316c4215b19972bc4fe973ef6d568994811a9289
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172         fix3             = _mm_setzero_pd();
173         fiy3             = _mm_setzero_pd();
174         fiz3             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204             dx30             = _mm_sub_pd(ix3,jx0);
205             dy30             = _mm_sub_pd(iy3,jy0);
206             dz30             = _mm_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217             rinv30           = gmx_mm_invsqrt_pd(rsq30);
218
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _mm_setzero_pd();
229             fjy0             = _mm_setzero_pd();
230             fjz0             = _mm_setzero_pd();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm_mul_pd(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
240                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
241
242             /* Calculate table index by multiplying r with table scale and truncate to integer */
243             rt               = _mm_mul_pd(r00,vftabscale);
244             vfitab           = _mm_cvttpd_epi32(rt);
245             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
246             vfitab           = _mm_slli_epi32(vfitab,3);
247
248             /* CUBIC SPLINE TABLE DISPERSION */
249             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
250             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
251             GMX_MM_TRANSPOSE2_PD(Y,F);
252             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
253             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
254             GMX_MM_TRANSPOSE2_PD(G,H);
255             Heps             = _mm_mul_pd(vfeps,H);
256             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
257             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
258             vvdw6            = _mm_mul_pd(c6_00,VV);
259             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
260             fvdw6            = _mm_mul_pd(c6_00,FF);
261
262             /* CUBIC SPLINE TABLE REPULSION */
263             vfitab           = _mm_add_epi32(vfitab,ifour);
264             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Heps             = _mm_mul_pd(vfeps,H);
271             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
272             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
273             vvdw12           = _mm_mul_pd(c12_00,VV);
274             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
275             fvdw12           = _mm_mul_pd(c12_00,FF);
276             vvdw             = _mm_add_pd(vvdw12,vvdw6);
277             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = fvdw;
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_pd(fscal,dx00);
286             ty               = _mm_mul_pd(fscal,dy00);
287             tz               = _mm_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_pd(fix0,tx);
291             fiy0             = _mm_add_pd(fiy0,ty);
292             fiz0             = _mm_add_pd(fiz0,tz);
293
294             fjx0             = _mm_add_pd(fjx0,tx);
295             fjy0             = _mm_add_pd(fjy0,ty);
296             fjz0             = _mm_add_pd(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq10             = _mm_mul_pd(iq1,jq0);
304
305             /* COULOMB ELECTROSTATICS */
306             velec            = _mm_mul_pd(qq10,rinv10);
307             felec            = _mm_mul_pd(velec,rinvsq10);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_pd(fscal,dx10);
316             ty               = _mm_mul_pd(fscal,dy10);
317             tz               = _mm_mul_pd(fscal,dz10);
318
319             /* Update vectorial force */
320             fix1             = _mm_add_pd(fix1,tx);
321             fiy1             = _mm_add_pd(fiy1,ty);
322             fiz1             = _mm_add_pd(fiz1,tz);
323
324             fjx0             = _mm_add_pd(fjx0,tx);
325             fjy0             = _mm_add_pd(fjy0,ty);
326             fjz0             = _mm_add_pd(fjz0,tz);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_pd(iq2,jq0);
334
335             /* COULOMB ELECTROSTATICS */
336             velec            = _mm_mul_pd(qq20,rinv20);
337             felec            = _mm_mul_pd(velec,rinvsq20);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_pd(velecsum,velec);
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_pd(fscal,dx20);
346             ty               = _mm_mul_pd(fscal,dy20);
347             tz               = _mm_mul_pd(fscal,dz20);
348
349             /* Update vectorial force */
350             fix2             = _mm_add_pd(fix2,tx);
351             fiy2             = _mm_add_pd(fiy2,ty);
352             fiz2             = _mm_add_pd(fiz2,tz);
353
354             fjx0             = _mm_add_pd(fjx0,tx);
355             fjy0             = _mm_add_pd(fjy0,ty);
356             fjz0             = _mm_add_pd(fjz0,tz);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq30             = _mm_mul_pd(iq3,jq0);
364
365             /* COULOMB ELECTROSTATICS */
366             velec            = _mm_mul_pd(qq30,rinv30);
367             felec            = _mm_mul_pd(velec,rinvsq30);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm_add_pd(velecsum,velec);
371
