Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset1;
80     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
81     int              vdwioffset2;
82     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
83     int              vdwioffset3;
84     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
88     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113
114     vftab            = kernel_data->table_elec->data;
115     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
147                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
148
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155         fix3             = _mm_setzero_pd();
156         fiy3             = _mm_setzero_pd();
157         fiz3             = _mm_setzero_pd();
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_pd();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171
172             /* load j atom coordinates */
173             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx10             = _mm_sub_pd(ix1,jx0);
178             dy10             = _mm_sub_pd(iy1,jy0);
179             dz10             = _mm_sub_pd(iz1,jz0);
180             dx20             = _mm_sub_pd(ix2,jx0);
181             dy20             = _mm_sub_pd(iy2,jy0);
182             dz20             = _mm_sub_pd(iz2,jz0);
183             dx30             = _mm_sub_pd(ix3,jx0);
184             dy30             = _mm_sub_pd(iy3,jy0);
185             dz30             = _mm_sub_pd(iz3,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
189             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
190             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
191
192             rinv10           = sse41_invsqrt_d(rsq10);
193             rinv20           = sse41_invsqrt_d(rsq20);
194             rinv30           = sse41_invsqrt_d(rsq30);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198
199             fjx0             = _mm_setzero_pd();
200             fjy0             = _mm_setzero_pd();
201             fjz0             = _mm_setzero_pd();
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r10              = _mm_mul_pd(rsq10,rinv10);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq10             = _mm_mul_pd(iq1,jq0);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _mm_mul_pd(r10,vftabscale);
214             vfitab           = _mm_cvttpd_epi32(rt);
215             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
216             vfitab           = _mm_slli_epi32(vfitab,2);
217
218             /* CUBIC SPLINE TABLE ELECTROSTATICS */
219             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
220             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
221             GMX_MM_TRANSPOSE2_PD(Y,F);
222             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
223             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(G,H);
225             Heps             = _mm_mul_pd(vfeps,H);
226             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
227             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
228             velec            = _mm_mul_pd(qq10,VV);
229             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
230             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm_add_pd(velecsum,velec);
234
235             fscal            = felec;
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm_mul_pd(fscal,dx10);
239             ty               = _mm_mul_pd(fscal,dy10);
240             tz               = _mm_mul_pd(fscal,dz10);
241
242             /* Update vectorial force */
243             fix1             = _mm_add_pd(fix1,tx);
244             fiy1             = _mm_add_pd(fiy1,ty);
245             fiz1             = _mm_add_pd(fiz1,tz);
246
247             fjx0             = _mm_add_pd(fjx0,tx);
248             fjy0             = _mm_add_pd(fjy0,ty);
249             fjz0             = _mm_add_pd(fjz0,tz);
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r20              = _mm_mul_pd(rsq20,rinv20);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq20             = _mm_mul_pd(iq2,jq0);
259
260             /* Calculate table index by multiplying r with table scale and truncate to integer */
261             rt               = _mm_mul_pd(r20,vftabscale);
262             vfitab           = _mm_cvttpd_epi32(rt);
263             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
264             vfitab           = _mm_slli_epi32(vfitab,2);
265
266             /* CUBIC SPLINE TABLE ELECTROSTATICS */
267             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             GMX_MM_TRANSPOSE2_PD(Y,F);
270             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
271             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
272             GMX_MM_TRANSPOSE2_PD(G,H);
273             Heps             = _mm_mul_pd(vfeps,H);
274             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
275             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
276             velec            = _mm_mul_pd(qq20,VV);
277             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
278             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_pd(velecsum,velec);
282
283             fscal            = felec;
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_pd(fscal,dx20);
287             ty               = _mm_mul_pd(fscal,dy20);
288             tz               = _mm_mul_pd(fscal,dz20);
289
290             /* Update vectorial force */
291             fix2             = _mm_add_pd(fix2,tx);
292             fiy2             = _mm_add_pd(fiy2,ty);
293             fiz2             = _mm_add_pd(fiz2,tz);
294
295             fjx0             = _mm_add_pd(fjx0,tx);
296             fjy0             = _mm_add_pd(fjy0,ty);
