0c5372284211d41fdd4e417c2c9831a336232c71
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     vftab            = kernel_data->table_vdw->data;
119     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vvdwsum          = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_pd(ix0,jx0);
174             dy00             = _mm_sub_pd(iy0,jy0);
175             dz00             = _mm_sub_pd(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
179
180             rinv00           = gmx_mm_invsqrt_pd(rsq00);
181
182             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             r00              = _mm_mul_pd(rsq00,rinv00);
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm_mul_pd(iq0,jq0);
197             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199
200             /* Calculate table index by multiplying r with table scale and truncate to integer */
201             rt               = _mm_mul_pd(r00,vftabscale);
202             vfitab           = _mm_cvttpd_epi32(rt);
203             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
204             vfitab           = _mm_slli_epi32(vfitab,3);
205
206             /* COULOMB ELECTROSTATICS */
207             velec            = _mm_mul_pd(qq00,rinv00);
208             felec            = _mm_mul_pd(velec,rinvsq00);
209
210             /* CUBIC SPLINE TABLE DISPERSION */
211             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
212             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
213             GMX_MM_TRANSPOSE2_PD(Y,F);
214             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
215             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
216             GMX_MM_TRANSPOSE2_PD(G,H);
217             Heps             = _mm_mul_pd(vfeps,H);
218             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
219             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
220             vvdw6            = _mm_mul_pd(c6_00,VV);
221             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
222             fvdw6            = _mm_mul_pd(c6_00,FF);
223
224             /* CUBIC SPLINE TABLE REPULSION */
225             vfitab           = _mm_add_epi32(vfitab,ifour);
226             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
227             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
230             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Heps             = _mm_mul_pd(vfeps,H);
233             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
234             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
235             vvdw12           = _mm_mul_pd(c12_00,VV);
236             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
237             fvdw12           = _mm_mul_pd(c12_00,FF);
238             vvdw             = _mm_add_pd(vvdw12,vvdw6);
239             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             velecsum         = _mm_add_pd(velecsum,velec);
243             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
244
245             fscal            = _mm_add_pd(felec,fvdw);
246
247             /* Calculate temporary vectorial force */
248             tx               = _mm_mul_pd(fscal,dx00);
249             ty               = _mm_mul_pd(fscal,dy00);
250             tz               = _mm_mul_pd(fscal,dz00);
251
252             /* Update vectorial force */
253             fix0             = _mm_add_pd(fix0,tx);
254             fiy0             = _mm_add_pd(fiy0,ty);
255             fiz0             = _mm_add_pd(fiz0,tz);
256
257             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
258
259             /* Inner loop uses 63 flops */
260         }
261
262         if(jidx<j_index_end)
263         {
264
265             jnrA             = jjnr[jidx];
266             j_coord_offsetA  = DIM*jnrA;
267
268             /* load j atom coordinates */
269             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
270                                               &jx0,&jy0,&jz0);
271
272             /* Calculate displacement vector */
273             dx00             = _mm_sub_pd(ix0,jx0);
274             dy00             = _mm_sub_pd(iy0,jy0);
275             dz00             = _mm_sub_pd(iz0,jz0);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
279
280             rinv00           = gmx_mm_invsqrt_pd(rsq00);
281
282             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
283
284             /* Load parameters for j particles */
285             jq0              = _mm_load_sd(charge+jnrA+0);
286             vdwjidx0A        = 2*vdwtype[jnrA+0];
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r00              = _mm_mul_pd(rsq00,rinv00);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq00             = _mm_mul_pd(iq0,jq0);
296             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
297
298             /* Calculate table index by multiplying r with table scale and truncate to integer */
