Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116
117     vftab            = kernel_data->table_elec->data;
118     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
123     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
124     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
150                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
151
152         fix1             = _mm_setzero_pd();
153         fiy1             = _mm_setzero_pd();
154         fiz1             = _mm_setzero_pd();
155         fix2             = _mm_setzero_pd();
156         fiy2             = _mm_setzero_pd();
157         fiz2             = _mm_setzero_pd();
158         fix3             = _mm_setzero_pd();
159         fiy3             = _mm_setzero_pd();
160         fiz3             = _mm_setzero_pd();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx10             = _mm_sub_pd(ix1,jx0);
181             dy10             = _mm_sub_pd(iy1,jy0);
182             dz10             = _mm_sub_pd(iz1,jz0);
183             dx20             = _mm_sub_pd(ix2,jx0);
184             dy20             = _mm_sub_pd(iy2,jy0);
185             dz20             = _mm_sub_pd(iz2,jz0);
186             dx30             = _mm_sub_pd(ix3,jx0);
187             dy30             = _mm_sub_pd(iy3,jy0);
188             dz30             = _mm_sub_pd(iz3,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
192             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
193             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
194
195             rinv10           = gmx_mm_invsqrt_pd(rsq10);
196             rinv20           = gmx_mm_invsqrt_pd(rsq20);
197             rinv30           = gmx_mm_invsqrt_pd(rsq30);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
201
202             fjx0             = _mm_setzero_pd();
203             fjy0             = _mm_setzero_pd();
204             fjz0             = _mm_setzero_pd();
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r10              = _mm_mul_pd(rsq10,rinv10);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq10             = _mm_mul_pd(iq1,jq0);
214
215             /* Calculate table index by multiplying r with table scale and truncate to integer */
216             rt               = _mm_mul_pd(r10,vftabscale);
217             vfitab           = _mm_cvttpd_epi32(rt);
218             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
219             vfitab           = _mm_slli_epi32(vfitab,2);
220
221             /* CUBIC SPLINE TABLE ELECTROSTATICS */
222             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
223             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
224             GMX_MM_TRANSPOSE2_PD(Y,F);
225             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
226             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
227             GMX_MM_TRANSPOSE2_PD(G,H);
228             Heps             = _mm_mul_pd(vfeps,H);
229             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
230             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
231             velec            = _mm_mul_pd(qq10,VV);
232             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
233             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
234
235             /* Update potential sum for this i atom from the interaction with this j atom. */
236             velecsum         = _mm_add_pd(velecsum,velec);
237
238             fscal            = felec;
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm_mul_pd(fscal,dx10);
242             ty               = _mm_mul_pd(fscal,dy10);
243             tz               = _mm_mul_pd(fscal,dz10);
244
245             /* Update vectorial force */
246             fix1             = _mm_add_pd(fix1,tx);
247             fiy1             = _mm_add_pd(fiy1,ty);
248             fiz1             = _mm_add_pd(fiz1,tz);
249
250             fjx0             = _mm_add_pd(fjx0,tx);
251             fjy0             = _mm_add_pd(fjy0,ty);
252             fjz0             = _mm_add_pd(fjz0,tz);
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r20              = _mm_mul_pd(rsq20,rinv20);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq20             = _mm_mul_pd(iq2,jq0);
262
263             /* Calculate table index by multiplying r with table scale and truncate to integer */
264             rt               = _mm_mul_pd(r20,vftabscale);
265             vfitab           = _mm_cvttpd_epi32(rt);
266             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
267             vfitab           = _mm_slli_epi32(vfitab,2);
268
269             /* CUBIC SPLINE TABLE ELECTROSTATICS */
270             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
271             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
272             GMX_MM_TRANSPOSE2_PD(Y,F);
273             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
274             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
275             GMX_MM_TRANSPOSE2_PD(G,H);
276             Heps             = _mm_mul_pd(vfeps,H);
277             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
278             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
279             velec            = _mm_mul_pd(qq20,VV);
280             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
281             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm_add_pd(velecsum,velec);
285
286             fscal            = felec;
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm_mul_pd(fscal,dx20);
290             ty               = _mm_mul_pd(fscal,dy20);
291             tz               = _mm_mul_pd(fscal,dz20);
292
293             /* Update vectorial force */
294             fix2             = _mm_add_pd(fix2,tx);
295             fiy2             = _mm_add_pd(fiy2,ty);
296             fiz2             = _mm_add_pd(fiz2,tz);
297
