Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174         fix3             = _mm_setzero_pd();
175         fiy3             = _mm_setzero_pd();
176         fiz3             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
215
216             rinv00           = gmx_mm_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219             rinv30           = gmx_mm_invsqrt_pd(rsq30);
220
221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
223             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229
230             fjx0             = _mm_setzero_pd();
231             fjy0             = _mm_setzero_pd();
232             fjz0             = _mm_setzero_pd();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             r00              = _mm_mul_pd(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             /* Calculate table index by multiplying r with table scale and truncate to integer */
245             rt               = _mm_mul_pd(r00,vftabscale);
246             vfitab           = _mm_cvttpd_epi32(rt);
247             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
248             vfitab           = _mm_slli_epi32(vfitab,3);
249
250             /* CUBIC SPLINE TABLE DISPERSION */
251             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
253             GMX_MM_TRANSPOSE2_PD(Y,F);
254             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
255             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
256             GMX_MM_TRANSPOSE2_PD(G,H);
257             Heps             = _mm_mul_pd(vfeps,H);
258             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
259             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
260             vvdw6            = _mm_mul_pd(c6_00,VV);
261             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
262             fvdw6            = _mm_mul_pd(c6_00,FF);
263
264             /* CUBIC SPLINE TABLE REPULSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             GMX_MM_TRANSPOSE2_PD(Y,F);
269             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
270             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
271             GMX_MM_TRANSPOSE2_PD(G,H);
272             Heps             = _mm_mul_pd(vfeps,H);
273             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
274             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
275             vvdw12           = _mm_mul_pd(c12_00,VV);
276             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
277             fvdw12           = _mm_mul_pd(c12_00,FF);
278             vvdw             = _mm_add_pd(vvdw12,vvdw6);
279             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
283
284             fscal            = fvdw;
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx00);
288             ty               = _mm_mul_pd(fscal,dy00);
289             tz               = _mm_mul_pd(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_pd(fix0,tx);
293             fiy0             = _mm_add_pd(fiy0,ty);
294             fiz0             = _mm_add_pd(fiz0,tz);
295
296             fjx0             = _mm_add_pd(fjx0,tx);
297             fjy0             = _mm_add_pd(fjy0,ty);
298             fjz0             = _mm_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_pd(iq1,jq0);
306
307             /* COULOMB ELECTROSTATICS */
308             velec            = _mm_mul_pd(qq10,rinv10);
309             felec            = _mm_mul_pd(velec,rinvsq10);
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm_add_pd(velecsum,velec);
313
314             fscal            = felec;
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_pd(fscal,dx10);
318             ty               = _mm_mul_pd(fscal,dy10);
319             tz               = _mm_mul_pd(fscal,dz10);
320
321             /* Update vectorial force */
322             fix1             = _mm_add_pd(fix1,tx);
323             fiy1             = _mm_add_pd(fiy1,ty);
324             fiz1             = _mm_add_pd(fiz1,tz);
325
326             fjx0             = _mm_add_pd(fjx0,tx);
327             fjy0             = _mm_add_pd(fjy0,ty);
328             fjz0             = _mm_add_pd(fjz0,tz);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm_mul_pd(iq2,jq0);
336
337             /* COULOMB ELECTROSTATICS */
338             velec            = _mm_mul_pd(qq20,rinv20);
339             felec            = _mm_mul_pd(velec,rinvsq20);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx20);
348             ty               = _mm_mul_pd(fscal,dy20);
349             tz               = _mm_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_pd(fix2,tx);
353             fiy2             = _mm_add_pd(fiy2,ty);
354             fiz2             = _mm_add_pd(fiz2,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq30             = _mm_mul_pd(iq3,jq0);
366
367             /* COULOMB ELECTROSTATICS */
368             velec            = _mm_mul_pd(qq30,rinv30);
369             felec            = _mm_mul_pd(velec,rinvsq30);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm_add_pd(velecsum,velec);
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_pd(fscal,dx30);
