b51cdb8da4f7d5c2e8b5afc438c62ff18534187b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191             rinv10           = gmx_mm_invsqrt_pd(rsq10);
192             rinv20           = gmx_mm_invsqrt_pd(rsq20);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
196             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             fjx0             = _mm_setzero_pd();
204             fjy0             = _mm_setzero_pd();
205             fjz0             = _mm_setzero_pd();
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm_mul_pd(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_pd(iq0,jq0);
215             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = _mm_mul_pd(r00,vftabscale);
220             vfitab           = _mm_cvttpd_epi32(rt);
221             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
222             vfitab           = _mm_slli_epi32(vfitab,3);
223
224             /* COULOMB ELECTROSTATICS */
225             velec            = _mm_mul_pd(qq00,rinv00);
226             felec            = _mm_mul_pd(velec,rinvsq00);
227
228             /* CUBIC SPLINE TABLE DISPERSION */
229             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
230             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
231             GMX_MM_TRANSPOSE2_PD(Y,F);
232             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
233             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
234             GMX_MM_TRANSPOSE2_PD(G,H);
235             Heps             = _mm_mul_pd(vfeps,H);
236             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
237             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
238             vvdw6            = _mm_mul_pd(c6_00,VV);
239             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
240             fvdw6            = _mm_mul_pd(c6_00,FF);
241
242             /* CUBIC SPLINE TABLE REPULSION */
243             vfitab           = _mm_add_epi32(vfitab,ifour);
244             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
245             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
246             GMX_MM_TRANSPOSE2_PD(Y,F);
247             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
248             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
249             GMX_MM_TRANSPOSE2_PD(G,H);
250             Heps             = _mm_mul_pd(vfeps,H);
251             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
252             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
253             vvdw12           = _mm_mul_pd(c12_00,VV);
254             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
255             fvdw12           = _mm_mul_pd(c12_00,FF);
256             vvdw             = _mm_add_pd(vvdw12,vvdw6);
257             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velecsum         = _mm_add_pd(velecsum,velec);
261             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
262
263             fscal            = _mm_add_pd(felec,fvdw);
264
265             /* Calculate temporary vectorial force */
266             tx               = _mm_mul_pd(fscal,dx00);
267             ty               = _mm_mul_pd(fscal,dy00);
268             tz               = _mm_mul_pd(fscal,dz00);
269
270             /* Update vectorial force */
271             fix0             = _mm_add_pd(fix0,tx);
272             fiy0             = _mm_add_pd(fiy0,ty);
273             fiz0             = _mm_add_pd(fiz0,tz);
274
275             fjx0             = _mm_add_pd(fjx0,tx);
276             fjy0             = _mm_add_pd(fjy0,ty);
277             fjz0             = _mm_add_pd(fjz0,tz);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _mm_mul_pd(iq1,jq0);
285
286             /* COULOMB ELECTROSTATICS */
287             velec            = _mm_mul_pd(qq10,rinv10);
288             felec            = _mm_mul_pd(velec,rinvsq10);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velecsum         = _mm_add_pd(velecsum,velec);
292
293             fscal            = felec;
294
295             /* Calculate temporary vectorial force */
296             tx               = _mm_mul_pd(fscal,dx10);
297             ty               = _mm_mul_pd(fscal,dy10);
298             tz               = _mm_mul_pd(fscal,dz10);
299
300             /* Update vectorial force */
301             fix1             = _mm_add_pd(fix1,tx);
302             fiy1             = _mm_add_pd(fiy1,ty);
303             fiz1             = _mm_add_pd(fiz1,tz);
304
305             fjx0             = _mm_add_pd(fjx0,tx);
306             fjy0             = _mm_add_pd(fjy0,ty);
307             fjz0             = _mm_add_pd(fjz0,tz);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq20             = _mm_mul_pd(iq2,jq0);
315
316             /* COULOMB ELECTROSTATICS */
317             velec            = _mm_mul_pd(qq20,rinv20);
318             felec            = _mm_mul_pd(velec,rinvsq20);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velecsum         = _mm_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx20);