298             fjx0             = _mm_add_pd(fjx0,tx);
299             fjy0             = _mm_add_pd(fjy0,ty);
300             fjz0             = _mm_add_pd(fjz0,tz);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r30              = _mm_mul_pd(rsq30,rinv30);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq30             = _mm_mul_pd(iq3,jq0);
310
311             /* Calculate table index by multiplying r with table scale and truncate to integer */
312             rt               = _mm_mul_pd(r30,vftabscale);
313             vfitab           = _mm_cvttpd_epi32(rt);
314             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
315             vfitab           = _mm_slli_epi32(vfitab,2);
316
317             /* CUBIC SPLINE TABLE ELECTROSTATICS */
318             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
319             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
320             GMX_MM_TRANSPOSE2_PD(Y,F);
321             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
322             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
323             GMX_MM_TRANSPOSE2_PD(G,H);
324             Heps             = _mm_mul_pd(vfeps,H);
325             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
326             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
327             velec            = _mm_mul_pd(qq30,VV);
328             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
329             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velecsum         = _mm_add_pd(velecsum,velec);
333
334             fscal            = felec;
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm_mul_pd(fscal,dx30);
338             ty               = _mm_mul_pd(fscal,dy30);
339             tz               = _mm_mul_pd(fscal,dz30);
340
341             /* Update vectorial force */
342             fix3             = _mm_add_pd(fix3,tx);
343             fiy3             = _mm_add_pd(fiy3,ty);
344             fiz3             = _mm_add_pd(fiz3,tz);
345
346             fjx0             = _mm_add_pd(fjx0,tx);
347             fjy0             = _mm_add_pd(fjy0,ty);
348             fjz0             = _mm_add_pd(fjz0,tz);
349
350             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
351
352             /* Inner loop uses 132 flops */
353         }
354
355         if(jidx<j_index_end)
356         {
357
358             jnrA             = jjnr[jidx];
359             j_coord_offsetA  = DIM*jnrA;
360
361             /* load j atom coordinates */
362             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
363                                               &jx0,&jy0,&jz0);
364
365             /* Calculate displacement vector */
366             dx10             = _mm_sub_pd(ix1,jx0);
367             dy10             = _mm_sub_pd(iy1,jy0);
368             dz10             = _mm_sub_pd(iz1,jz0);
369             dx20             = _mm_sub_pd(ix2,jx0);
370             dy20             = _mm_sub_pd(iy2,jy0);
371             dz20             = _mm_sub_pd(iz2,jz0);
372             dx30             = _mm_sub_pd(ix3,jx0);
373             dy30             = _mm_sub_pd(iy3,jy0);
374             dz30             = _mm_sub_pd(iz3,jz0);
375
376             /* Calculate squared distance and things based on it */
377             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
378             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
379             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
380
381             rinv10           = gmx_mm_invsqrt_pd(rsq10);
382             rinv20           = gmx_mm_invsqrt_pd(rsq20);
383             rinv30           = gmx_mm_invsqrt_pd(rsq30);
384
385             /* Load parameters for j particles */
386             jq0              = _mm_load_sd(charge+jnrA+0);
387
388             fjx0             = _mm_setzero_pd();
389             fjy0             = _mm_setzero_pd();
390             fjz0             = _mm_setzero_pd();
391
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             r10              = _mm_mul_pd(rsq10,rinv10);
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq10             = _mm_mul_pd(iq1,jq0);
400
401             /* Calculate table index by multiplying r with table scale and truncate to integer */
402             rt               = _mm_mul_pd(r10,vftabscale);
403             vfitab           = _mm_cvttpd_epi32(rt);
404             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
405             vfitab           = _mm_slli_epi32(vfitab,2);
406
407             /* CUBIC SPLINE TABLE ELECTROSTATICS */
408             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
409             F                = _mm_setzero_pd();
410             GMX_MM_TRANSPOSE2_PD(Y,F);
411             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
412             H                = _mm_setzero_pd();
413             GMX_MM_TRANSPOSE2_PD(G,H);
414             Heps             = _mm_mul_pd(vfeps,H);
415             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
416             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
417             velec            = _mm_mul_pd(qq10,VV);
418             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
419             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
423             velecsum         = _mm_add_pd(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm_mul_pd(fscal,dx10);
431             ty               = _mm_mul_pd(fscal,dy10);
432             tz               = _mm_mul_pd(fscal,dz10);
433
434             /* Update vectorial force */
435             fix1             = _mm_add_pd(fix1,tx);
436             fiy1             = _mm_add_pd(fiy1,ty);
437             fiz1             = _mm_add_pd(fiz1,tz);
438
439             fjx0             = _mm_add_pd(fjx0,tx);
440             fjy0             = _mm_add_pd(fjy0,ty);
441             fjz0             = _mm_add_pd(fjz0,tz);