372             fscal            = felec;
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm_mul_pd(fscal,dx30);
376             ty               = _mm_mul_pd(fscal,dy30);
377             tz               = _mm_mul_pd(fscal,dz30);
378
379             /* Update vectorial force */
380             fix3             = _mm_add_pd(fix3,tx);
381             fiy3             = _mm_add_pd(fiy3,ty);
382             fiz3             = _mm_add_pd(fiz3,tz);
383
384             fjx0             = _mm_add_pd(fjx0,tx);
385             fjy0             = _mm_add_pd(fjy0,ty);
386             fjz0             = _mm_add_pd(fjz0,tz);
387
388             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
389
390             /* Inner loop uses 143 flops */
391         }
392
393         if(jidx<j_index_end)
394         {
395
396             jnrA             = jjnr[jidx];
397             j_coord_offsetA  = DIM*jnrA;
398
399             /* load j atom coordinates */
400             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
401                                               &jx0,&jy0,&jz0);
402
403             /* Calculate displacement vector */
404             dx00             = _mm_sub_pd(ix0,jx0);
405             dy00             = _mm_sub_pd(iy0,jy0);
406             dz00             = _mm_sub_pd(iz0,jz0);
407             dx10             = _mm_sub_pd(ix1,jx0);
408             dy10             = _mm_sub_pd(iy1,jy0);
409             dz10             = _mm_sub_pd(iz1,jz0);
410             dx20             = _mm_sub_pd(ix2,jx0);
411             dy20             = _mm_sub_pd(iy2,jy0);
412             dz20             = _mm_sub_pd(iz2,jz0);
413             dx30             = _mm_sub_pd(ix3,jx0);
414             dy30             = _mm_sub_pd(iy3,jy0);
415             dz30             = _mm_sub_pd(iz3,jz0);
416
417             /* Calculate squared distance and things based on it */
418             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
419             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
420             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
421             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
422
423             rinv00           = gmx_mm_invsqrt_pd(rsq00);
424             rinv10           = gmx_mm_invsqrt_pd(rsq10);
425             rinv20           = gmx_mm_invsqrt_pd(rsq20);
426             rinv30           = gmx_mm_invsqrt_pd(rsq30);
427
428             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
429             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
430             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
431
432             /* Load parameters for j particles */
433             jq0              = _mm_load_sd(charge+jnrA+0);
434             vdwjidx0A        = 2*vdwtype[jnrA+0];
435
436             fjx0             = _mm_setzero_pd();
437             fjy0             = _mm_setzero_pd();
438             fjz0             = _mm_setzero_pd();
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             r00              = _mm_mul_pd(rsq00,rinv00);
445
446             /* Compute parameters for interactions between i and j atoms */
447             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
448
449             /* Calculate table index by multiplying r with table scale and truncate to integer */
450             rt               = _mm_mul_pd(r00,vftabscale);
451             vfitab           = _mm_cvttpd_epi32(rt);
452             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
453             vfitab           = _mm_slli_epi32(vfitab,3);
454
455             /* CUBIC SPLINE TABLE DISPERSION */
456             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Heps             = _mm_mul_pd(vfeps,H);
463             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
464             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
465             vvdw6            = _mm_mul_pd(c6_00,VV);
466             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
467             fvdw6            = _mm_mul_pd(c6_00,FF);
468
469             /* CUBIC SPLINE TABLE REPULSION */
470             vfitab           = _mm_add_epi32(vfitab,ifour);
471             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
472             F                = _mm_setzero_pd();
473             GMX_MM_TRANSPOSE2_PD(Y,F);
474             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
475             H                = _mm_setzero_pd();
476             GMX_MM_TRANSPOSE2_PD(G,H);
477             Heps             = _mm_mul_pd(vfeps,H);
478             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
479             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
480             vvdw12           = _mm_mul_pd(c12_00,VV);
481             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
482             fvdw12           = _mm_mul_pd(c12_00,FF);
483             vvdw             = _mm_add_pd(vvdw12,vvdw6);
484             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
488             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
489
490             fscal            = fvdw;
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm_mul_pd(fscal,dx00);
496             ty               = _mm_mul_pd(fscal,dy00);
497             tz               = _mm_mul_pd(fscal,dz00);