378             ty               = _mm_mul_pd(fscal,dy30);
379             tz               = _mm_mul_pd(fscal,dz30);
380
381             /* Update vectorial force */
382             fix3             = _mm_add_pd(fix3,tx);
383             fiy3             = _mm_add_pd(fiy3,ty);
384             fiz3             = _mm_add_pd(fiz3,tz);
385
386             fjx0             = _mm_add_pd(fjx0,tx);
387             fjy0             = _mm_add_pd(fjy0,ty);
388             fjz0             = _mm_add_pd(fjz0,tz);
389
390             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
391
392             /* Inner loop uses 143 flops */
393         }
394
395         if(jidx<j_index_end)
396         {
397
398             jnrA             = jjnr[jidx];
399             j_coord_offsetA  = DIM*jnrA;
400
401             /* load j atom coordinates */
402             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
403                                               &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx00             = _mm_sub_pd(ix0,jx0);
407             dy00             = _mm_sub_pd(iy0,jy0);
408             dz00             = _mm_sub_pd(iz0,jz0);
409             dx10             = _mm_sub_pd(ix1,jx0);
410             dy10             = _mm_sub_pd(iy1,jy0);
411             dz10             = _mm_sub_pd(iz1,jz0);
412             dx20             = _mm_sub_pd(ix2,jx0);
413             dy20             = _mm_sub_pd(iy2,jy0);
414             dz20             = _mm_sub_pd(iz2,jz0);
415             dx30             = _mm_sub_pd(ix3,jx0);
416             dy30             = _mm_sub_pd(iy3,jy0);
417             dz30             = _mm_sub_pd(iz3,jz0);
418
419             /* Calculate squared distance and things based on it */
420             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
421             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
422             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
423             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
424
425             rinv00           = gmx_mm_invsqrt_pd(rsq00);
426             rinv10           = gmx_mm_invsqrt_pd(rsq10);
427             rinv20           = gmx_mm_invsqrt_pd(rsq20);
428             rinv30           = gmx_mm_invsqrt_pd(rsq30);
429
430             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
431             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
432             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
433
434             /* Load parameters for j particles */
435             jq0              = _mm_load_sd(charge+jnrA+0);
436             vdwjidx0A        = 2*vdwtype[jnrA+0];
437
438             fjx0             = _mm_setzero_pd();
439             fjy0             = _mm_setzero_pd();
440             fjz0             = _mm_setzero_pd();
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             r00              = _mm_mul_pd(rsq00,rinv00);
447
448             /* Compute parameters for interactions between i and j atoms */
449             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
450
451             /* Calculate table index by multiplying r with table scale and truncate to integer */
452             rt               = _mm_mul_pd(r00,vftabscale);
453             vfitab           = _mm_cvttpd_epi32(rt);
454             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
455             vfitab           = _mm_slli_epi32(vfitab,3);
456
457             /* CUBIC SPLINE TABLE DISPERSION */
458             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
459             F                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(Y,F);
461             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
462             H                = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(G,H);
464             Heps             = _mm_mul_pd(vfeps,H);
465             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
466             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
467             vvdw6            = _mm_mul_pd(c6_00,VV);
468             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
469             fvdw6            = _mm_mul_pd(c6_00,FF);
470
471             /* CUBIC SPLINE TABLE REPULSION */
472             vfitab           = _mm_add_epi32(vfitab,ifour);
473             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
474             F                = _mm_setzero_pd();
475             GMX_MM_TRANSPOSE2_PD(Y,F);
476             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
477             H                = _mm_setzero_pd();
478             GMX_MM_TRANSPOSE2_PD(G,H);
479             Heps             = _mm_mul_pd(vfeps,H);
480             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
481             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
482             vvdw12           = _mm_mul_pd(c12_00,VV);
483             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
484             fvdw12           = _mm_mul_pd(c12_00,FF);
485             vvdw             = _mm_add_pd(vvdw12,vvdw6);
486             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