297             fjz0             = _mm_add_pd(fjz0,tz);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r30              = _mm_mul_pd(rsq30,rinv30);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq30             = _mm_mul_pd(iq3,jq0);
307
308             /* Calculate table index by multiplying r with table scale and truncate to integer */
309             rt               = _mm_mul_pd(r30,vftabscale);
310             vfitab           = _mm_cvttpd_epi32(rt);
311             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
312             vfitab           = _mm_slli_epi32(vfitab,2);
313
314             /* CUBIC SPLINE TABLE ELECTROSTATICS */
315             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
316             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
317             GMX_MM_TRANSPOSE2_PD(Y,F);
318             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
319             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
320             GMX_MM_TRANSPOSE2_PD(G,H);
321             Heps             = _mm_mul_pd(vfeps,H);
322             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
323             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
324             velec            = _mm_mul_pd(qq30,VV);
325             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
326             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_pd(fscal,dx30);
335             ty               = _mm_mul_pd(fscal,dy30);
336             tz               = _mm_mul_pd(fscal,dz30);
337
338             /* Update vectorial force */
339             fix3             = _mm_add_pd(fix3,tx);
340             fiy3             = _mm_add_pd(fiy3,ty);
341             fiz3             = _mm_add_pd(fiz3,tz);
342
343             fjx0             = _mm_add_pd(fjx0,tx);
344             fjy0             = _mm_add_pd(fjy0,ty);
345             fjz0             = _mm_add_pd(fjz0,tz);
346
347             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
348
349             /* Inner loop uses 132 flops */
350         }
351
352         if(jidx<j_index_end)
353         {
354
355             jnrA             = jjnr[jidx];
356             j_coord_offsetA  = DIM*jnrA;
357
358             /* load j atom coordinates */
359             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
360                                               &jx0,&jy0,&jz0);
361
362             /* Calculate displacement vector */
363             dx10             = _mm_sub_pd(ix1,jx0);
364             dy10             = _mm_sub_pd(iy1,jy0);
365             dz10             = _mm_sub_pd(iz1,jz0);
366             dx20             = _mm_sub_pd(ix2,jx0);
367             dy20             = _mm_sub_pd(iy2,jy0);
368             dz20             = _mm_sub_pd(iz2,jz0);
369             dx30             = _mm_sub_pd(ix3,jx0);
370             dy30             = _mm_sub_pd(iy3,jy0);
371             dz30             = _mm_sub_pd(iz3,jz0);
372
373             /* Calculate squared distance and things based on it */
374             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
375             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
376             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
377
378             rinv10           = sse41_invsqrt_d(rsq10);
379             rinv20           = sse41_invsqrt_d(rsq20);
380             rinv30           = sse41_invsqrt_d(rsq30);
381
382             /* Load parameters for j particles */
383             jq0              = _mm_load_sd(charge+jnrA+0);
384
385             fjx0             = _mm_setzero_pd();
386             fjy0             = _mm_setzero_pd();
387             fjz0             = _mm_setzero_pd();
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             r10              = _mm_mul_pd(rsq10,rinv10);
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq10             = _mm_mul_pd(iq1,jq0);
397
398             /* Calculate table index by multiplying r with table scale and truncate to integer */
399             rt               = _mm_mul_pd(r10,vftabscale);
400             vfitab           = _mm_cvttpd_epi32(rt);
401             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
402             vfitab           = _mm_slli_epi32(vfitab,2);
403
404             /* CUBIC SPLINE TABLE ELECTROSTATICS */
405             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
406             F                = _mm_setzero_pd();
407             GMX_MM_TRANSPOSE2_PD(Y,F);
408             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
409             H                = _mm_setzero_pd();
410             GMX_MM_TRANSPOSE2_PD(G,H);
411             Heps             = _mm_mul_pd(vfeps,H);
412             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
413             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
414             velec            = _mm_mul_pd(qq10,VV);
415             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
416             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
420             velecsum         = _mm_add_pd(velecsum,velec);
421
422             fscal            = felec;
423
424             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm_mul_pd(fscal,dx10);
428             ty               = _mm_mul_pd(fscal,dy10);
429             tz               = _mm_mul_pd(fscal,dz10);
430
431             /* Update vectorial force */
432             fix1             = _mm_add_pd(fix1,tx);
433             fiy1             = _mm_add_pd(fiy1,ty);
434             fiz1             = _mm_add_pd(fiz1,tz);
435
436             fjx0             = _mm_add_pd(fjx0,tx);
437             fjy0             = _mm_add_pd(fjy0,ty);
438             fjz0             = _mm_add_pd(fjz0,tz);
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             r20              = _mm_mul_pd(rsq20,rinv20);