299             rt               = _mm_mul_pd(r00,vftabscale);
300             vfitab           = _mm_cvttpd_epi32(rt);
301             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
302             vfitab           = _mm_slli_epi32(vfitab,3);
303
304             /* COULOMB ELECTROSTATICS */
305             velec            = _mm_mul_pd(qq00,rinv00);
306             felec            = _mm_mul_pd(velec,rinvsq00);
307
308             /* CUBIC SPLINE TABLE DISPERSION */
309             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
310             F                = _mm_setzero_pd();
311             GMX_MM_TRANSPOSE2_PD(Y,F);
312             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
313             H                = _mm_setzero_pd();
314             GMX_MM_TRANSPOSE2_PD(G,H);
315             Heps             = _mm_mul_pd(vfeps,H);
316             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
317             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
318             vvdw6            = _mm_mul_pd(c6_00,VV);
319             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
320             fvdw6            = _mm_mul_pd(c6_00,FF);
321
322             /* CUBIC SPLINE TABLE REPULSION */
323             vfitab           = _mm_add_epi32(vfitab,ifour);
324             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
325             F                = _mm_setzero_pd();
326             GMX_MM_TRANSPOSE2_PD(Y,F);
327             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
328             H                = _mm_setzero_pd();
329             GMX_MM_TRANSPOSE2_PD(G,H);
330             Heps             = _mm_mul_pd(vfeps,H);
331             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
332             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
333             vvdw12           = _mm_mul_pd(c12_00,VV);
334             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
335             fvdw12           = _mm_mul_pd(c12_00,FF);
336             vvdw             = _mm_add_pd(vvdw12,vvdw6);
337             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
341             velecsum         = _mm_add_pd(velecsum,velec);
342             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
343             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
344
345             fscal            = _mm_add_pd(felec,fvdw);
346
347             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx00);
351             ty               = _mm_mul_pd(fscal,dy00);
352             tz               = _mm_mul_pd(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm_add_pd(fix0,tx);
356             fiy0             = _mm_add_pd(fiy0,ty);
357             fiz0             = _mm_add_pd(fiz0,tz);
358
359             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
360
361             /* Inner loop uses 63 flops */
362         }
363
364         /* End of innermost loop */
365
366         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
367                                               f+i_coord_offset,fshift+i_shift_offset);
368
369         ggid                        = gid[iidx];
370         /* Update potential energies */
371         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
372         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
373
374         /* Increment number of inner iterations */
375         inneriter                  += j_index_end - j_index_start;
376
377         /* Outer loop uses 9 flops */
378     }
379
380     /* Increment number of outer iterations */
381     outeriter        += nri;
382
383     /* Update outer/inner flops */
384
385     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*63);
386 }
387 /*
388  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_double
389  * Electrostatics interaction: Coulomb
390  * VdW interaction:            CubicSplineTable
391  * Geometry:                   Particle-Particle
392  * Calculate force/pot:        Force
393  */
394 void
395 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_double
396                     (t_nblist                    * gmx_restrict       nlist,
397                      rvec                        * gmx_restrict          xx,
398                      rvec                        * gmx_restrict          ff,
399                      t_forcerec                  * gmx_restrict          fr,
400                      t_mdatoms                   * gmx_restrict     mdatoms,
401                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
402                      t_nrnb                      * gmx_restrict        nrnb)
403 {
404     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
405      * just 0 for non-waters.
406      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
407      * jnr indices corresponding to data put in the four positions in the SIMD register.
