm_mul_pd(velec,rinvsq10);
880
881             fscal            = felec;
882
883             /* Calculate temporary vectorial force */
884             tx               = _mm_mul_pd(fscal,dx10);
885             ty               = _mm_mul_pd(fscal,dy10);
886             tz               = _mm_mul_pd(fscal,dz10);
887
888             /* Update vectorial force */
889             fix1             = _mm_add_pd(fix1,tx);
890             fiy1             = _mm_add_pd(fiy1,ty);
891             fiz1             = _mm_add_pd(fiz1,tz);
892
893             fjx0             = _mm_add_pd(fjx0,tx);
894             fjy0             = _mm_add_pd(fjy0,ty);
895             fjz0             = _mm_add_pd(fjz0,tz);
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq20             = _mm_mul_pd(iq2,jq0);
903
904             /* COULOMB ELECTROSTATICS */
905             velec            = _mm_mul_pd(qq20,rinv20);
906             felec            = _mm_mul_pd(velec,rinvsq20);
907
908             fscal            = felec;
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm_mul_pd(fscal,dx20);
912             ty               = _mm_mul_pd(fscal,dy20);
913             tz               = _mm_mul_pd(fscal,dz20);
914
915             /* Update vectorial force */
916             fix2             = _mm_add_pd(fix2,tx);
917             fiy2             = _mm_add_pd(fiy2,ty);
918             fiz2             = _mm_add_pd(fiz2,tz);
919
920             fjx0             = _mm_add_pd(fjx0,tx);
921             fjy0             = _mm_add_pd(fjy0,ty);
922             fjz0             = _mm_add_pd(fjz0,tz);
923
924             /**************************
925              * CALCULATE INTERACTIONS *
926              **************************/
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq30             = _mm_mul_pd(iq3,jq0);
930
931             /* COULOMB ELECTROSTATICS */
932             velec            = _mm_mul_pd(qq30,rinv30);
933             felec            = _mm_mul_pd(velec,rinvsq30);
934
935             fscal            = felec;
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm_mul_pd(fscal,dx30);
939             ty               = _mm_mul_pd(fscal,dy30);
940             tz               = _mm_mul_pd(fscal,dz30);
941
942             /* Update vectorial force */
943             fix3             = _mm_add_pd(fix3,tx);
944             fiy3             = _mm_add_pd(fiy3,ty);
945             fiz3             = _mm_add_pd(fiz3,tz);
946
947             fjx0             = _mm_add_pd(fjx0,tx);
948             fjy0             = _mm_add_pd(fjy0,ty);
949             fjz0             = _mm_add_pd(fjz0,tz);
950
951             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
952
953             /* Inner loop uses 132 flops */
954         }
955
956         if(jidx<j_index_end)
957         {
958
959             jnrA             = jjnr[jidx];
960             j_coord_offsetA  = DIM*jnrA;
961
962             /* load j atom coordinates */
963             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
964                                               &jx0,&jy0,&jz0);
965
966             /* Calculate displacement vector */
967             dx00             = _mm_sub_pd(ix0,jx0);
968             dy00             = _mm_sub_pd(iy0,jy0);
969             dz00             = _mm_sub_pd(iz0,jz0);
970             dx10             = _mm_sub_pd(ix1,jx0);
971             dy10             = _mm_sub_pd(iy1,jy0);
972             dz10             = _mm_sub_pd(iz1,jz0);
973             dx20             = _mm_sub_pd(ix2,jx0);
974             dy20             = _mm_sub_pd(iy2,jy0);
975             dz20             = _mm_sub_pd(iz2,jz0);
976             dx30             = _mm_sub_pd(ix3,jx0);
977             dy30             = _mm_sub_pd(iy3,jy0);
978             dz30             = _mm_sub_pd(iz3,jz0);
979
980             /* Calculate squared distance and things based on it */
981             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
982             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
983             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
984             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
985
986             rinv00           = sse41_invsqrt_d(rsq00);
987             rinv10           = sse41_invsqrt_d(rsq10);
988             rinv20           = sse41_invsqrt_d(rsq20);
989             rinv30           = sse41_invsqrt_d(rsq30);
990
991             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
992             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
993             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
994
995             /* Load parameters for j particles */
996             jq0              = _mm_load_sd(charge+jnrA+0);
997             vdwjidx0A        = 2*vdwtype[jnrA+0];
998
999             fjx0             = _mm_setzero_pd();
1000             fjy0             = _mm_setzero_pd();
1001             fjz0             = _mm_setzero_pd();
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r00              = _mm_mul_pd(rsq00,rinv00);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1011
1012             /* Calculate table index by multiplying r with table scale and truncate to integer */
1013             rt               = _mm_mul_pd(r00,vftabscale);
1014             vfitab           = _mm_cvttpd_epi32(rt);
1015             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1016             vfitab           = _mm_slli_epi32(vfitab,3);
1017
1018             /* CUBIC SPLINE TABLE DISPERSION */
1019             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1020             F                = _mm_setzero_pd();