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq20             = _mm_mul_pd(iq2,jq0);
448
449             /* Calculate table index by multiplying r with table scale and truncate to integer */
450             rt               = _mm_mul_pd(r20,vftabscale);
451             vfitab           = _mm_cvttpd_epi32(rt);
452             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
453             vfitab           = _mm_slli_epi32(vfitab,2);
454
455             /* CUBIC SPLINE TABLE ELECTROSTATICS */
456             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Heps             = _mm_mul_pd(vfeps,H);
463             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
464             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
465             velec            = _mm_mul_pd(qq20,VV);
466             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
467             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
468
469             /* Update potential sum for this i atom from the interaction with this j atom. */
470             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
471             velecsum         = _mm_add_pd(velecsum,velec);
472
473             fscal            = felec;
474
475             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
476
477             /* Calculate temporary vectorial force */
478             tx               = _mm_mul_pd(fscal,dx20);
479             ty               = _mm_mul_pd(fscal,dy20);
480             tz               = _mm_mul_pd(fscal,dz20);
481
482             /* Update vectorial force */
483             fix2             = _mm_add_pd(fix2,tx);
484             fiy2             = _mm_add_pd(fiy2,ty);
485             fiz2             = _mm_add_pd(fiz2,tz);
486
487             fjx0             = _mm_add_pd(fjx0,tx);
488             fjy0             = _mm_add_pd(fjy0,ty);
489             fjz0             = _mm_add_pd(fjz0,tz);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             r30              = _mm_mul_pd(rsq30,rinv30);
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq30             = _mm_mul_pd(iq3,jq0);
499
500             /* Calculate table index by multiplying r with table scale and truncate to integer */
501             rt               = _mm_mul_pd(r30,vftabscale);
502             vfitab           = _mm_cvttpd_epi32(rt);
503             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
504             vfitab           = _mm_slli_epi32(vfitab,2);
505
506             /* CUBIC SPLINE TABLE ELECTROSTATICS */
507             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
508             F                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(Y,F);
510             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
511             H                = _mm_setzero_pd();
512             GMX_MM_TRANSPOSE2_PD(G,H);
513             Heps             = _mm_mul_pd(vfeps,H);
514             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
515             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
516             velec            = _mm_mul_pd(qq30,VV);
517             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
518             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
522             velecsum         = _mm_add_pd(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_pd(fscal,dx30);
530             ty               = _mm_mul_pd(fscal,dy30);
531             tz               = _mm_mul_pd(fscal,dz30);
532
533             /* Update vectorial force */
534             fix3             = _mm_add_pd(fix3,tx);
535             fiy3             = _mm_add_pd(fiy3,ty);
536             fiz3             = _mm_add_pd(fiz3,tz);
537
538             fjx0             = _mm_add_pd(fjx0,tx);
539             fjy0             = _mm_add_pd(fjy0,ty);
540             fjz0             = _mm_add_pd(fjz0,tz);
541
542             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
543
544             /* Inner loop uses 132 flops */
545         }
546
547         /* End of innermost loop */
548
549         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
550                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
551
552         ggid                        = gid[iidx];
553         /* Update potential energies */
554         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
555
556         /* Increment number of inner iterations */
557         inneriter                  += j_index_end - j_index_start;
558
559         /* Outer loop uses 19 flops */
560     }
561
562     /* Increment number of outer iterations */
563     outeriter        += nri;
564
565     /* Update outer/inner flops */
566
567     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*132);
568 }
569 /*
570  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_sse4_1_double
571  * Electrostatics interaction: CubicSplineTable
572  * VdW interaction:            None
573  * Geometry:                   Water4-Particle
574  * Calculate force/pot:        Force
575  */
576 void
577 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_sse4_1_double
578                     (t_nblist                    * gmx_restrict       nlist,
579                      rvec                        * gmx_restrict          xx,
580                      rvec                        * gmx_restrict          ff,
581                      struct t_forcerec           * gmx_restrict          fr,
582                      t_mdatoms                   * gmx_restrict     mdatoms,
583                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
584                      t_nrnb                      * gmx_restrict        nrnb)
585 {
586     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
587      * just 0 for non-waters.