498
499             /* Update vectorial force */
500             fix0             = _mm_add_pd(fix0,tx);
501             fiy0             = _mm_add_pd(fiy0,ty);
502             fiz0             = _mm_add_pd(fiz0,tz);
503
504             fjx0             = _mm_add_pd(fjx0,tx);
505             fjy0             = _mm_add_pd(fjy0,ty);
506             fjz0             = _mm_add_pd(fjz0,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm_mul_pd(iq1,jq0);
514
515             /* COULOMB ELECTROSTATICS */
516             velec            = _mm_mul_pd(qq10,rinv10);
517             felec            = _mm_mul_pd(velec,rinvsq10);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm_mul_pd(fscal,dx10);
529             ty               = _mm_mul_pd(fscal,dy10);
530             tz               = _mm_mul_pd(fscal,dz10);
531
532             /* Update vectorial force */
533             fix1             = _mm_add_pd(fix1,tx);
534             fiy1             = _mm_add_pd(fiy1,ty);
535             fiz1             = _mm_add_pd(fiz1,tz);
536
537             fjx0             = _mm_add_pd(fjx0,tx);
538             fjy0             = _mm_add_pd(fjy0,ty);
539             fjz0             = _mm_add_pd(fjz0,tz);
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq20             = _mm_mul_pd(iq2,jq0);
547
548             /* COULOMB ELECTROSTATICS */
549             velec            = _mm_mul_pd(qq20,rinv20);
550             felec            = _mm_mul_pd(velec,rinvsq20);
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
554             velecsum         = _mm_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
559
560             /* Calculate temporary vectorial force */
561             tx               = _mm_mul_pd(fscal,dx20);
562             ty               = _mm_mul_pd(fscal,dy20);
563             tz               = _mm_mul_pd(fscal,dz20);
564
565             /* Update vectorial force */
566             fix2             = _mm_add_pd(fix2,tx);
567             fiy2             = _mm_add_pd(fiy2,ty);
568             fiz2             = _mm_add_pd(fiz2,tz);
569
570             fjx0             = _mm_add_pd(fjx0,tx);
571             fjy0             = _mm_add_pd(fjy0,ty);
572             fjz0             = _mm_add_pd(fjz0,tz);
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq30             = _mm_mul_pd(iq3,jq0);
580
581             /* COULOMB ELECTROSTATICS */
582             velec            = _mm_mul_pd(qq30,rinv30);
583             felec            = _mm_mul_pd(velec,rinvsq30);
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
587             velecsum         = _mm_add_pd(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm_mul_pd(fscal,dx30);
595             ty               = _mm_mul_pd(fscal,dy30);
596             tz               = _mm_mul_pd(fscal,dz30);
597
598             /* Update vectorial force */
599             fix3             = _mm_add_pd(fix3,tx);
600             fiy3             = _mm_add_pd(fiy3,ty);
601             fiz3             = _mm_add_pd(fiz3,tz);
602
603             fjx0             = _mm_add_pd(fjx0,tx);
604             fjy0             = _mm_add_pd(fjy0,ty);
605             fjz0             = _mm_add_pd(fjz0,tz);
606
607             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
608
609             /* Inner loop uses 143 flops */
610         }
611
612         /* End of innermost loop */
613
614         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
615                                               f+i_coord_offset,fshift+i_shift_offset);
616
617         ggid                        = gid[iidx];
618         /* Update potential energies */
619         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
620         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
621
622         /* Increment number of inner iterations */
623         inneriter                  += j_index_end - j_index_start;
624
625         /* Outer loop uses 26 flops */
626     }
627
628     /* Increment number of outer iterations */
629     outeriter        += nri;
630
631     /* Update outer/inner flops */
632
633     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*143);
634 }
635 /*
636  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
637  * Electrostatics interaction: Coulomb
638  * VdW interaction:            CubicSplineTable
639  * Geometry:                   Water4-Particle
640  * Calculate force/pot:        Force
641  */
642 void
643 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
644                     (t_nblist                    * gmx_restrict       nlist,
645                      rvec                        * gmx_restrict          xx,
646                      rvec                        * gmx_restrict          ff,
647                      t_forcerec                  * gmx_restrict          fr,
648                      t_mdatoms                   * gmx_restrict     mdatoms,
649                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
650                      t_nrnb                      * gmx_restrict        nrnb)
651 {
652     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
653      * just 0 for non-waters.
654      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
655      * jnr indices corresponding to data put in the four positions in the SIMD register.