408      */
409     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
410     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
411     int              jnrA,jnrB;
412     int              j_coord_offsetA,j_coord_offsetB;
413     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
414     real             rcutoff_scalar;
415     real             *shiftvec,*fshift,*x,*f;
416     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
417     int              vdwioffset0;
418     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
419     int              vdwjidx0A,vdwjidx0B;
420     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
421     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
422     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
423     real             *charge;
424     int              nvdwtype;
425     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
426     int              *vdwtype;
427     real             *vdwparam;
428     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
429     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
430     __m128i          vfitab;
431     __m128i          ifour       = _mm_set1_epi32(4);
432     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
433     real             *vftab;
434     __m128d          dummy_mask,cutoff_mask;
435     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
436     __m128d          one     = _mm_set1_pd(1.0);
437     __m128d          two     = _mm_set1_pd(2.0);
438     x                = xx[0];
439     f                = ff[0];
440
441     nri              = nlist->nri;
442     iinr             = nlist->iinr;
443     jindex           = nlist->jindex;
444     jjnr             = nlist->jjnr;
445     shiftidx         = nlist->shift;
446     gid              = nlist->gid;
447     shiftvec         = fr->shift_vec[0];
448     fshift           = fr->fshift[0];
449     facel            = _mm_set1_pd(fr->epsfac);
450     charge           = mdatoms->chargeA;
451     nvdwtype         = fr->ntype;
452     vdwparam         = fr->nbfp;
453     vdwtype          = mdatoms->typeA;
454
455     vftab            = kernel_data->table_vdw->data;
456     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
457
458     /* Avoid stupid compiler warnings */
459     jnrA = jnrB = 0;
460     j_coord_offsetA = 0;
461     j_coord_offsetB = 0;
462
463     outeriter        = 0;
464     inneriter        = 0;
465
466     /* Start outer loop over neighborlists */
467     for(iidx=0; iidx<nri; iidx++)
468     {
469         /* Load shift vector for this list */
470         i_shift_offset   = DIM*shiftidx[iidx];
471
472         /* Load limits for loop over neighbors */
473         j_index_start    = jindex[iidx];
474         j_index_end      = jindex[iidx+1];
475
476         /* Get outer coordinate index */
477         inr              = iinr[iidx];
478         i_coord_offset   = DIM*inr;
479
480         /* Load i particle coords and add shift vector */
481         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
482
483         fix0             = _mm_setzero_pd();
484         fiy0             = _mm_setzero_pd();
485         fiz0             = _mm_setzero_pd();
486
487         /* Load parameters for i particles */
488         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
489         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
490
491         /* Start inner kernel loop */
492         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
493         {
494
495             /* Get j neighbor index, and coordinate index */
496             jnrA             = jjnr[jidx];
497             jnrB             = jjnr[jidx+1];
498             j_coord_offsetA  = DIM*jnrA;
499             j_coord_offsetB  = DIM*jnrB;
500
501             /* load j atom coordinates */
502             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
503                                               &jx0,&jy0,&jz0);
504
505             /* Calculate displacement vector */
506             dx00             = _mm_sub_pd(ix0,jx0);
507             dy00             = _mm_sub_pd(iy0,jy0);
508             dz00             = _mm_sub_pd(iz0,jz0);
509
510             /* Calculate squared distance and things based on it */
511             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
512
513             rinv00           = gmx_mm_invsqrt_pd(rsq00);
514
515             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
516
517             /* Load parameters for j particles */
518             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
519             vdwjidx0A        = 2*vdwtype[jnrA+0];
520             vdwjidx0B        = 2*vdwtype[jnrB+0];
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             r00              = _mm_mul_pd(rsq00,rinv00);
527
528             /* Compute parameters for interactions between i and j atoms */
529             qq00             = _mm_mul_pd(iq0,jq0);
530             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
531                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
532
533             /* Calculate table index by multiplying r with table scale and truncate to integer */
534             rt               = _mm_mul_pd(r00,vftabscale);
535             vfitab           = _mm_cvttpd_epi32(rt);
536             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
537             vfitab           = _mm_slli_epi32(vfitab,3);
538
539             /* COULOMB ELECTROSTATICS */
540             velec            = _mm_mul_pd(qq00,rinv00);
541             felec            = _mm_mul_pd(velec,rinvsq00);
542
543             /* CUBIC SPLINE TABLE DISPERSION */
544             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
545             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
546             GMX_MM_TRANSPOSE2_PD(Y,F);
547             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