588      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
589      * jnr indices corresponding to data put in the four positions in the SIMD register.
590      */
591     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
592     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
593     int              jnrA,jnrB;
594     int              j_coord_offsetA,j_coord_offsetB;
595     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
596     real             rcutoff_scalar;
597     real             *shiftvec,*fshift,*x,*f;
598     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
599     int              vdwioffset1;
600     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
601     int              vdwioffset2;
602     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
603     int              vdwioffset3;
604     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
605     int              vdwjidx0A,vdwjidx0B;
606     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
607     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
608     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
609     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
610     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
611     real             *charge;
612     __m128i          vfitab;
613     __m128i          ifour       = _mm_set1_epi32(4);
614     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
615     real             *vftab;
616     __m128d          dummy_mask,cutoff_mask;
617     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
618     __m128d          one     = _mm_set1_pd(1.0);
619     __m128d          two     = _mm_set1_pd(2.0);
620     x                = xx[0];
621     f                = ff[0];
622
623     nri              = nlist->nri;
624     iinr             = nlist->iinr;
625     jindex           = nlist->jindex;
626     jjnr             = nlist->jjnr;
627     shiftidx         = nlist->shift;
628     gid              = nlist->gid;
629     shiftvec         = fr->shift_vec[0];
630     fshift           = fr->fshift[0];
631     facel            = _mm_set1_pd(fr->ic->epsfac);
632     charge           = mdatoms->chargeA;
633
634     vftab            = kernel_data->table_elec->data;
635     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
636
637     /* Setup water-specific parameters */
638     inr              = nlist->iinr[0];
639     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
640     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
641     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
642
643     /* Avoid stupid compiler warnings */
644     jnrA = jnrB = 0;
645     j_coord_offsetA = 0;
646     j_coord_offsetB = 0;
647
648     outeriter        = 0;
649     inneriter        = 0;
650
651     /* Start outer loop over neighborlists */
652     for(iidx=0; iidx<nri; iidx++)
653     {
654         /* Load shift vector for this list */
655         i_shift_offset   = DIM*shiftidx[iidx];
656
657         /* Load limits for loop over neighbors */
658         j_index_start    = jindex[iidx];
659         j_index_end      = jindex[iidx+1];
660
661         /* Get outer coordinate index */
662         inr              = iinr[iidx];
663         i_coord_offset   = DIM*inr;
664
665         /* Load i particle coords and add shift vector */
666         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
667                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
668
669         fix1             = _mm_setzero_pd();
670         fiy1             = _mm_setzero_pd();
671         fiz1             = _mm_setzero_pd();
672         fix2             = _mm_setzero_pd();
673         fiy2             = _mm_setzero_pd();
674         fiz2             = _mm_setzero_pd();
675         fix3             = _mm_setzero_pd();
676         fiy3             = _mm_setzero_pd();
677         fiz3             = _mm_setzero_pd();
678
679         /* Start inner kernel loop */
680         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
681         {
682
683             /* Get j neighbor index, and coordinate index */
684             jnrA             = jjnr[jidx];
685             jnrB             = jjnr[jidx+1];
686             j_coord_offsetA  = DIM*jnrA;
687             j_coord_offsetB  = DIM*jnrB;
688
689             /* load j atom coordinates */
690             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
691                                               &jx0,&jy0,&jz0);
692
693             /* Calculate displacement vector */
694             dx10             = _mm_sub_pd(ix1,jx0);
695             dy10             = _mm_sub_pd(iy1,jy0);
696             dz10             = _mm_sub_pd(iz1,jz0);
697             dx20             = _mm_sub_pd(ix2,jx0);
698             dy20             = _mm_sub_pd(iy2,jy0);
699             dz20             = _mm_sub_pd(iz2,jz0);
700             dx30             = _mm_sub_pd(ix3,jx0);
701             dy30             = _mm_sub_pd(iy3,jy0);