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r20              = _mm_mul_pd(rsq20,rinv20);
448
449             /* Compute parameters for interactions between i and j atoms */
450             qq20             = _mm_mul_pd(iq2,jq0);
451
452             /* Calculate table index by multiplying r with table scale and truncate to integer */
453             rt               = _mm_mul_pd(r20,vftabscale);
454             vfitab           = _mm_cvttpd_epi32(rt);
455             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
456             vfitab           = _mm_slli_epi32(vfitab,2);
457
458             /* CUBIC SPLINE TABLE ELECTROSTATICS */
459             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
460             F                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(Y,F);
462             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
463             H                = _mm_setzero_pd();
464             GMX_MM_TRANSPOSE2_PD(G,H);
465             Heps             = _mm_mul_pd(vfeps,H);
466             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
467             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
468             velec            = _mm_mul_pd(qq20,VV);
469             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
470             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
474             velecsum         = _mm_add_pd(velecsum,velec);
475
476             fscal            = felec;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx20);
482             ty               = _mm_mul_pd(fscal,dy20);
483             tz               = _mm_mul_pd(fscal,dz20);
484
485             /* Update vectorial force */
486             fix2             = _mm_add_pd(fix2,tx);
487             fiy2             = _mm_add_pd(fiy2,ty);
488             fiz2             = _mm_add_pd(fiz2,tz);
489
490             fjx0             = _mm_add_pd(fjx0,tx);
491             fjy0             = _mm_add_pd(fjy0,ty);
492             fjz0             = _mm_add_pd(fjz0,tz);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r30              = _mm_mul_pd(rsq30,rinv30);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq30             = _mm_mul_pd(iq3,jq0);
502
503             /* Calculate table index by multiplying r with table scale and truncate to integer */
504             rt               = _mm_mul_pd(r30,vftabscale);
505             vfitab           = _mm_cvttpd_epi32(rt);
506             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
507             vfitab           = _mm_slli_epi32(vfitab,2);
508
509             /* CUBIC SPLINE TABLE ELECTROSTATICS */
510             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
511             F                = _mm_setzero_pd();
512             GMX_MM_TRANSPOSE2_PD(Y,F);
513             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
514             H                = _mm_setzero_pd();
515             GMX_MM_TRANSPOSE2_PD(G,H);
516             Heps             = _mm_mul_pd(vfeps,H);
517             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
518             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
519             velec            = _mm_mul_pd(qq30,VV);
520             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
521             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
525             velecsum         = _mm_add_pd(velecsum,velec);
526
527             fscal            = felec;
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx30);
533             ty               = _mm_mul_pd(fscal,dy30);
534             tz               = _mm_mul_pd(fscal,dz30);
535
536             /* Update vectorial force */
537             fix3             = _mm_add_pd(fix3,tx);
538             fiy3             = _mm_add_pd(fiy3,ty);
539             fiz3             = _mm_add_pd(fiz3,tz);
540
541             fjx0             = _mm_add_pd(fjx0,tx);
542             fjy0             = _mm_add_pd(fjy0,ty);
543             fjz0             = _mm_add_pd(fjz0,tz);
544
545             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
546
547             /* Inner loop uses 132 flops */
548         }
549
550         /* End of innermost loop */
551
552         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
553                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
554
555         ggid                        = gid[iidx];
556         /* Update potential energies */
557         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
558
559         /* Increment number of inner iterations */
560         inneriter                  += j_index_end - j_index_start;
561
562         /* Outer loop uses 19 flops */
563     }
564
565     /* Increment number of outer iterations */
566     outeriter        += nri;
567
568     /* Update outer/inner flops */
569
570     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*132);
571 }
572 /*
573  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_sse4_1_double
574  * Electrostatics interaction: CubicSplineTable
575  * VdW interaction:            None
576  * Geometry:                   Water4-Particle
577  * Calculate force/pot:        Force
578  */
579 void
580 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_sse4_1_double
581                     (t_nblist                    * gmx_restrict       nlist,
582                      rvec                        * gmx_restrict          xx,
583                      rvec                        * gmx_restrict          ff,
584                      t_forcerec                  * gmx_restrict          fr,
585                      t_mdatoms                   * gmx_restrict     mdatoms,
586                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
587                      t_nrnb                      * gmx_restrict        nrnb)
588 {
589     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
590      * just 0 for non-waters.