656      */
657     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
658     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
659     int              jnrA,jnrB;
660     int              j_coord_offsetA,j_coord_offsetB;
661     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
662     real             rcutoff_scalar;
663     real             *shiftvec,*fshift,*x,*f;
664     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
665     int              vdwioffset0;
666     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
667     int              vdwioffset1;
668     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
669     int              vdwioffset2;
670     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
671     int              vdwioffset3;
672     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
673     int              vdwjidx0A,vdwjidx0B;
674     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
675     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
676     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
677     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
678     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
679     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
680     real             *charge;
681     int              nvdwtype;
682     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
683     int              *vdwtype;
684     real             *vdwparam;
685     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
686     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
687     __m128i          vfitab;
688     __m128i          ifour       = _mm_set1_epi32(4);
689     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
690     real             *vftab;
691     __m128d          dummy_mask,cutoff_mask;
692     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
693     __m128d          one     = _mm_set1_pd(1.0);
694     __m128d          two     = _mm_set1_pd(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm_set1_pd(fr->epsfac);
707     charge           = mdatoms->chargeA;
708     nvdwtype         = fr->ntype;
709     vdwparam         = fr->nbfp;
710     vdwtype          = mdatoms->typeA;
711
712     vftab            = kernel_data->table_vdw->data;
713     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
714
715     /* Setup water-specific parameters */
716     inr              = nlist->iinr[0];
717     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
718     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
719     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
720     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
721
722     /* Avoid stupid compiler warnings */
723     jnrA = jnrB = 0;
724     j_coord_offsetA = 0;
725     j_coord_offsetB = 0;
726
727     outeriter        = 0;
728     inneriter        = 0;
729
730     /* Start outer loop over neighborlists */
731     for(iidx=0; iidx<nri; iidx++)
732     {
733         /* Load shift vector for this list */
734         i_shift_offset   = DIM*shiftidx[iidx];
735
736         /* Load limits for loop over neighbors */
737         j_index_start    = jindex[iidx];
738         j_index_end      = jindex[iidx+1];
739
740         /* Get outer coordinate index */
741         inr              = iinr[iidx];
742         i_coord_offset   = DIM*inr;
743
744         /* Load i particle coords and add shift vector */
745         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
746                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
747
748         fix0             = _mm_setzero_pd();
749         fiy0             = _mm_setzero_pd();
750         fiz0             = _mm_setzero_pd();
751         fix1             = _mm_setzero_pd();
752         fiy1             = _mm_setzero_pd();
753         fiz1             = _mm_setzero_pd();
754         fix2             = _mm_setzero_pd();
755         fiy2             = _mm_setzero_pd();
756         fiz2             = _mm_setzero_pd();
757         fix3             = _mm_setzero_pd();
758         fiy3             = _mm_setzero_pd();
759         fiz3             = _mm_setzero_pd();
760
761         /* Start inner kernel loop */
762         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
763         {
764
765             /* Get j neighbor index, and coordinate index */
766             jnrA             = jjnr[jidx];
767             jnrB             = jjnr[jidx+1];
768             j_coord_offsetA  = DIM*jnrA;
769             j_coord_offsetB  = DIM*jnrB;
770
771             /* load j atom coordinates */
772             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
773                                               &jx0,&jy0,&jz0);
774
775             /* Calculate displacement vector */
776             dx00             = _mm_sub_pd(ix0,jx0);
777             dy00             = _mm_sub_pd(iy0,jy0);
778             dz00             = _mm_sub_pd(iz0,jz0);
779             dx10             = _mm_sub_pd(ix1,jx0);
780             dy10             = _mm_sub_pd(iy1,jy0);
781             dz10             = _mm_sub_pd(iz1,jz0);
782             dx20             = _mm_sub_pd(ix2,jx0);
783             dy20             = _mm_sub_pd(iy2,jy0);
784             dz20             = _mm_sub_pd(iz2,jz0);