702             dz30             = _mm_sub_pd(iz3,jz0);
703
704             /* Calculate squared distance and things based on it */
705             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
706             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
707             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
708
709             rinv10           = sse41_invsqrt_d(rsq10);
710             rinv20           = sse41_invsqrt_d(rsq20);
711             rinv30           = sse41_invsqrt_d(rsq30);
712
713             /* Load parameters for j particles */
714             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
715
716             fjx0             = _mm_setzero_pd();
717             fjy0             = _mm_setzero_pd();
718             fjz0             = _mm_setzero_pd();
719
720             /**************************
721              * CALCULATE INTERACTIONS *
722              **************************/
723
724             r10              = _mm_mul_pd(rsq10,rinv10);
725
726             /* Compute parameters for interactions between i and j atoms */
727             qq10             = _mm_mul_pd(iq1,jq0);
728
729             /* Calculate table index by multiplying r with table scale and truncate to integer */
730             rt               = _mm_mul_pd(r10,vftabscale);
731             vfitab           = _mm_cvttpd_epi32(rt);
732             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
733             vfitab           = _mm_slli_epi32(vfitab,2);
734
735             /* CUBIC SPLINE TABLE ELECTROSTATICS */
736             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
737             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
738             GMX_MM_TRANSPOSE2_PD(Y,F);
739             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
740             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
741             GMX_MM_TRANSPOSE2_PD(G,H);
742             Heps             = _mm_mul_pd(vfeps,H);
743             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
744             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
745             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
746
747             fscal            = felec;
748
749             /* Calculate temporary vectorial force */
750             tx               = _mm_mul_pd(fscal,dx10);
751             ty               = _mm_mul_pd(fscal,dy10);
752             tz               = _mm_mul_pd(fscal,dz10);
753
754             /* Update vectorial force */
755             fix1             = _mm_add_pd(fix1,tx);
756             fiy1             = _mm_add_pd(fiy1,ty);
757             fiz1             = _mm_add_pd(fiz1,tz);
758
759             fjx0             = _mm_add_pd(fjx0,tx);
760             fjy0             = _mm_add_pd(fjy0,ty);
761             fjz0             = _mm_add_pd(fjz0,tz);
762
763             /**************************
764              * CALCULATE INTERACTIONS *
765              **************************/
766
767             r20              = _mm_mul_pd(rsq20,rinv20);
768
769             /* Compute parameters for interactions between i and j atoms */
770             qq20             = _mm_mul_pd(iq2,jq0);
771
772             /* Calculate table index by multiplying r with table scale and truncate to integer */
773             rt               = _mm_mul_pd(r20,vftabscale);
774             vfitab           = _mm_cvttpd_epi32(rt);
775             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
776             vfitab           = _mm_slli_epi32(vfitab,2);
777
778             /* CUBIC SPLINE TABLE ELECTROSTATICS */
779             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
780             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
781             GMX_MM_TRANSPOSE2_PD(Y,F);
782             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
783             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
784             GMX_MM_TRANSPOSE2_PD(G,H);
785             Heps             = _mm_mul_pd(vfeps,H);
786             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
787             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
788             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
789
790             fscal            = felec;
791
792             /* Calculate temporary vectorial force */
793             tx               = _mm_mul_pd(fscal,dx20);
794             ty               = _mm_mul_pd(fscal,dy20);
795             tz               = _mm_mul_pd(fscal,dz20);
796
797             /* Update vectorial force */
798             fix2             = _mm_add_pd(fix2,tx);
799             fiy2             = _mm_add_pd(fiy2,ty);
800             fiz2             = _mm_add_pd(fiz2,tz);
801
802             fjx0             = _mm_add_pd(fjx0,tx);
803             fjy0             = _mm_add_pd(fjy0,ty);
804             fjz0             = _mm_add_pd(fjz0,tz);
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             r30              = _mm_mul_pd(rsq30,rinv30);