327             ty               = _mm_mul_pd(fscal,dy20);
328             tz               = _mm_mul_pd(fscal,dz20);
329
330             /* Update vectorial force */
331             fix2             = _mm_add_pd(fix2,tx);
332             fiy2             = _mm_add_pd(fiy2,ty);
333             fiz2             = _mm_add_pd(fiz2,tz);
334
335             fjx0             = _mm_add_pd(fjx0,tx);
336             fjy0             = _mm_add_pd(fjy0,ty);
337             fjz0             = _mm_add_pd(fjz0,tz);
338
339             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
340
341             /* Inner loop uses 122 flops */
342         }
343
344         if(jidx<j_index_end)
345         {
346
347             jnrA             = jjnr[jidx];
348             j_coord_offsetA  = DIM*jnrA;
349
350             /* load j atom coordinates */
351             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
352                                               &jx0,&jy0,&jz0);
353
354             /* Calculate displacement vector */
355             dx00             = _mm_sub_pd(ix0,jx0);
356             dy00             = _mm_sub_pd(iy0,jy0);
357             dz00             = _mm_sub_pd(iz0,jz0);
358             dx10             = _mm_sub_pd(ix1,jx0);
359             dy10             = _mm_sub_pd(iy1,jy0);
360             dz10             = _mm_sub_pd(iz1,jz0);
361             dx20             = _mm_sub_pd(ix2,jx0);
362             dy20             = _mm_sub_pd(iy2,jy0);
363             dz20             = _mm_sub_pd(iz2,jz0);
364
365             /* Calculate squared distance and things based on it */
366             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
367             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
368             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
369
370             rinv00           = gmx_mm_invsqrt_pd(rsq00);
371             rinv10           = gmx_mm_invsqrt_pd(rsq10);
372             rinv20           = gmx_mm_invsqrt_pd(rsq20);
373
374             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
375             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
376             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
377
378             /* Load parameters for j particles */
379             jq0              = _mm_load_sd(charge+jnrA+0);
380             vdwjidx0A        = 2*vdwtype[jnrA+0];
381
382             fjx0             = _mm_setzero_pd();
383             fjy0             = _mm_setzero_pd();
384             fjz0             = _mm_setzero_pd();
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r00              = _mm_mul_pd(rsq00,rinv00);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq00             = _mm_mul_pd(iq0,jq0);
394             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
395
396             /* Calculate table index by multiplying r with table scale and truncate to integer */
397             rt               = _mm_mul_pd(r00,vftabscale);
398             vfitab           = _mm_cvttpd_epi32(rt);
399             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
400             vfitab           = _mm_slli_epi32(vfitab,3);
401
402             /* COULOMB ELECTROSTATICS */
403             velec            = _mm_mul_pd(qq00,rinv00);
404             felec            = _mm_mul_pd(velec,rinvsq00);
405
406             /* CUBIC SPLINE TABLE DISPERSION */
407             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
408             F                = _mm_setzero_pd();
409             GMX_MM_TRANSPOSE2_PD(Y,F);
410             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
411             H                = _mm_setzero_pd();
412             GMX_MM_TRANSPOSE2_PD(G,H);
413             Heps             = _mm_mul_pd(vfeps,H);
414             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
415             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
416             vvdw6            = _mm_mul_pd(c6_00,VV);
417             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
418             fvdw6            = _mm_mul_pd(c6_00,FF);
419
420             /* CUBIC SPLINE TABLE REPULSION */
421             vfitab           = _mm_add_epi32(vfitab,ifour);
422             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
423             F                = _mm_setzero_pd();
424             GMX_MM_TRANSPOSE2_PD(Y,F);
425             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
426             H                = _mm_setzero_pd();
427             GMX_MM_TRANSPOSE2_PD(G,H);
428             Heps             = _mm_mul_pd(vfeps,H);
429             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
430             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
431             vvdw12           = _mm_mul_pd(c12_00,VV);
432             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
433             fvdw12           = _mm_mul_pd(c12_00,FF);
434             vvdw             = _mm_add_pd(vvdw12,vvdw6);
435             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