490             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
491
492             fscal            = fvdw;
493
494             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm_mul_pd(fscal,dx00);
498             ty               = _mm_mul_pd(fscal,dy00);
499             tz               = _mm_mul_pd(fscal,dz00);
500
501             /* Update vectorial force */
502             fix0             = _mm_add_pd(fix0,tx);
503             fiy0             = _mm_add_pd(fiy0,ty);
504             fiz0             = _mm_add_pd(fiz0,tz);
505
506             fjx0             = _mm_add_pd(fjx0,tx);
507             fjy0             = _mm_add_pd(fjy0,ty);
508             fjz0             = _mm_add_pd(fjz0,tz);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq10             = _mm_mul_pd(iq1,jq0);
516
517             /* COULOMB ELECTROSTATICS */
518             velec            = _mm_mul_pd(qq10,rinv10);
519             felec            = _mm_mul_pd(velec,rinvsq10);
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx10);
531             ty               = _mm_mul_pd(fscal,dy10);
532             tz               = _mm_mul_pd(fscal,dz10);
533
534             /* Update vectorial force */
535             fix1             = _mm_add_pd(fix1,tx);
536             fiy1             = _mm_add_pd(fiy1,ty);
537             fiz1             = _mm_add_pd(fiz1,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             /* Compute parameters for interactions between i and j atoms */
548             qq20             = _mm_mul_pd(iq2,jq0);
549
550             /* COULOMB ELECTROSTATICS */
551             velec            = _mm_mul_pd(qq20,rinv20);
552             felec            = _mm_mul_pd(velec,rinvsq20);
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
556             velecsum         = _mm_add_pd(velecsum,velec);
557
558             fscal            = felec;
559
560             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm_mul_pd(fscal,dx20);
564             ty               = _mm_mul_pd(fscal,dy20);
565             tz               = _mm_mul_pd(fscal,dz20);
566
567             /* Update vectorial force */
568             fix2             = _mm_add_pd(fix2,tx);
569             fiy2             = _mm_add_pd(fiy2,ty);
570             fiz2             = _mm_add_pd(fiz2,tz);
571
572             fjx0             = _mm_add_pd(fjx0,tx);
573             fjy0             = _mm_add_pd(fjy0,ty);
574             fjz0             = _mm_add_pd(fjz0,tz);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq30             = _mm_mul_pd(iq3,jq0);
582
583             /* COULOMB ELECTROSTATICS */
584             velec            = _mm_mul_pd(qq30,rinv30);
585             felec            = _mm_mul_pd(velec,rinvsq30);
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
589             velecsum         = _mm_add_pd(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_pd(fscal,dx30);
597             ty               = _mm_mul_pd(fscal,dy30);
598             tz               = _mm_mul_pd(fscal,dz30);
599
600             /* Update vectorial force */
601             fix3             = _mm_add_pd(fix3,tx);
602             fiy3             = _mm_add_pd(fiy3,ty);
603             fiz3             = _mm_add_pd(fiz3,tz);
604
605             fjx0             = _mm_add_pd(fjx0,tx);
606             fjy0             = _mm_add_pd(fjy0,ty);
607             fjz0             = _mm_add_pd(fjz0,tz);
608
609             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
610
611             /* Inner loop uses 143 flops */
612         }
613
614         /* End of innermost loop */
615
616         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
617                                               f+i_coord_offset,fshift+i_shift_offset);
618
619         ggid                        = gid[iidx];
620         /* Update potential energies */
621         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
622         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 26 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*143);
636 }
637 /*
638  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
639  * Electrostatics interaction: Coulomb
640  * VdW interaction:            CubicSplineTable
641  * Geometry:                   Water4-Particle
642  * Calculate force/pot:        Force
643  */
644 void
645 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
646                     (t_nblist                    * gmx_restrict       nlist,
647                      rvec                        * gmx_restrict          xx,
648                      rvec                        * gmx_restrict          ff,
649                      t_forcerec                  * gmx_restrict          fr,
650                      t_mdatoms                   * gmx_restrict     mdatoms,
651                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
652                      t_nrnb                      * gmx_restrict        nrnb)
653 {
654     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
655      * just 0 for non-waters.
656      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
657      * jnr indices corresponding to data put in the four positions in the SIMD register.