591      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
592      * jnr indices corresponding to data put in the four positions in the SIMD register.
593      */
594     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
595     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
596     int              jnrA,jnrB;
597     int              j_coord_offsetA,j_coord_offsetB;
598     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
599     real             rcutoff_scalar;
600     real             *shiftvec,*fshift,*x,*f;
601     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
602     int              vdwioffset1;
603     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
604     int              vdwioffset2;
605     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
606     int              vdwioffset3;
607     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
608     int              vdwjidx0A,vdwjidx0B;
609     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
610     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
611     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
612     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
613     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
614     real             *charge;
615     __m128i          vfitab;
616     __m128i          ifour       = _mm_set1_epi32(4);
617     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
618     real             *vftab;
619     __m128d          dummy_mask,cutoff_mask;
620     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
621     __m128d          one     = _mm_set1_pd(1.0);
622     __m128d          two     = _mm_set1_pd(2.0);
623     x                = xx[0];
624     f                = ff[0];
625
626     nri              = nlist->nri;
627     iinr             = nlist->iinr;
628     jindex           = nlist->jindex;
629     jjnr             = nlist->jjnr;
630     shiftidx         = nlist->shift;
631     gid              = nlist->gid;
632     shiftvec         = fr->shift_vec[0];
633     fshift           = fr->fshift[0];
634     facel            = _mm_set1_pd(fr->epsfac);
635     charge           = mdatoms->chargeA;
636
637     vftab            = kernel_data->table_elec->data;
638     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
639
640     /* Setup water-specific parameters */
641     inr              = nlist->iinr[0];
642     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
643     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
644     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
645
646     /* Avoid stupid compiler warnings */
647     jnrA = jnrB = 0;
648     j_coord_offsetA = 0;
649     j_coord_offsetB = 0;
650
651     outeriter        = 0;
652     inneriter        = 0;
653
654     /* Start outer loop over neighborlists */
655     for(iidx=0; iidx<nri; iidx++)
656     {
657         /* Load shift vector for this list */
658         i_shift_offset   = DIM*shiftidx[iidx];
659
660         /* Load limits for loop over neighbors */
661         j_index_start    = jindex[iidx];
662         j_index_end      = jindex[iidx+1];
663
664         /* Get outer coordinate index */
665         inr              = iinr[iidx];
666         i_coord_offset   = DIM*inr;
667
668         /* Load i particle coords and add shift vector */
669         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
670                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
671
672         fix1             = _mm_setzero_pd();
673         fiy1             = _mm_setzero_pd();
674         fiz1             = _mm_setzero_pd();
675         fix2             = _mm_setzero_pd();
676         fiy2             = _mm_setzero_pd();
677         fiz2             = _mm_setzero_pd();
678         fix3             = _mm_setzero_pd();
679         fiy3             = _mm_setzero_pd();
680         fiz3             = _mm_setzero_pd();
681
682         /* Start inner kernel loop */
683         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
684         {
685
686             /* Get j neighbor index, and coordinate index */
687             jnrA             = jjnr[jidx];
688             jnrB             = jjnr[jidx+1];
689             j_coord_offsetA  = DIM*jnrA;
690             j_coord_offsetB  = DIM*jnrB;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
694                                               &jx0,&jy0,&jz0);
695
696             /* Calculate displacement vector */
697             dx10             = _mm_sub_pd(ix1,jx0);
698             dy10             = _mm_sub_pd(iy1,jy0);
699             dz10             = _mm_sub_pd(iz1,jz0);
700             dx20             = _mm_sub_pd(ix2,jx0);
701             dy20             = _mm_sub_pd(iy2,jy0);
702             dz20             = _mm_sub_pd(iz2,jz0);
703             dx30             = _mm_sub_pd(ix3,jx0);
704             dy30             = _mm_sub_pd(iy3,jy0);
705             dz30             = _mm_sub_pd(iz3,jz0);
706