436
437             /* Update potential sum for this i atom from the interaction with this j atom. */
438             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
439             velecsum         = _mm_add_pd(velecsum,velec);
440             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
441             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
442
443             fscal            = _mm_add_pd(felec,fvdw);
444
445             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
446
447             /* Calculate temporary vectorial force */
448             tx               = _mm_mul_pd(fscal,dx00);
449             ty               = _mm_mul_pd(fscal,dy00);
450             tz               = _mm_mul_pd(fscal,dz00);
451
452             /* Update vectorial force */
453             fix0             = _mm_add_pd(fix0,tx);
454             fiy0             = _mm_add_pd(fiy0,ty);
455             fiz0             = _mm_add_pd(fiz0,tz);
456
457             fjx0             = _mm_add_pd(fjx0,tx);
458             fjy0             = _mm_add_pd(fjy0,ty);
459             fjz0             = _mm_add_pd(fjz0,tz);
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq10             = _mm_mul_pd(iq1,jq0);
467
468             /* COULOMB ELECTROSTATICS */
469             velec            = _mm_mul_pd(qq10,rinv10);
470             felec            = _mm_mul_pd(velec,rinvsq10);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
474             velecsum         = _mm_add_pd(velecsum,velec);
475
476             fscal            = felec;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx10);
482             ty               = _mm_mul_pd(fscal,dy10);
483             tz               = _mm_mul_pd(fscal,dz10);
484
485             /* Update vectorial force */
486             fix1             = _mm_add_pd(fix1,tx);
487             fiy1             = _mm_add_pd(fiy1,ty);
488             fiz1             = _mm_add_pd(fiz1,tz);
489
490             fjx0             = _mm_add_pd(fjx0,tx);
491             fjy0             = _mm_add_pd(fjy0,ty);
492             fjz0             = _mm_add_pd(fjz0,tz);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq20             = _mm_mul_pd(iq2,jq0);
500
501             /* COULOMB ELECTROSTATICS */
502             velec            = _mm_mul_pd(qq20,rinv20);
503             felec            = _mm_mul_pd(velec,rinvsq20);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
507             velecsum         = _mm_add_pd(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
512
513             /* Calculate temporary vectorial force */
514             tx               = _mm_mul_pd(fscal,dx20);
515             ty               = _mm_mul_pd(fscal,dy20);
516             tz               = _mm_mul_pd(fscal,dz20);
517
518             /* Update vectorial force */
519             fix2             = _mm_add_pd(fix2,tx);
520             fiy2             = _mm_add_pd(fiy2,ty);
521             fiz2             = _mm_add_pd(fiz2,tz);
522
523             fjx0             = _mm_add_pd(fjx0,tx);
524             fjy0             = _mm_add_pd(fjy0,ty);
525             fjz0             = _mm_add_pd(fjz0,tz);
526
527             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
528
529             /* Inner loop uses 122 flops */
530         }
531
532         /* End of innermost loop */
533
534         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
535                                               f+i_coord_offset,fshift+i_shift_offset);
536
537         ggid                        = gid[iidx];
538         /* Update potential energies */
539         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
540         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
541
542         /* Increment number of inner iterations */
543         inneriter                  += j_index_end - j_index_start;
544
545         /* Outer loop uses 20 flops */
546     }
547
548     /* Increment number of outer iterations */
549     outeriter        += nri;
550
551     /* Update outer/inner flops */
552
553     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*122);
554 }
555 /*
556  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_double
557  * Electrostatics interaction: Coulomb
558  * VdW interaction:            CubicSplineTable
559  * Geometry:                   Water3-Particle
560  * Calculate force/pot:        Force
561  */
562 void
563 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_double
564                     (t_nblist * gmx_restrict                nlist,
565                      rvec * gmx_restrict                    xx,
566                      rvec * gmx_restrict                    ff,
567                      t_forcerec * gmx_restrict              fr,
568                      t_mdatoms * gmx_restrict               mdatoms,
569                      nb_kernel_data_t * gmx_restrict        kernel_data,
570                      t_nrnb * gmx_restrict                  nrnb)
571 {
572     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
573      * just 0 for non-waters.