811
812             /* Compute parameters for interactions between i and j atoms */
813             qq30             = _mm_mul_pd(iq3,jq0);
814
815             /* Calculate table index by multiplying r with table scale and truncate to integer */
816             rt               = _mm_mul_pd(r30,vftabscale);
817             vfitab           = _mm_cvttpd_epi32(rt);
818             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
819             vfitab           = _mm_slli_epi32(vfitab,2);
820
821             /* CUBIC SPLINE TABLE ELECTROSTATICS */
822             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
823             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
824             GMX_MM_TRANSPOSE2_PD(Y,F);
825             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
826             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
827             GMX_MM_TRANSPOSE2_PD(G,H);
828             Heps             = _mm_mul_pd(vfeps,H);
829             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
830             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
831             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
832
833             fscal            = felec;
834
835             /* Calculate temporary vectorial force */
836             tx               = _mm_mul_pd(fscal,dx30);
837             ty               = _mm_mul_pd(fscal,dy30);
838             tz               = _mm_mul_pd(fscal,dz30);
839
840             /* Update vectorial force */
841             fix3             = _mm_add_pd(fix3,tx);
842             fiy3             = _mm_add_pd(fiy3,ty);
843             fiz3             = _mm_add_pd(fiz3,tz);
844
845             fjx0             = _mm_add_pd(fjx0,tx);
846             fjy0             = _mm_add_pd(fjy0,ty);
847             fjz0             = _mm_add_pd(fjz0,tz);
848
849             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
850
851             /* Inner loop uses 120 flops */
852         }
853
854         if(jidx<j_index_end)
855         {
856
857             jnrA             = jjnr[jidx];
858             j_coord_offsetA  = DIM*jnrA;
859
860             /* load j atom coordinates */
861             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
862                                               &jx0,&jy0,&jz0);
863
864             /* Calculate displacement vector */
865             dx10             = _mm_sub_pd(ix1,jx0);
866             dy10             = _mm_sub_pd(iy1,jy0);
867             dz10             = _mm_sub_pd(iz1,jz0);
868             dx20             = _mm_sub_pd(ix2,jx0);
869             dy20             = _mm_sub_pd(iy2,jy0);
870             dz20             = _mm_sub_pd(iz2,jz0);
871             dx30             = _mm_sub_pd(ix3,jx0);
872             dy30             = _mm_sub_pd(iy3,jy0);
873             dz30             = _mm_sub_pd(iz3,jz0);
874
875             /* Calculate squared distance and things based on it */
876             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
877             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
878             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
879
880             rinv10           = sse41_invsqrt_d(rsq10);
881             rinv20           = sse41_invsqrt_d(rsq20);
882             rinv30           = sse41_invsqrt_d(rsq30);
883
884             /* Load parameters for j particles */
885             jq0              = _mm_load_sd(charge+jnrA+0);
886
887             fjx0             = _mm_setzero_pd();
888             fjy0             = _mm_setzero_pd();
889             fjz0             = _mm_setzero_pd();
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             r10              = _mm_mul_pd(rsq10,rinv10);
896
897             /* Compute parameters for interactions between i and j atoms */
898             qq10             = _mm_mul_pd(iq1,jq0);
899
900             /* Calculate table index by multiplying r with table scale and truncate to integer */
901             rt               = _mm_mul_pd(r10,vftabscale);
902             vfitab           = _mm_cvttpd_epi32(rt);
903             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
904             vfitab           = _mm_slli_epi32(vfitab,2);
905
906             /* CUBIC SPLINE TABLE ELECTROSTATICS */
907             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
908             F                = _mm_setzero_pd();
909             GMX_MM_TRANSPOSE2_PD(Y,F);
910             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
911             H                = _mm_setzero_pd();
912             GMX_MM_TRANSPOSE2_PD(G,H);
913             Heps             = _mm_mul_pd(vfeps,H);
914             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
915             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
916             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
917
918             fscal            = felec;
919