1021             GMX_MM_TRANSPOSE2_PD(Y,F);
1022             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1023             H                = _mm_setzero_pd();
1024             GMX_MM_TRANSPOSE2_PD(G,H);
1025             Heps             = _mm_mul_pd(vfeps,H);
1026             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1027             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1028             fvdw6            = _mm_mul_pd(c6_00,FF);
1029
1030             /* CUBIC SPLINE TABLE REPULSION */
1031             vfitab           = _mm_add_epi32(vfitab,ifour);
1032             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1033             F                = _mm_setzero_pd();
1034             GMX_MM_TRANSPOSE2_PD(Y,F);
1035             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1036             H                = _mm_setzero_pd();
1037             GMX_MM_TRANSPOSE2_PD(G,H);
1038             Heps             = _mm_mul_pd(vfeps,H);
1039             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1040             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1041             fvdw12           = _mm_mul_pd(c12_00,FF);
1042             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1043
1044             fscal            = fvdw;
1045
1046             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm_mul_pd(fscal,dx00);
1050             ty               = _mm_mul_pd(fscal,dy00);
1051             tz               = _mm_mul_pd(fscal,dz00);
1052
1053             /* Update vectorial force */
1054             fix0             = _mm_add_pd(fix0,tx);
1055             fiy0             = _mm_add_pd(fiy0,ty);
1056             fiz0             = _mm_add_pd(fiz0,tz);
1057
1058             fjx0             = _mm_add_pd(fjx0,tx);
1059             fjy0             = _mm_add_pd(fjy0,ty);
1060             fjz0             = _mm_add_pd(fjz0,tz);
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             /* Compute parameters for interactions between i and j atoms */
1067             qq10             = _mm_mul_pd(iq1,jq0);
1068
1069             /* COULOMB ELECTROSTATICS */
1070             velec            = _mm_mul_pd(qq10,rinv10);
1071             felec            = _mm_mul_pd(velec,rinvsq10);
1072
1073             fscal            = felec;
1074
1075             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = _mm_mul_pd(fscal,dx10);
1079             ty               = _mm_mul_pd(fscal,dy10);
1080             tz               = _mm_mul_pd(fscal,dz10);
1081
1082             /* Update vectorial force */
1083             fix1             = _mm_add_pd(fix1,tx);
1084             fiy1             = _mm_add_pd(fiy1,ty);
1085             fiz1             = _mm_add_pd(fiz1,tz);
1086
1087             fjx0             = _mm_add_pd(fjx0,tx);
1088             fjy0             = _mm_add_pd(fjy0,ty);
1089             fjz0             = _mm_add_pd(fjz0,tz);
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             qq20             = _mm_mul_pd(iq2,jq0);
1097
1098             /* COULOMB ELECTROSTATICS */
1099             velec            = _mm_mul_pd(qq20,rinv20);
1100             felec            = _mm_mul_pd(velec,rinvsq20);
1101
1102             fscal            = felec;
1103
1104             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1105
1106             /* Calculate temporary vectorial force */
1107             tx               = _mm_mul_pd(fscal,dx20);
1108             ty               = _mm_mul_pd(fscal,dy20);
1109             tz               = _mm_mul_pd(fscal,dz20);
1110
1111             /* Update vectorial force */
1112             fix2             = _mm_add_pd(fix2,tx);
1113             fiy2             = _mm_add_pd(fiy2,ty);
1114             fiz2             = _mm_add_pd(fiz2,tz);
1115
1116             fjx0             = _mm_add_pd(fjx0,tx);
1117             fjy0             = _mm_add_pd(fjy0,ty);
1118             fjz0             = _mm_add_pd(fjz0,tz);
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq30             = _mm_mul_pd(iq3,jq0);
1126
1127             /* COULOMB ELECTROSTATICS */
1128             velec            = _mm_mul_pd(qq30,rinv30);
1129             felec            = _mm_mul_pd(velec,rinvsq30);
1130
1131             fscal            = felec;
1132
1133             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = _mm_mul_pd(fscal,dx30);
1137             ty               = _mm_mul_pd(fscal,dy30);
1138             tz               = _mm_mul_pd(fscal,dz30);
1139
1140             /* Update vectorial force */
1141             fix3             = _mm_add_pd(fix3,tx);
1142             fiy3             = _mm_add_pd(fiy3,ty);
1143             fiz3             = _mm_add_pd(fiz3,tz);
1144
1145             fjx0             = _mm_add_pd(fjx0,tx);
1146             fjy0             = _mm_add_pd(fjy0,ty);
1147             fjz0             = _mm_add_pd(fjz0,tz);
1148
1149             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1150
1151             /* Inner loop uses 132 flops */
1152         }
1153
1154         /* End of innermost loop */
1155
1156         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1157                                               f+i_coord_offset,fshift+i_shift_offset);
1158
1159         /* Increment number of inner iterations */
1160         inneriter                  += j_index_end - j_index_start;
1161
1162         /* Outer loop uses 24 flops */
1163     }
1164
1165     /* Increment number of outer iterations */
1166     outeriter        += nri;
1167
1168     /* Update outer/inner flops */
1169
1170     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*132);
1171 }