707             /* Calculate squared distance and things based on it */
708             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
709             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
710             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
711
712             rinv10           = gmx_mm_invsqrt_pd(rsq10);
713             rinv20           = gmx_mm_invsqrt_pd(rsq20);
714             rinv30           = gmx_mm_invsqrt_pd(rsq30);
715
716             /* Load parameters for j particles */
717             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
718
719             fjx0             = _mm_setzero_pd();
720             fjy0             = _mm_setzero_pd();
721             fjz0             = _mm_setzero_pd();
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             r10              = _mm_mul_pd(rsq10,rinv10);
728
729             /* Compute parameters for interactions between i and j atoms */
730             qq10             = _mm_mul_pd(iq1,jq0);
731
732             /* Calculate table index by multiplying r with table scale and truncate to integer */
733             rt               = _mm_mul_pd(r10,vftabscale);
734             vfitab           = _mm_cvttpd_epi32(rt);
735             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
736             vfitab           = _mm_slli_epi32(vfitab,2);
737
738             /* CUBIC SPLINE TABLE ELECTROSTATICS */
739             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
740             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
741             GMX_MM_TRANSPOSE2_PD(Y,F);
742             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
743             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
744             GMX_MM_TRANSPOSE2_PD(G,H);
745             Heps             = _mm_mul_pd(vfeps,H);
746             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
747             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
748             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
749
750             fscal            = felec;
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm_mul_pd(fscal,dx10);
754             ty               = _mm_mul_pd(fscal,dy10);
755             tz               = _mm_mul_pd(fscal,dz10);
756
757             /* Update vectorial force */
758             fix1             = _mm_add_pd(fix1,tx);
759             fiy1             = _mm_add_pd(fiy1,ty);
760             fiz1             = _mm_add_pd(fiz1,tz);
761
762             fjx0             = _mm_add_pd(fjx0,tx);
763             fjy0             = _mm_add_pd(fjy0,ty);
764             fjz0             = _mm_add_pd(fjz0,tz);
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             r20              = _mm_mul_pd(rsq20,rinv20);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq20             = _mm_mul_pd(iq2,jq0);
774
775             /* Calculate table index by multiplying r with table scale and truncate to integer */
776             rt               = _mm_mul_pd(r20,vftabscale);
777             vfitab           = _mm_cvttpd_epi32(rt);
778             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
779             vfitab           = _mm_slli_epi32(vfitab,2);
780
781             /* CUBIC SPLINE TABLE ELECTROSTATICS */
782             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
783             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
784             GMX_MM_TRANSPOSE2_PD(Y,F);
785             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
786             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
787             GMX_MM_TRANSPOSE2_PD(G,H);
788             Heps             = _mm_mul_pd(vfeps,H);
789             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
790             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
791             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
792
793             fscal            = felec;
794
795             /* Calculate temporary vectorial force */
796             tx               = _mm_mul_pd(fscal,dx20);
797             ty               = _mm_mul_pd(fscal,dy20);
798             tz               = _mm_mul_pd(fscal,dz20);
799
800             /* Update vectorial force */
801             fix2             = _mm_add_pd(fix2,tx);
802             fiy2             = _mm_add_pd(fiy2,ty);
803             fiz2             = _mm_add_pd(fiz2,tz);
804
805             fjx0             = _mm_add_pd(fjx0,tx);
806             fjy0             = _mm_add_pd(fjy0,ty);
807             fjz0             = _mm_add_pd(fjz0,tz);
808
809             /**************************
810              * CALCULATE INTERACTIONS *
811              **************************/
812
813             r30              = _mm_mul_pd(rsq30,rinv30);
814
815             /* Compute parameters for interactions between i and j atoms */
816             qq30             = _mm_mul_pd(iq3,jq0);
817
818             /* Calculate table index by multiplying r with table scale and truncate to integer */