658      */
659     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
660     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
661     int              jnrA,jnrB;
662     int              j_coord_offsetA,j_coord_offsetB;
663     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
664     real             rcutoff_scalar;
665     real             *shiftvec,*fshift,*x,*f;
666     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
667     int              vdwioffset0;
668     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
669     int              vdwioffset1;
670     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
671     int              vdwioffset2;
672     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
673     int              vdwioffset3;
674     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
675     int              vdwjidx0A,vdwjidx0B;
676     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
677     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
678     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
679     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
680     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
681     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
682     real             *charge;
683     int              nvdwtype;
684     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
685     int              *vdwtype;
686     real             *vdwparam;
687     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
688     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
689     __m128i          vfitab;
690     __m128i          ifour       = _mm_set1_epi32(4);
691     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
692     real             *vftab;
693     __m128d          dummy_mask,cutoff_mask;
694     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
695     __m128d          one     = _mm_set1_pd(1.0);
696     __m128d          two     = _mm_set1_pd(2.0);
697     x                = xx[0];
698     f                = ff[0];
699
700     nri              = nlist->nri;
701     iinr             = nlist->iinr;
702     jindex           = nlist->jindex;
703     jjnr             = nlist->jjnr;
704     shiftidx         = nlist->shift;
705     gid              = nlist->gid;
706     shiftvec         = fr->shift_vec[0];
707     fshift           = fr->fshift[0];
708     facel            = _mm_set1_pd(fr->epsfac);
709     charge           = mdatoms->chargeA;
710     nvdwtype         = fr->ntype;
711     vdwparam         = fr->nbfp;
712     vdwtype          = mdatoms->typeA;
713
714     vftab            = kernel_data->table_vdw->data;
715     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
716
717     /* Setup water-specific parameters */
718     inr              = nlist->iinr[0];
719     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
720     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
721     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
722     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
723
724     /* Avoid stupid compiler warnings */
725     jnrA = jnrB = 0;
726     j_coord_offsetA = 0;
727     j_coord_offsetB = 0;
728
729     outeriter        = 0;
730     inneriter        = 0;
731
732     /* Start outer loop over neighborlists */
733     for(iidx=0; iidx<nri; iidx++)
734     {
735         /* Load shift vector for this list */
736         i_shift_offset   = DIM*shiftidx[iidx];
737
738         /* Load limits for loop over neighbors */
739         j_index_start    = jindex[iidx];
740         j_index_end      = jindex[iidx+1];
741
742         /* Get outer coordinate index */
743         inr              = iinr[iidx];
744         i_coord_offset   = DIM*inr;
745
746         /* Load i particle coords and add shift vector */
747         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
748                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
749
750         fix0             = _mm_setzero_pd();
751         fiy0             = _mm_setzero_pd();
752         fiz0             = _mm_setzero_pd();
753         fix1             = _mm_setzero_pd();
754         fiy1             = _mm_setzero_pd();
755         fiz1             = _mm_setzero_pd();
756         fix2             = _mm_setzero_pd();
757         fiy2             = _mm_setzero_pd();
758         fiz2             = _mm_setzero_pd();
759         fix3             = _mm_setzero_pd();
760         fiy3             = _mm_setzero_pd();
761         fiz3             = _mm_setzero_pd();
762
763         /* Start inner kernel loop */
764         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
765         {
766
767             /* Get j neighbor index, and coordinate index */
768             jnrA             = jjnr[jidx];
769             jnrB             = jjnr[jidx+1];
770             j_coord_offsetA  = DIM*jnrA;
771             j_coord_offsetB  = DIM*jnrB;
772
773             /* load j atom coordinates */
774             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
775                                               &jx0,&jy0,&jz0);
776
777             /* Calculate displacement vector */
778             dx00             = _mm_sub_pd(ix0,jx0);
779             dy00             = _mm_sub_pd(iy0,jy0);