574      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
575      * jnr indices corresponding to data put in the four positions in the SIMD register.
576      */
577     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
578     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
579     int              jnrA,jnrB;
580     int              j_coord_offsetA,j_coord_offsetB;
581     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
582     real             rcutoff_scalar;
583     real             *shiftvec,*fshift,*x,*f;
584     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
585     int              vdwioffset0;
586     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
587     int              vdwioffset1;
588     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
589     int              vdwioffset2;
590     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
591     int              vdwjidx0A,vdwjidx0B;
592     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
593     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
594     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
595     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
596     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
597     real             *charge;
598     int              nvdwtype;
599     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
600     int              *vdwtype;
601     real             *vdwparam;
602     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
603     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
604     __m128i          vfitab;
605     __m128i          ifour       = _mm_set1_epi32(4);
606     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
607     real             *vftab;
608     __m128d          dummy_mask,cutoff_mask;
609     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
610     __m128d          one     = _mm_set1_pd(1.0);
611     __m128d          two     = _mm_set1_pd(2.0);
612     x                = xx[0];
613     f                = ff[0];
614
615     nri              = nlist->nri;
616     iinr             = nlist->iinr;
617     jindex           = nlist->jindex;
618     jjnr             = nlist->jjnr;
619     shiftidx         = nlist->shift;
620     gid              = nlist->gid;
621     shiftvec         = fr->shift_vec[0];
622     fshift           = fr->fshift[0];
623     facel            = _mm_set1_pd(fr->epsfac);
624     charge           = mdatoms->chargeA;
625     nvdwtype         = fr->ntype;
626     vdwparam         = fr->nbfp;
627     vdwtype          = mdatoms->typeA;
628
629     vftab            = kernel_data->table_vdw->data;
630     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
631
632     /* Setup water-specific parameters */
633     inr              = nlist->iinr[0];
634     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
635     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
636     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
637     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
638
639     /* Avoid stupid compiler warnings */
640     jnrA = jnrB = 0;
641     j_coord_offsetA = 0;
642     j_coord_offsetB = 0;
643
644     outeriter        = 0;
645     inneriter        = 0;
646
647     /* Start outer loop over neighborlists */
648     for(iidx=0; iidx<nri; iidx++)
649     {
650         /* Load shift vector for this list */
651         i_shift_offset   = DIM*shiftidx[iidx];
652
653         /* Load limits for loop over neighbors */
654         j_index_start    = jindex[iidx];
655         j_index_end      = jindex[iidx+1];
656
657         /* Get outer coordinate index */
658         inr              = iinr[iidx];
659         i_coord_offset   = DIM*inr;
660
661         /* Load i particle coords and add shift vector */
662         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
663                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
664
665         fix0             = _mm_setzero_pd();
666         fiy0             = _mm_setzero_pd();
667         fiz0             = _mm_setzero_pd();
668         fix1             = _mm_setzero_pd();
669         fiy1             = _mm_setzero_pd();
670         fiz1             = _mm_setzero_pd();
671         fix2             = _mm_setzero_pd();
672         fiy2             = _mm_setzero_pd();
673         fiz2             = _mm_setzero_pd();
674
675         /* Start inner kernel loop */
676         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
677         {
678
679             /* Get j neighbor index, and coordinate index */
680             jnrA             = jjnr[jidx];
681             jnrB             = jjnr[jidx+1];
682             j_coord_offsetA  = DIM*jnrA;
683             j_coord_offsetB  = DIM*jnrB;
684