819             rt               = _mm_mul_pd(r30,vftabscale);
820             vfitab           = _mm_cvttpd_epi32(rt);
821             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
822             vfitab           = _mm_slli_epi32(vfitab,2);
823
824             /* CUBIC SPLINE TABLE ELECTROSTATICS */
825             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
826             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
827             GMX_MM_TRANSPOSE2_PD(Y,F);
828             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
829             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
830             GMX_MM_TRANSPOSE2_PD(G,H);
831             Heps             = _mm_mul_pd(vfeps,H);
832             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
833             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
834             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
835
836             fscal            = felec;
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm_mul_pd(fscal,dx30);
840             ty               = _mm_mul_pd(fscal,dy30);
841             tz               = _mm_mul_pd(fscal,dz30);
842
843             /* Update vectorial force */
844             fix3             = _mm_add_pd(fix3,tx);
845             fiy3             = _mm_add_pd(fiy3,ty);
846             fiz3             = _mm_add_pd(fiz3,tz);
847
848             fjx0             = _mm_add_pd(fjx0,tx);
849             fjy0             = _mm_add_pd(fjy0,ty);
850             fjz0             = _mm_add_pd(fjz0,tz);
851
852             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
853
854             /* Inner loop uses 120 flops */
855         }
856
857         if(jidx<j_index_end)
858         {
859
860             jnrA             = jjnr[jidx];
861             j_coord_offsetA  = DIM*jnrA;
862
863             /* load j atom coordinates */
864             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
865                                               &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx10             = _mm_sub_pd(ix1,jx0);
869             dy10             = _mm_sub_pd(iy1,jy0);
870             dz10             = _mm_sub_pd(iz1,jz0);
871             dx20             = _mm_sub_pd(ix2,jx0);
872             dy20             = _mm_sub_pd(iy2,jy0);
873             dz20             = _mm_sub_pd(iz2,jz0);
874             dx30             = _mm_sub_pd(ix3,jx0);
875             dy30             = _mm_sub_pd(iy3,jy0);
876             dz30             = _mm_sub_pd(iz3,jz0);
877
878             /* Calculate squared distance and things based on it */
879             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
880             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
881             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
882
883             rinv10           = gmx_mm_invsqrt_pd(rsq10);
884             rinv20           = gmx_mm_invsqrt_pd(rsq20);
885             rinv30           = gmx_mm_invsqrt_pd(rsq30);
886
887             /* Load parameters for j particles */
888             jq0              = _mm_load_sd(charge+jnrA+0);
889
890             fjx0             = _mm_setzero_pd();
891             fjy0             = _mm_setzero_pd();
892             fjz0             = _mm_setzero_pd();
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             r10              = _mm_mul_pd(rsq10,rinv10);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq10             = _mm_mul_pd(iq1,jq0);
902
903             /* Calculate table index by multiplying r with table scale and truncate to integer */
904             rt               = _mm_mul_pd(r10,vftabscale);
905             vfitab           = _mm_cvttpd_epi32(rt);
906             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
907             vfitab           = _mm_slli_epi32(vfitab,2);
908
909             /* CUBIC SPLINE TABLE ELECTROSTATICS */
910             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
911             F                = _mm_setzero_pd();
912             GMX_MM_TRANSPOSE2_PD(Y,F);
913             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
914             H                = _mm_setzero_pd();
915             GMX_MM_TRANSPOSE2_PD(G,H);
916             Heps             = _mm_mul_pd(vfeps,H);
917             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
918             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
919             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
920
921             fscal            = felec;
922
923             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
924
925             /* Calculate temporary vectorial force */
926             tx               = _mm_mul_pd(fscal,dx10);
927             ty               = _mm_mul_pd(fscal,dy10);
928             tz               = _mm_mul_pd(fscal,dz10);
929
930             /* Update vectorial force */
931             fix1             = _mm_add_pd(fix1,tx);