920             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm_mul_pd(fscal,dx10);
924             ty               = _mm_mul_pd(fscal,dy10);
925             tz               = _mm_mul_pd(fscal,dz10);
926
927             /* Update vectorial force */
928             fix1             = _mm_add_pd(fix1,tx);
929             fiy1             = _mm_add_pd(fiy1,ty);
930             fiz1             = _mm_add_pd(fiz1,tz);
931
932             fjx0             = _mm_add_pd(fjx0,tx);
933             fjy0             = _mm_add_pd(fjy0,ty);
934             fjz0             = _mm_add_pd(fjz0,tz);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r20              = _mm_mul_pd(rsq20,rinv20);
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq20             = _mm_mul_pd(iq2,jq0);
944
945             /* Calculate table index by multiplying r with table scale and truncate to integer */
946             rt               = _mm_mul_pd(r20,vftabscale);
947             vfitab           = _mm_cvttpd_epi32(rt);
948             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
949             vfitab           = _mm_slli_epi32(vfitab,2);
950
951             /* CUBIC SPLINE TABLE ELECTROSTATICS */
952             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
953             F                = _mm_setzero_pd();
954             GMX_MM_TRANSPOSE2_PD(Y,F);
955             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
956             H                = _mm_setzero_pd();
957             GMX_MM_TRANSPOSE2_PD(G,H);
958             Heps             = _mm_mul_pd(vfeps,H);
959             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
960             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
961             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
962
963             fscal            = felec;
964
965             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm_mul_pd(fscal,dx20);
969             ty               = _mm_mul_pd(fscal,dy20);
970             tz               = _mm_mul_pd(fscal,dz20);
971
972             /* Update vectorial force */
973             fix2             = _mm_add_pd(fix2,tx);
974             fiy2             = _mm_add_pd(fiy2,ty);
975             fiz2             = _mm_add_pd(fiz2,tz);
976
977             fjx0             = _mm_add_pd(fjx0,tx);
978             fjy0             = _mm_add_pd(fjy0,ty);
979             fjz0             = _mm_add_pd(fjz0,tz);
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             r30              = _mm_mul_pd(rsq30,rinv30);
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq30             = _mm_mul_pd(iq3,jq0);
989
990             /* Calculate table index by multiplying r with table scale and truncate to integer */
991             rt               = _mm_mul_pd(r30,vftabscale);
992             vfitab           = _mm_cvttpd_epi32(rt);
993             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
994             vfitab           = _mm_slli_epi32(vfitab,2);
995
996             /* CUBIC SPLINE TABLE ELECTROSTATICS */
997             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
998             F                = _mm_setzero_pd();
999             GMX_MM_TRANSPOSE2_PD(Y,F);
1000             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1001             H                = _mm_setzero_pd();
1002             GMX_MM_TRANSPOSE2_PD(G,H);
1003             Heps             = _mm_mul_pd(vfeps,H);
1004             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1005             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1006             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1007
1008             fscal            = felec;
1009
1010             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_pd(fscal,dx30);
1014             ty               = _mm_mul_pd(fscal,dy30);
1015             tz               = _mm_mul_pd(fscal,dz30);
1016
1017             /* Update vectorial force */
1018             fix3             = _mm_add_pd(fix3,tx);
1019             fiy3             = _mm_add_pd(fiy3,ty);
1020             fiz3             = _mm_add_pd(fiz3,tz);
1021
1022             fjx0             = _mm_add_pd(fjx0,tx);
1023             fjy0             = _mm_add_pd(fjy0,ty);
1024             fjz0             = _mm_add_pd(fjz0,tz);
1025
1026             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1027
1028             /* Inner loop uses 120 flops */
1029         }
1030
1031         /* End of innermost loop */
1032
1033         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1034                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1035
1036         /* Increment number of inner iterations */
1037         inneriter                  += j_index_end - j_index_start;
1038
1039         /* Outer loop uses 18 flops */
1040     }
1041
1042     /* Increment number of outer iterations */
1043     outeriter        += nri;
1044
1045     /* Update outer/inner flops */
1046
1047     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
1048 }