685             /* load j atom coordinates */
686             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
687                                               &jx0,&jy0,&jz0);
688
689             /* Calculate displacement vector */
690             dx00             = _mm_sub_pd(ix0,jx0);
691             dy00             = _mm_sub_pd(iy0,jy0);
692             dz00             = _mm_sub_pd(iz0,jz0);
693             dx10             = _mm_sub_pd(ix1,jx0);
694             dy10             = _mm_sub_pd(iy1,jy0);
695             dz10             = _mm_sub_pd(iz1,jz0);
696             dx20             = _mm_sub_pd(ix2,jx0);
697             dy20             = _mm_sub_pd(iy2,jy0);
698             dz20             = _mm_sub_pd(iz2,jz0);
699
700             /* Calculate squared distance and things based on it */
701             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
702             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
703             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
704
705             rinv00           = gmx_mm_invsqrt_pd(rsq00);
706             rinv10           = gmx_mm_invsqrt_pd(rsq10);
707             rinv20           = gmx_mm_invsqrt_pd(rsq20);
708
709             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
710             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
711             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
712
713             /* Load parameters for j particles */
714             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
715             vdwjidx0A        = 2*vdwtype[jnrA+0];
716             vdwjidx0B        = 2*vdwtype[jnrB+0];
717
718             fjx0             = _mm_setzero_pd();
719             fjy0             = _mm_setzero_pd();
720             fjz0             = _mm_setzero_pd();
721
722             /**************************
723              * CALCULATE INTERACTIONS *
724              **************************/
725
726             r00              = _mm_mul_pd(rsq00,rinv00);
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq00             = _mm_mul_pd(iq0,jq0);
730             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
731                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
732
733             /* Calculate table index by multiplying r with table scale and truncate to integer */
734             rt               = _mm_mul_pd(r00,vftabscale);
735             vfitab           = _mm_cvttpd_epi32(rt);
736             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
737             vfitab           = _mm_slli_epi32(vfitab,3);
738
739             /* COULOMB ELECTROSTATICS */
740             velec            = _mm_mul_pd(qq00,rinv00);
741             felec            = _mm_mul_pd(velec,rinvsq00);
742
743             /* CUBIC SPLINE TABLE DISPERSION */
744             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
745             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
746             GMX_MM_TRANSPOSE2_PD(Y,F);
747             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
748             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
749             GMX_MM_TRANSPOSE2_PD(G,H);
750             Heps             = _mm_mul_pd(vfeps,H);
751             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
752             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
753             fvdw6            = _mm_mul_pd(c6_00,FF);
754
755             /* CUBIC SPLINE TABLE REPULSION */
756             vfitab           = _mm_add_epi32(vfitab,ifour);
757             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
758             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
759             GMX_MM_TRANSPOSE2_PD(Y,F);
760             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
761             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
762             GMX_MM_TRANSPOSE2_PD(G,H);
763             Heps             = _mm_mul_pd(vfeps,H);
764             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
765             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
766             fvdw12           = _mm_mul_pd(c12_00,FF);
767             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
768
769             fscal            = _mm_add_pd(felec,fvdw);
770
771             /* Calculate temporary vectorial force */
772             tx               = _mm_mul_pd(fscal,dx00);
773             ty               = _mm_mul_pd(fscal,dy00);
774             tz               = _mm_mul_pd(fscal,dz00);
775
776             /* Update vectorial force */
777             fix0             = _mm_add_pd(fix0,tx);
778             fiy0             = _mm_add_pd(fiy0,ty);
779             fiz0             = _mm_add_pd(fiz0,tz);
780