932             fiy1             = _mm_add_pd(fiy1,ty);
933             fiz1             = _mm_add_pd(fiz1,tz);
934
935             fjx0             = _mm_add_pd(fjx0,tx);
936             fjy0             = _mm_add_pd(fjy0,ty);
937             fjz0             = _mm_add_pd(fjz0,tz);
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             r20              = _mm_mul_pd(rsq20,rinv20);
944
945             /* Compute parameters for interactions between i and j atoms */
946             qq20             = _mm_mul_pd(iq2,jq0);
947
948             /* Calculate table index by multiplying r with table scale and truncate to integer */
949             rt               = _mm_mul_pd(r20,vftabscale);
950             vfitab           = _mm_cvttpd_epi32(rt);
951             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
952             vfitab           = _mm_slli_epi32(vfitab,2);
953
954             /* CUBIC SPLINE TABLE ELECTROSTATICS */
955             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
956             F                = _mm_setzero_pd();
957             GMX_MM_TRANSPOSE2_PD(Y,F);
958             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
959             H                = _mm_setzero_pd();
960             GMX_MM_TRANSPOSE2_PD(G,H);
961             Heps             = _mm_mul_pd(vfeps,H);
962             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
963             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
964             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
965
966             fscal            = felec;
967
968             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
969
970             /* Calculate temporary vectorial force */
971             tx               = _mm_mul_pd(fscal,dx20);
972             ty               = _mm_mul_pd(fscal,dy20);
973             tz               = _mm_mul_pd(fscal,dz20);
974
975             /* Update vectorial force */
976             fix2             = _mm_add_pd(fix2,tx);
977             fiy2             = _mm_add_pd(fiy2,ty);
978             fiz2             = _mm_add_pd(fiz2,tz);
979
980             fjx0             = _mm_add_pd(fjx0,tx);
981             fjy0             = _mm_add_pd(fjy0,ty);
982             fjz0             = _mm_add_pd(fjz0,tz);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r30              = _mm_mul_pd(rsq30,rinv30);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq30             = _mm_mul_pd(iq3,jq0);
992
993             /* Calculate table index by multiplying r with table scale and truncate to integer */
994             rt               = _mm_mul_pd(r30,vftabscale);
995             vfitab           = _mm_cvttpd_epi32(rt);
996             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
997             vfitab           = _mm_slli_epi32(vfitab,2);
998
999             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1000             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1001             F                = _mm_setzero_pd();
1002             GMX_MM_TRANSPOSE2_PD(Y,F);
1003             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1004             H                = _mm_setzero_pd();
1005             GMX_MM_TRANSPOSE2_PD(G,H);
1006             Heps             = _mm_mul_pd(vfeps,H);
1007             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1008             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1009             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1010
1011             fscal            = felec;
1012
1013             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1014
1015             /* Calculate temporary vectorial force */
1016             tx               = _mm_mul_pd(fscal,dx30);
1017             ty               = _mm_mul_pd(fscal,dy30);
1018             tz               = _mm_mul_pd(fscal,dz30);
1019
1020             /* Update vectorial force */
1021             fix3             = _mm_add_pd(fix3,tx);
1022             fiy3             = _mm_add_pd(fiy3,ty);
1023             fiz3             = _mm_add_pd(fiz3,tz);
1024
1025             fjx0             = _mm_add_pd(fjx0,tx);
1026             fjy0             = _mm_add_pd(fjy0,ty);
1027             fjz0             = _mm_add_pd(fjz0,tz);
1028
1029             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1030
1031             /* Inner loop uses 120 flops */
1032         }
1033
1034         /* End of innermost loop */
1035
1036         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1037                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1038
1039         /* Increment number of inner iterations */
1040         inneriter                  += j_index_end - j_index_start;
1041
1042         /* Outer loop uses 18 flops */
1043     }
1044
1045     /* Increment number of outer iterations */
1046     outeriter        += nri;
1047
1048     /* Update outer/inner flops */
1049
1050     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
1051 }