780             dz00             = _mm_sub_pd(iz0,jz0);
781             dx10             = _mm_sub_pd(ix1,jx0);
782             dy10             = _mm_sub_pd(iy1,jy0);
783             dz10             = _mm_sub_pd(iz1,jz0);
784             dx20             = _mm_sub_pd(ix2,jx0);
785             dy20             = _mm_sub_pd(iy2,jy0);
786             dz20             = _mm_sub_pd(iz2,jz0);
787             dx30             = _mm_sub_pd(ix3,jx0);
788             dy30             = _mm_sub_pd(iy3,jy0);
789             dz30             = _mm_sub_pd(iz3,jz0);
790
791             /* Calculate squared distance and things based on it */
792             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
793             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
794             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
795             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
796
797             rinv00           = gmx_mm_invsqrt_pd(rsq00);
798             rinv10           = gmx_mm_invsqrt_pd(rsq10);
799             rinv20           = gmx_mm_invsqrt_pd(rsq20);
800             rinv30           = gmx_mm_invsqrt_pd(rsq30);
801
802             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
803             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
804             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
805
806             /* Load parameters for j particles */
807             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
808             vdwjidx0A        = 2*vdwtype[jnrA+0];
809             vdwjidx0B        = 2*vdwtype[jnrB+0];
810
811             fjx0             = _mm_setzero_pd();
812             fjy0             = _mm_setzero_pd();
813             fjz0             = _mm_setzero_pd();
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             r00              = _mm_mul_pd(rsq00,rinv00);
820
821             /* Compute parameters for interactions between i and j atoms */
822             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
823                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
824
825             /* Calculate table index by multiplying r with table scale and truncate to integer */
826             rt               = _mm_mul_pd(r00,vftabscale);
827             vfitab           = _mm_cvttpd_epi32(rt);
828             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
829             vfitab           = _mm_slli_epi32(vfitab,3);
830
831             /* CUBIC SPLINE TABLE DISPERSION */
832             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
833             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
834             GMX_MM_TRANSPOSE2_PD(Y,F);
835             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
836             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
837             GMX_MM_TRANSPOSE2_PD(G,H);
838             Heps             = _mm_mul_pd(vfeps,H);
839             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
840             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
841             fvdw6            = _mm_mul_pd(c6_00,FF);
842
843             /* CUBIC SPLINE TABLE REPULSION */
844             vfitab           = _mm_add_epi32(vfitab,ifour);
845             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
846             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
847             GMX_MM_TRANSPOSE2_PD(Y,F);
848             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
849             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
850             GMX_MM_TRANSPOSE2_PD(G,H);
851             Heps             = _mm_mul_pd(vfeps,H);
852             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
853             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
854             fvdw12           = _mm_mul_pd(c12_00,FF);
855             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
856
857             fscal            = fvdw;
858
859             /* Calculate temporary vectorial force */
860             tx               = _mm_mul_pd(fscal,dx00);
861             ty               = _mm_mul_pd(fscal,dy00);
862             tz               = _mm_mul_pd(fscal,dz00);
863
864             /* Update vectorial force */
865             fix0             = _mm_add_pd(fix0,tx);
866             fiy0             = _mm_add_pd(fiy0,ty);
867             fiz0             = _mm_add_pd(fiz0,tz);
868
869             fjx0             = _mm_add_pd(fjx0,tx);
870             fjy0             = _mm_add_pd(fjy0,ty);
871             fjz0             = _mm_add_pd(fjz0,tz);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq10             = _mm_mul_pd(iq1,jq0);
879
880             /* COULOMB ELECTROSTATICS */
881             velec            = _mm_mul_pd(qq10,rinv10);
882             felec            = _mm_mul_pd(velec,rinvsq10);
883
884             fscal            = felec;
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_pd(fscal,dx10);
888             ty               = _mm_mul_pd(fscal,dy10);
889             tz               = _mm_mul_pd(fscal,dz10);
890
891             /* Update vectorial force */
892             fix1             = _mm_add_pd(fix1,tx);
893             fiy1             = _mm_add_pd(fiy1,ty);