781             fjx0             = _mm_add_pd(fjx0,tx);
782             fjy0             = _mm_add_pd(fjy0,ty);
783             fjz0             = _mm_add_pd(fjz0,tz);
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             /* Compute parameters for interactions between i and j atoms */
790             qq10             = _mm_mul_pd(iq1,jq0);
791
792             /* COULOMB ELECTROSTATICS */
793             velec            = _mm_mul_pd(qq10,rinv10);
794             felec            = _mm_mul_pd(velec,rinvsq10);
795
796             fscal            = felec;
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm_mul_pd(fscal,dx10);
800             ty               = _mm_mul_pd(fscal,dy10);
801             tz               = _mm_mul_pd(fscal,dz10);
802
803             /* Update vectorial force */
804             fix1             = _mm_add_pd(fix1,tx);
805             fiy1             = _mm_add_pd(fiy1,ty);
806             fiz1             = _mm_add_pd(fiz1,tz);
807
808             fjx0             = _mm_add_pd(fjx0,tx);
809             fjy0             = _mm_add_pd(fjy0,ty);
810             fjz0             = _mm_add_pd(fjz0,tz);
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             /* Compute parameters for interactions between i and j atoms */
817             qq20             = _mm_mul_pd(iq2,jq0);
818
819             /* COULOMB ELECTROSTATICS */
820             velec            = _mm_mul_pd(qq20,rinv20);
821             felec            = _mm_mul_pd(velec,rinvsq20);
822
823             fscal            = felec;
824
825             /* Calculate temporary vectorial force */
826             tx               = _mm_mul_pd(fscal,dx20);
827             ty               = _mm_mul_pd(fscal,dy20);
828             tz               = _mm_mul_pd(fscal,dz20);
829
830             /* Update vectorial force */
831             fix2             = _mm_add_pd(fix2,tx);
832             fiy2             = _mm_add_pd(fiy2,ty);
833             fiz2             = _mm_add_pd(fiz2,tz);
834
835             fjx0             = _mm_add_pd(fjx0,tx);
836             fjy0             = _mm_add_pd(fjy0,ty);
837             fjz0             = _mm_add_pd(fjz0,tz);
838
839             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
840
841             /* Inner loop uses 111 flops */
842         }
843
844         if(jidx<j_index_end)
845         {
846
847             jnrA             = jjnr[jidx];
848             j_coord_offsetA  = DIM*jnrA;
849
850             /* load j atom coordinates */
851             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
852                                               &jx0,&jy0,&jz0);
853
854             /* Calculate displacement vector */
855             dx00             = _mm_sub_pd(ix0,jx0);
856             dy00             = _mm_sub_pd(iy0,jy0);
857             dz00             = _mm_sub_pd(iz0,jz0);
858             dx10             = _mm_sub_pd(ix1,jx0);
859             dy10             = _mm_sub_pd(iy1,jy0);
860             dz10             = _mm_sub_pd(iz1,jz0);
861             dx20             = _mm_sub_pd(ix2,jx0);
862             dy20             = _mm_sub_pd(iy2,jy0);
863             dz20             = _mm_sub_pd(iz2,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
867             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
868             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
869
870             rinv00           = gmx_mm_invsqrt_pd(rsq00);
871             rinv10           = gmx_mm_invsqrt_pd(rsq10);
872             rinv20           = gmx_mm_invsqrt_pd(rsq20);
873
874             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
875             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
876             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
877
878             /* Load parameters for j particles */
879             jq0              = _mm_load_sd(charge+jnrA+0);
880             vdwjidx0A        = 2*vdwtype[jnrA+0];
881
882             fjx0             = _mm_setzero_pd();
883             fjy0             = _mm_setzero_pd();
884             fjz0             = _mm_setzero_pd();
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             r00              = _mm_mul_pd(rsq00,rinv00);
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq00             = _mm_mul_pd(iq0,jq0);
894             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
895
896             /* Calculate table index by multiplying r with table scale and truncate to integer */
897             rt               = _mm_mul_pd(r00,vftabscale);
898             vfitab           = _mm_cvttpd_epi32(rt);
899             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
900             vfitab           = _mm_slli_epi32(vfitab,3);
901