785             dx30             = _mm_sub_pd(ix3,jx0);
786             dy30             = _mm_sub_pd(iy3,jy0);
787             dz30             = _mm_sub_pd(iz3,jz0);
788
789             /* Calculate squared distance and things based on it */
790             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
791             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
792             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
793             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
794
795             rinv00           = gmx_mm_invsqrt_pd(rsq00);
796             rinv10           = gmx_mm_invsqrt_pd(rsq10);
797             rinv20           = gmx_mm_invsqrt_pd(rsq20);
798             rinv30           = gmx_mm_invsqrt_pd(rsq30);
799
800             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
801             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
802             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
803
804             /* Load parameters for j particles */
805             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
806             vdwjidx0A        = 2*vdwtype[jnrA+0];
807             vdwjidx0B        = 2*vdwtype[jnrB+0];
808
809             fjx0             = _mm_setzero_pd();
810             fjy0             = _mm_setzero_pd();
811             fjz0             = _mm_setzero_pd();
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             r00              = _mm_mul_pd(rsq00,rinv00);
818
819             /* Compute parameters for interactions between i and j atoms */
820             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
821                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
822
823             /* Calculate table index by multiplying r with table scale and truncate to integer */
824             rt               = _mm_mul_pd(r00,vftabscale);
825             vfitab           = _mm_cvttpd_epi32(rt);
826             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
827             vfitab           = _mm_slli_epi32(vfitab,3);
828
829             /* CUBIC SPLINE TABLE DISPERSION */
830             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
831             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
832             GMX_MM_TRANSPOSE2_PD(Y,F);
833             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
834             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
835             GMX_MM_TRANSPOSE2_PD(G,H);
836             Heps             = _mm_mul_pd(vfeps,H);
837             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
838             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
839             fvdw6            = _mm_mul_pd(c6_00,FF);
840
841             /* CUBIC SPLINE TABLE REPULSION */
842             vfitab           = _mm_add_epi32(vfitab,ifour);
843             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
844             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
845             GMX_MM_TRANSPOSE2_PD(Y,F);
846             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
847             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
848             GMX_MM_TRANSPOSE2_PD(G,H);
849             Heps             = _mm_mul_pd(vfeps,H);
850             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
851             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
852             fvdw12           = _mm_mul_pd(c12_00,FF);
853             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
854
855             fscal            = fvdw;
856
857             /* Calculate temporary vectorial force */
858             tx               = _mm_mul_pd(fscal,dx00);
859             ty               = _mm_mul_pd(fscal,dy00);
860             tz               = _mm_mul_pd(fscal,dz00);
861
862             /* Update vectorial force */
863             fix0             = _mm_add_pd(fix0,tx);
864             fiy0             = _mm_add_pd(fiy0,ty);
865             fiz0             = _mm_add_pd(fiz0,tz);
866
867             fjx0             = _mm_add_pd(fjx0,tx);
868             fjy0             = _mm_add_pd(fjy0,ty);
869             fjz0             = _mm_add_pd(fjz0,tz);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq10             = _mm_mul_pd(iq1,jq0);
877
878             /* COULOMB ELECTROSTATICS */
879             velec            = _mm_mul_pd(qq10,rinv10);
880             felec            = _mm_mul_pd(velec,rinvsq10);
881
882             fscal            = felec;
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_pd(fscal,dx10);
886             ty               = _mm_mul_pd(fscal,dy10);
887             tz               = _mm_mul_pd(fscal,dz10);
888
889             /* Update vectorial force */
890             fix1             = _mm_add_pd(fix1,tx);
891             fiy1             = _mm_add_pd(fiy1,ty);
892             fiz1             = _mm_add_pd(fiz1,tz);
893
894             fjx0             = _mm_add_pd(fjx0,tx);
895             fjy0             = _mm_add_pd(fjy0,ty);
896             fjz0             = _mm_add_pd(fjz0,tz);
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq20             = _mm_mul_pd(iq2,jq0);
904
905             /* COULOMB ELECTROSTATICS */