548             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
549             GMX_MM_TRANSPOSE2_PD(G,H);
550             Heps             = _mm_mul_pd(vfeps,H);
551             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
552             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
553             fvdw6            = _mm_mul_pd(c6_00,FF);
554
555             /* CUBIC SPLINE TABLE REPULSION */
556             vfitab           = _mm_add_epi32(vfitab,ifour);
557             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
558             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
559             GMX_MM_TRANSPOSE2_PD(Y,F);
560             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
561             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
562             GMX_MM_TRANSPOSE2_PD(G,H);
563             Heps             = _mm_mul_pd(vfeps,H);
564             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
565             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
566             fvdw12           = _mm_mul_pd(c12_00,FF);
567             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
568
569             fscal            = _mm_add_pd(felec,fvdw);
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm_mul_pd(fscal,dx00);
573             ty               = _mm_mul_pd(fscal,dy00);
574             tz               = _mm_mul_pd(fscal,dz00);
575
576             /* Update vectorial force */
577             fix0             = _mm_add_pd(fix0,tx);
578             fiy0             = _mm_add_pd(fiy0,ty);
579             fiz0             = _mm_add_pd(fiz0,tz);
580
581             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
582
583             /* Inner loop uses 54 flops */
584         }
585
586         if(jidx<j_index_end)
587         {
588
589             jnrA             = jjnr[jidx];
590             j_coord_offsetA  = DIM*jnrA;
591
592             /* load j atom coordinates */
593             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
594                                               &jx0,&jy0,&jz0);
595
596             /* Calculate displacement vector */
597             dx00             = _mm_sub_pd(ix0,jx0);
598             dy00             = _mm_sub_pd(iy0,jy0);
599             dz00             = _mm_sub_pd(iz0,jz0);
600
601             /* Calculate squared distance and things based on it */
602             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
603
604             rinv00           = gmx_mm_invsqrt_pd(rsq00);
605
606             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
607
608             /* Load parameters for j particles */
609             jq0              = _mm_load_sd(charge+jnrA+0);
610             vdwjidx0A        = 2*vdwtype[jnrA+0];
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             r00              = _mm_mul_pd(rsq00,rinv00);
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq00             = _mm_mul_pd(iq0,jq0);
620             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
621
622             /* Calculate table index by multiplying r with table scale and truncate to integer */
623             rt               = _mm_mul_pd(r00,vftabscale);
624             vfitab           = _mm_cvttpd_epi32(rt);
625             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
626             vfitab           = _mm_slli_epi32(vfitab,3);
627
628             /* COULOMB ELECTROSTATICS */
629             velec            = _mm_mul_pd(qq00,rinv00);
630             felec            = _mm_mul_pd(velec,rinvsq00);
631
632             /* CUBIC SPLINE TABLE DISPERSION */
633             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
634             F                = _mm_setzero_pd();
635             GMX_MM_TRANSPOSE2_PD(Y,F);
636             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
637             H                = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(G,H);
639             Heps             = _mm_mul_pd(vfeps,H);
640             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
641             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
642             fvdw6            = _mm_mul_pd(c6_00,FF);
643
644             /* CUBIC SPLINE TABLE REPULSION */
645             vfitab           = _mm_add_epi32(vfitab,ifour);
646             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
647             F                = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(Y,F);
649             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
650             H                = _mm_setzero_pd();
651             GMX_MM_TRANSPOSE2_PD(G,H);
652             Heps             = _mm_mul_pd(vfeps,H);
653             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
654             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
655             fvdw12           = _mm_mul_pd(c12_00,FF);
656             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
657
658             fscal            = _mm_add_pd(felec,fvdw);
659
660             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm_mul_pd(fscal,dx00);
664             ty               = _mm_mul_pd(fscal,dy00);
665             tz               = _mm_mul_pd(fscal,dz00);
666
667             /* Update vectorial force */
668             fix0             = _mm_add_pd(fix0,tx);
669             fiy0             = _mm_add_pd(fiy0,ty);
670             fiz0             = _mm_add_pd(fiz0,tz);
671
672             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
673
674             /* Inner loop uses 54 flops */
675         }
676
677         /* End of innermost loop */
678
679         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
680                                               f+i_coord_offset,fshift+i_shift_offset);
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 7 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
694 }