902             /* COULOMB ELECTROSTATICS */
903             velec            = _mm_mul_pd(qq00,rinv00);
904             felec            = _mm_mul_pd(velec,rinvsq00);
905
906             /* CUBIC SPLINE TABLE DISPERSION */
907             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
908             F                = _mm_setzero_pd();
909             GMX_MM_TRANSPOSE2_PD(Y,F);
910             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
911             H                = _mm_setzero_pd();
912             GMX_MM_TRANSPOSE2_PD(G,H);
913             Heps             = _mm_mul_pd(vfeps,H);
914             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
915             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
916             fvdw6            = _mm_mul_pd(c6_00,FF);
917
918             /* CUBIC SPLINE TABLE REPULSION */
919             vfitab           = _mm_add_epi32(vfitab,ifour);
920             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
921             F                = _mm_setzero_pd();
922             GMX_MM_TRANSPOSE2_PD(Y,F);
923             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
924             H                = _mm_setzero_pd();
925             GMX_MM_TRANSPOSE2_PD(G,H);
926             Heps             = _mm_mul_pd(vfeps,H);
927             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
928             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
929             fvdw12           = _mm_mul_pd(c12_00,FF);
930             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
931
932             fscal            = _mm_add_pd(felec,fvdw);
933
934             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm_mul_pd(fscal,dx00);
938             ty               = _mm_mul_pd(fscal,dy00);
939             tz               = _mm_mul_pd(fscal,dz00);
940
941             /* Update vectorial force */
942             fix0             = _mm_add_pd(fix0,tx);
943             fiy0             = _mm_add_pd(fiy0,ty);
944             fiz0             = _mm_add_pd(fiz0,tz);
945
946             fjx0             = _mm_add_pd(fjx0,tx);
947             fjy0             = _mm_add_pd(fjy0,ty);
948             fjz0             = _mm_add_pd(fjz0,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq10             = _mm_mul_pd(iq1,jq0);
956
957             /* COULOMB ELECTROSTATICS */
958             velec            = _mm_mul_pd(qq10,rinv10);
959             felec            = _mm_mul_pd(velec,rinvsq10);
960
961             fscal            = felec;
962
963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm_mul_pd(fscal,dx10);
967             ty               = _mm_mul_pd(fscal,dy10);
968             tz               = _mm_mul_pd(fscal,dz10);
969
970             /* Update vectorial force */
971             fix1             = _mm_add_pd(fix1,tx);
972             fiy1             = _mm_add_pd(fiy1,ty);
973             fiz1             = _mm_add_pd(fiz1,tz);
974
975             fjx0             = _mm_add_pd(fjx0,tx);
976             fjy0             = _mm_add_pd(fjy0,ty);
977             fjz0             = _mm_add_pd(fjz0,tz);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq20             = _mm_mul_pd(iq2,jq0);
985
986             /* COULOMB ELECTROSTATICS */
987             velec            = _mm_mul_pd(qq20,rinv20);
988             felec            = _mm_mul_pd(velec,rinvsq20);
989
990             fscal            = felec;
991
992             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx20);
996             ty               = _mm_mul_pd(fscal,dy20);
997             tz               = _mm_mul_pd(fscal,dz20);
998
999             /* Update vectorial force */
1000             fix2             = _mm_add_pd(fix2,tx);
1001             fiy2             = _mm_add_pd(fiy2,ty);
1002             fiz2             = _mm_add_pd(fiz2,tz);
1003
1004             fjx0             = _mm_add_pd(fjx0,tx);
1005             fjy0             = _mm_add_pd(fjy0,ty);
1006             fjz0             = _mm_add_pd(fjz0,tz);
1007
1008             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1009
1010             /* Inner loop uses 111 flops */
1011         }
1012
1013         /* End of innermost loop */
1014
1015         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1016                                               f+i_coord_offset,fshift+i_shift_offset);
1017
1018         /* Increment number of inner iterations */
1019         inneriter                  += j_index_end - j_index_start;
1020
1021         /* Outer loop uses 18 flops */
1022     }
1023
1024     /* Increment number of outer iterations */
1025     outeriter        += nri;
1026
1027     /* Update outer/inner flops */
1028
1029     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1030 }