894             fiz1             = _mm_add_pd(fiz1,tz);
895
896             fjx0             = _mm_add_pd(fjx0,tx);
897             fjy0             = _mm_add_pd(fjy0,ty);
898             fjz0             = _mm_add_pd(fjz0,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq20             = _mm_mul_pd(iq2,jq0);
906
907             /* COULOMB ELECTROSTATICS */
908             velec            = _mm_mul_pd(qq20,rinv20);
909             felec            = _mm_mul_pd(velec,rinvsq20);
910
911             fscal            = felec;
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_pd(fscal,dx20);
915             ty               = _mm_mul_pd(fscal,dy20);
916             tz               = _mm_mul_pd(fscal,dz20);
917
918             /* Update vectorial force */
919             fix2             = _mm_add_pd(fix2,tx);
920             fiy2             = _mm_add_pd(fiy2,ty);
921             fiz2             = _mm_add_pd(fiz2,tz);
922
923             fjx0             = _mm_add_pd(fjx0,tx);
924             fjy0             = _mm_add_pd(fjy0,ty);
925             fjz0             = _mm_add_pd(fjz0,tz);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq30             = _mm_mul_pd(iq3,jq0);
933
934             /* COULOMB ELECTROSTATICS */
935             velec            = _mm_mul_pd(qq30,rinv30);
936             felec            = _mm_mul_pd(velec,rinvsq30);
937
938             fscal            = felec;
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm_mul_pd(fscal,dx30);
942             ty               = _mm_mul_pd(fscal,dy30);
943             tz               = _mm_mul_pd(fscal,dz30);
944
945             /* Update vectorial force */
946             fix3             = _mm_add_pd(fix3,tx);
947             fiy3             = _mm_add_pd(fiy3,ty);
948             fiz3             = _mm_add_pd(fiz3,tz);
949
950             fjx0             = _mm_add_pd(fjx0,tx);
951             fjy0             = _mm_add_pd(fjy0,ty);
952             fjz0             = _mm_add_pd(fjz0,tz);
953
954             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
955
956             /* Inner loop uses 132 flops */
957         }
958
959         if(jidx<j_index_end)
960         {
961
962             jnrA             = jjnr[jidx];
963             j_coord_offsetA  = DIM*jnrA;
964
965             /* load j atom coordinates */
966             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
967                                               &jx0,&jy0,&jz0);
968
969             /* Calculate displacement vector */
970             dx00             = _mm_sub_pd(ix0,jx0);
971             dy00             = _mm_sub_pd(iy0,jy0);
972             dz00             = _mm_sub_pd(iz0,jz0);
973             dx10             = _mm_sub_pd(ix1,jx0);
974             dy10             = _mm_sub_pd(iy1,jy0);
975             dz10             = _mm_sub_pd(iz1,jz0);
976             dx20             = _mm_sub_pd(ix2,jx0);
977             dy20             = _mm_sub_pd(iy2,jy0);
978             dz20             = _mm_sub_pd(iz2,jz0);
979             dx30             = _mm_sub_pd(ix3,jx0);
980             dy30             = _mm_sub_pd(iy3,jy0);
981             dz30             = _mm_sub_pd(iz3,jz0);
982
983             /* Calculate squared distance and things based on it */
984             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
985             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
986             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
987             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
988
989             rinv00           = gmx_mm_invsqrt_pd(rsq00);
990             rinv10           = gmx_mm_invsqrt_pd(rsq10);
991             rinv20           = gmx_mm_invsqrt_pd(rsq20);
992             rinv30           = gmx_mm_invsqrt_pd(rsq30);
993
994             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
995             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
996             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
997
998             /* Load parameters for j particles */
999             jq0              = _mm_load_sd(charge+jnrA+0);
1000             vdwjidx0A        = 2*vdwtype[jnrA+0];
1001
1002             fjx0             = _mm_setzero_pd();
1003             fjy0             = _mm_setzero_pd();
1004             fjz0             = _mm_setzero_pd();
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             r00              = _mm_mul_pd(rsq00,rinv00);
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1014
1015             /* Calculate table index by multiplying r with table scale and truncate to integer */
1016             rt               = _mm_mul_pd(r00,vftabscale);
1017             vfitab           = _mm_cvttpd_epi32(rt);
1018             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1019             vfitab           = _mm_slli_epi32(vfitab,3);
1020
1021             /* CUBIC SPLINE TABLE DISPERSION */
1022             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1023             F                = _mm_setzero_pd();
1024             GMX_MM_TRANSPOSE2_PD(Y,F);
1025             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1026             H                = _mm_setzero_pd();
1027             GMX_MM_TRANSPOSE2_PD(G,H);