906             velec            = _mm_mul_pd(qq20,rinv20);
907             felec            = _mm_mul_pd(velec,rinvsq20);
908
909             fscal            = felec;
910
911             /* Calculate temporary vectorial force */
912             tx               = _mm_mul_pd(fscal,dx20);
913             ty               = _mm_mul_pd(fscal,dy20);
914             tz               = _mm_mul_pd(fscal,dz20);
915
916             /* Update vectorial force */
917             fix2             = _mm_add_pd(fix2,tx);
918             fiy2             = _mm_add_pd(fiy2,ty);
919             fiz2             = _mm_add_pd(fiz2,tz);
920
921             fjx0             = _mm_add_pd(fjx0,tx);
922             fjy0             = _mm_add_pd(fjy0,ty);
923             fjz0             = _mm_add_pd(fjz0,tz);
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq30             = _mm_mul_pd(iq3,jq0);
931
932             /* COULOMB ELECTROSTATICS */
933             velec            = _mm_mul_pd(qq30,rinv30);
934             felec            = _mm_mul_pd(velec,rinvsq30);
935
936             fscal            = felec;
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_pd(fscal,dx30);
940             ty               = _mm_mul_pd(fscal,dy30);
941             tz               = _mm_mul_pd(fscal,dz30);
942
943             /* Update vectorial force */
944             fix3             = _mm_add_pd(fix3,tx);
945             fiy3             = _mm_add_pd(fiy3,ty);
946             fiz3             = _mm_add_pd(fiz3,tz);
947
948             fjx0             = _mm_add_pd(fjx0,tx);
949             fjy0             = _mm_add_pd(fjy0,ty);
950             fjz0             = _mm_add_pd(fjz0,tz);
951
952             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
953
954             /* Inner loop uses 132 flops */
955         }
956
957         if(jidx<j_index_end)
958         {
959
960             jnrA             = jjnr[jidx];
961             j_coord_offsetA  = DIM*jnrA;
962
963             /* load j atom coordinates */
964             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
965                                               &jx0,&jy0,&jz0);
966
967             /* Calculate displacement vector */
968             dx00             = _mm_sub_pd(ix0,jx0);
969             dy00             = _mm_sub_pd(iy0,jy0);
970             dz00             = _mm_sub_pd(iz0,jz0);
971             dx10             = _mm_sub_pd(ix1,jx0);
972             dy10             = _mm_sub_pd(iy1,jy0);
973             dz10             = _mm_sub_pd(iz1,jz0);
974             dx20             = _mm_sub_pd(ix2,jx0);
975             dy20             = _mm_sub_pd(iy2,jy0);
976             dz20             = _mm_sub_pd(iz2,jz0);
977             dx30             = _mm_sub_pd(ix3,jx0);
978             dy30             = _mm_sub_pd(iy3,jy0);
979             dz30             = _mm_sub_pd(iz3,jz0);
980
981             /* Calculate squared distance and things based on it */
982             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
983             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
984             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
985             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
986
987             rinv00           = gmx_mm_invsqrt_pd(rsq00);
988             rinv10           = gmx_mm_invsqrt_pd(rsq10);
989             rinv20           = gmx_mm_invsqrt_pd(rsq20);
990             rinv30           = gmx_mm_invsqrt_pd(rsq30);
991
992             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
993             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
994             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
995
996             /* Load parameters for j particles */
997             jq0              = _mm_load_sd(charge+jnrA+0);
998             vdwjidx0A        = 2*vdwtype[jnrA+0];
999
1000             fjx0             = _mm_setzero_pd();
1001             fjy0             = _mm_setzero_pd();
1002             fjz0             = _mm_setzero_pd();
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r00              = _mm_mul_pd(rsq00,rinv00);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1012
1013             /* Calculate table index by multiplying r with table scale and truncate to integer */
1014             rt               = _mm_mul_pd(r00,vftabscale);
1015             vfitab           = _mm_cvttpd_epi32(rt);
1016             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1017             vfitab           = _mm_slli_epi32(vfitab,3);
1018
1019             /* CUBIC SPLINE TABLE DISPERSION */
1020             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1021             F                = _mm_setzero_pd();
1022             GMX_MM_TRANSPOSE2_PD(Y,F);
1023             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1024             H                = _mm_setzero_pd();
1025             GMX_MM_TRANSPOSE2_PD(G,H);
1026             Heps             = _mm_mul_pd(vfeps,H);
1027             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1028             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1029             fvdw6            = _mm_mul_pd(c6_00,FF);
1030
1031             /* CUBIC SPLINE TABLE REPULSION */