1028             Heps             = _mm_mul_pd(vfeps,H);
1029             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1030             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1031             fvdw6            = _mm_mul_pd(c6_00,FF);
1032
1033             /* CUBIC SPLINE TABLE REPULSION */
1034             vfitab           = _mm_add_epi32(vfitab,ifour);
1035             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1036             F                = _mm_setzero_pd();
1037             GMX_MM_TRANSPOSE2_PD(Y,F);
1038             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1039             H                = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(G,H);
1041             Heps             = _mm_mul_pd(vfeps,H);
1042             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1043             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1044             fvdw12           = _mm_mul_pd(c12_00,FF);
1045             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1046
1047             fscal            = fvdw;
1048
1049             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm_mul_pd(fscal,dx00);
1053             ty               = _mm_mul_pd(fscal,dy00);
1054             tz               = _mm_mul_pd(fscal,dz00);
1055
1056             /* Update vectorial force */
1057             fix0             = _mm_add_pd(fix0,tx);
1058             fiy0             = _mm_add_pd(fiy0,ty);
1059             fiz0             = _mm_add_pd(fiz0,tz);
1060
1061             fjx0             = _mm_add_pd(fjx0,tx);
1062             fjy0             = _mm_add_pd(fjy0,ty);
1063             fjz0             = _mm_add_pd(fjz0,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq10             = _mm_mul_pd(iq1,jq0);
1071
1072             /* COULOMB ELECTROSTATICS */
1073             velec            = _mm_mul_pd(qq10,rinv10);
1074             felec            = _mm_mul_pd(velec,rinvsq10);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm_mul_pd(fscal,dx10);
1082             ty               = _mm_mul_pd(fscal,dy10);
1083             tz               = _mm_mul_pd(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm_add_pd(fix1,tx);
1087             fiy1             = _mm_add_pd(fiy1,ty);
1088             fiz1             = _mm_add_pd(fiz1,tz);
1089
1090             fjx0             = _mm_add_pd(fjx0,tx);
1091             fjy0             = _mm_add_pd(fjy0,ty);
1092             fjz0             = _mm_add_pd(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm_mul_pd(iq2,jq0);
1100
1101             /* COULOMB ELECTROSTATICS */
1102             velec            = _mm_mul_pd(qq20,rinv20);
1103             felec            = _mm_mul_pd(velec,rinvsq20);
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_pd(fscal,dx20);
1111             ty               = _mm_mul_pd(fscal,dy20);
1112             tz               = _mm_mul_pd(fscal,dz20);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm_add_pd(fix2,tx);
1116             fiy2             = _mm_add_pd(fiy2,ty);
1117             fiz2             = _mm_add_pd(fiz2,tz);
1118
1119             fjx0             = _mm_add_pd(fjx0,tx);
1120             fjy0             = _mm_add_pd(fjy0,ty);
1121             fjz0             = _mm_add_pd(fjz0,tz);
1122
1123             /**************************
1124              * CALCULATE INTERACTIONS *
1125              **************************/
1126
1127             /* Compute parameters for interactions between i and j atoms */
1128             qq30             = _mm_mul_pd(iq3,jq0);
1129
1130             /* COULOMB ELECTROSTATICS */
1131             velec            = _mm_mul_pd(qq30,rinv30);
1132             felec            = _mm_mul_pd(velec,rinvsq30);
1133
1134             fscal            = felec;
1135
1136             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1137
1138             /* Calculate temporary vectorial force */
1139             tx               = _mm_mul_pd(fscal,dx30);
1140             ty               = _mm_mul_pd(fscal,dy30);
1141             tz               = _mm_mul_pd(fscal,dz30);
1142
1143             /* Update vectorial force */
1144             fix3             = _mm_add_pd(fix3,tx);
1145             fiy3             = _mm_add_pd(fiy3,ty);
1146             fiz3             = _mm_add_pd(fiz3,tz);
1147
1148             fjx0             = _mm_add_pd(fjx0,tx);
1149             fjy0             = _mm_add_pd(fjy0,ty);
1150             fjz0             = _mm_add_pd(fjz0,tz);
1151
1152             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1153
1154             /* Inner loop uses 132 flops */
1155         }
1156
1157         /* End of innermost loop */
1158
1159         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1160                                               f+i_coord_offset,fshift+i_shift_offset);
1161
1162         /* Increment number of inner iterations */
1163         inneriter                  += j_index_end - j_index_start;
1164
1165         /* Outer loop uses 24 flops */
1166     }
1167
1168     /* Increment number of outer iterations */
1169     outeriter        += nri;
1170
1171     /* Update outer/inner flops */
1172
1173     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*132);
1174 }