1032             vfitab           = _mm_add_epi32(vfitab,ifour);
1033             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1034             F                = _mm_setzero_pd();
1035             GMX_MM_TRANSPOSE2_PD(Y,F);
1036             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1037             H                = _mm_setzero_pd();
1038             GMX_MM_TRANSPOSE2_PD(G,H);
1039             Heps             = _mm_mul_pd(vfeps,H);
1040             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1041             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1042             fvdw12           = _mm_mul_pd(c12_00,FF);
1043             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1044
1045             fscal            = fvdw;
1046
1047             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_pd(fscal,dx00);
1051             ty               = _mm_mul_pd(fscal,dy00);
1052             tz               = _mm_mul_pd(fscal,dz00);
1053
1054             /* Update vectorial force */
1055             fix0             = _mm_add_pd(fix0,tx);
1056             fiy0             = _mm_add_pd(fiy0,ty);
1057             fiz0             = _mm_add_pd(fiz0,tz);
1058
1059             fjx0             = _mm_add_pd(fjx0,tx);
1060             fjy0             = _mm_add_pd(fjy0,ty);
1061             fjz0             = _mm_add_pd(fjz0,tz);
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             /* Compute parameters for interactions between i and j atoms */
1068             qq10             = _mm_mul_pd(iq1,jq0);
1069
1070             /* COULOMB ELECTROSTATICS */
1071             velec            = _mm_mul_pd(qq10,rinv10);
1072             felec            = _mm_mul_pd(velec,rinvsq10);
1073
1074             fscal            = felec;
1075
1076             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm_mul_pd(fscal,dx10);
1080             ty               = _mm_mul_pd(fscal,dy10);
1081             tz               = _mm_mul_pd(fscal,dz10);
1082
1083             /* Update vectorial force */
1084             fix1             = _mm_add_pd(fix1,tx);
1085             fiy1             = _mm_add_pd(fiy1,ty);
1086             fiz1             = _mm_add_pd(fiz1,tz);
1087
1088             fjx0             = _mm_add_pd(fjx0,tx);
1089             fjy0             = _mm_add_pd(fjy0,ty);
1090             fjz0             = _mm_add_pd(fjz0,tz);
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq20             = _mm_mul_pd(iq2,jq0);
1098
1099             /* COULOMB ELECTROSTATICS */
1100             velec            = _mm_mul_pd(qq20,rinv20);
1101             felec            = _mm_mul_pd(velec,rinvsq20);
1102
1103             fscal            = felec;
1104
1105             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1106
1107             /* Calculate temporary vectorial force */
1108             tx               = _mm_mul_pd(fscal,dx20);
1109             ty               = _mm_mul_pd(fscal,dy20);
1110             tz               = _mm_mul_pd(fscal,dz20);
1111
1112             /* Update vectorial force */
1113             fix2             = _mm_add_pd(fix2,tx);
1114             fiy2             = _mm_add_pd(fiy2,ty);
1115             fiz2             = _mm_add_pd(fiz2,tz);
1116
1117             fjx0             = _mm_add_pd(fjx0,tx);
1118             fjy0             = _mm_add_pd(fjy0,ty);
1119             fjz0             = _mm_add_pd(fjz0,tz);
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             /* Compute parameters for interactions between i and j atoms */
1126             qq30             = _mm_mul_pd(iq3,jq0);
1127
1128             /* COULOMB ELECTROSTATICS */
1129             velec            = _mm_mul_pd(qq30,rinv30);
1130             felec            = _mm_mul_pd(velec,rinvsq30);
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1135
1136             /* Calculate temporary vectorial force */
1137             tx               = _mm_mul_pd(fscal,dx30);
1138             ty               = _mm_mul_pd(fscal,dy30);
1139             tz               = _mm_mul_pd(fscal,dz30);
1140
1141             /* Update vectorial force */
1142             fix3             = _mm_add_pd(fix3,tx);
1143             fiy3             = _mm_add_pd(fiy3,ty);
1144             fiz3             = _mm_add_pd(fiz3,tz);
1145
1146             fjx0             = _mm_add_pd(fjx0,tx);
1147             fjy0             = _mm_add_pd(fjy0,ty);
1148             fjz0             = _mm_add_pd(fjz0,tz);
1149
1150             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1151
1152             /* Inner loop uses 132 flops */
1153         }
1154
1155         /* End of innermost loop */
1156
1157         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1158                                               f+i_coord_offset,fshift+i_shift_offset);
1159
1160         /* Increment number of inner iterations */
1161         inneriter                  += j_index_end - j_index_start;
1162
1163         /* Outer loop uses 24 flops */
1164     }
1165
1166     /* Increment number of outer iterations */
1167     outeriter        += nri;
1168
1169     /* Update outer/inner flops */
1170
1171     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*132);
1172 }