Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset1;
81     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
82     int              vdwioffset2;
83     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
84     int              vdwioffset3;
85     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     vftab            = kernel_data->table_elec->data;
116     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
121     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
122     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
148                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
149
150         fix1             = _mm_setzero_pd();
151         fiy1             = _mm_setzero_pd();
152         fiz1             = _mm_setzero_pd();
153         fix2             = _mm_setzero_pd();
154         fiy2             = _mm_setzero_pd();
155         fiz2             = _mm_setzero_pd();
156         fix3             = _mm_setzero_pd();
157         fiy3             = _mm_setzero_pd();
158         fiz3             = _mm_setzero_pd();
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184             dx30             = _mm_sub_pd(ix3,jx0);
185             dy30             = _mm_sub_pd(iy3,jy0);
186             dz30             = _mm_sub_pd(iz3,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
190             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
191             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
192
193             rinv10           = gmx_mm_invsqrt_pd(rsq10);
194             rinv20           = gmx_mm_invsqrt_pd(rsq20);
195             rinv30           = gmx_mm_invsqrt_pd(rsq30);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199
200             fjx0             = _mm_setzero_pd();
201             fjy0             = _mm_setzero_pd();
202             fjz0             = _mm_setzero_pd();
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             r10              = _mm_mul_pd(rsq10,rinv10);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq10             = _mm_mul_pd(iq1,jq0);
212
213             /* Calculate table index by multiplying r with table scale and truncate to integer */
214             rt               = _mm_mul_pd(r10,vftabscale);
215             vfitab           = _mm_cvttpd_epi32(rt);
216             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
217             vfitab           = _mm_slli_epi32(vfitab,2);
218
219             /* CUBIC SPLINE TABLE ELECTROSTATICS */
220             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
221             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
222             GMX_MM_TRANSPOSE2_PD(Y,F);
223             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
224             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
225             GMX_MM_TRANSPOSE2_PD(G,H);
226             Heps             = _mm_mul_pd(vfeps,H);
227             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
228             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
229             velec            = _mm_mul_pd(qq10,VV);
230             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
231             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             velecsum         = _mm_add_pd(velecsum,velec);
235
236             fscal            = felec;
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm_mul_pd(fscal,dx10);
240             ty               = _mm_mul_pd(fscal,dy10);
241             tz               = _mm_mul_pd(fscal,dz10);
242
243             /* Update vectorial force */
244             fix1             = _mm_add_pd(fix1,tx);
245             fiy1             = _mm_add_pd(fiy1,ty);
246             fiz1             = _mm_add_pd(fiz1,tz);
247
248             fjx0             = _mm_add_pd(fjx0,tx);
249             fjy0             = _mm_add_pd(fjy0,ty);
250             fjz0             = _mm_add_pd(fjz0,tz);
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r20              = _mm_mul_pd(rsq20,rinv20);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq20             = _mm_mul_pd(iq2,jq0);
260
261             /* Calculate table index by multiplying r with table scale and truncate to integer */
262             rt               = _mm_mul_pd(r20,vftabscale);
263             vfitab           = _mm_cvttpd_epi32(rt);
264             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
265             vfitab           = _mm_slli_epi32(vfitab,2);
266
267             /* CUBIC SPLINE TABLE ELECTROSTATICS */
268             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
269             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
270             GMX_MM_TRANSPOSE2_PD(Y,F);
271             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
272             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
273             GMX_MM_TRANSPOSE2_PD(G,H);
274             Heps             = _mm_mul_pd(vfeps,H);
275             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
276             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
277             velec            = _mm_mul_pd(qq20,VV);
278             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
279             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283
284             fscal            = felec;
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx20);
288             ty               = _mm_mul_pd(fscal,dy20);
289             tz               = _mm_mul_pd(fscal,dz20);
290
291             /* Update vectorial force */
292             fix2             = _mm_add_pd(fix2,tx);
293             fiy2             = _mm_add_pd(fiy2,ty);
294             fiz2             = _mm_add_pd(fiz2,tz);
295
296             fjx0             = _mm_add_pd(fjx0,tx);
297             fjy0             = _mm_add_pd(fjy0,ty);
298             fjz0             = _mm_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r30              = _mm_mul_pd(rsq30,rinv30);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq30             = _mm_mul_pd(iq3,jq0);
308
309             /* Calculate table index by multiplying r with table scale and truncate to integer */
310             rt               = _mm_mul_pd(r30,vftabscale);
311             vfitab           = _mm_cvttpd_epi32(rt);
312             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
313             vfitab           = _mm_slli_epi32(vfitab,2);
314
315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
316             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
317             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
318             GMX_MM_TRANSPOSE2_PD(Y,F);
319             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
320             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(G,H);
322             Heps             = _mm_mul_pd(vfeps,H);
323             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
324             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
325             velec            = _mm_mul_pd(qq30,VV);
326             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
327             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm_mul_pd(fscal,dx30);
336             ty               = _mm_mul_pd(fscal,dy30);
337             tz               = _mm_mul_pd(fscal,dz30);
338
339             /* Update vectorial force */
340             fix3             = _mm_add_pd(fix3,tx);
341             fiy3             = _mm_add_pd(fiy3,ty);
342             fiz3             = _mm_add_pd(fiz3,tz);
343
344             fjx0             = _mm_add_pd(fjx0,tx);
345             fjy0             = _mm_add_pd(fjy0,ty);
346             fjz0             = _mm_add_pd(fjz0,tz);
347
348             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
349
350             /* Inner loop uses 132 flops */
351         }
352
353         if(jidx<j_index_end)
354         {
355
356             jnrA             = jjnr[jidx];
357             j_coord_offsetA  = DIM*jnrA;
358
359             /* load j atom coordinates */
360             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
361                                               &jx0,&jy0,&jz0);
362
363             /* Calculate displacement vector */
364             dx10             = _mm_sub_pd(ix1,jx0);
365             dy10             = _mm_sub_pd(iy1,jy0);
366             dz10             = _mm_sub_pd(iz1,jz0);
367             dx20             = _mm_sub_pd(ix2,jx0);
368             dy20             = _mm_sub_pd(iy2,jy0);
369             dz20             = _mm_sub_pd(iz2,jz0);
370             dx30             = _mm_sub_pd(ix3,jx0);
371             dy30             = _mm_sub_pd(iy3,jy0);
372             dz30             = _mm_sub_pd(iz3,jz0);
373
374             /* Calculate squared distance and things based on it */
375             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
376             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
377             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
378
379             rinv10           = gmx_mm_invsqrt_pd(rsq10);
380             rinv20           = gmx_mm_invsqrt_pd(rsq20);
381             rinv30           = gmx_mm_invsqrt_pd(rsq30);
382
383             /* Load parameters for j particles */
384             jq0              = _mm_load_sd(charge+jnrA+0);
385
386             fjx0             = _mm_setzero_pd();
387             fjy0             = _mm_setzero_pd();
388             fjz0             = _mm_setzero_pd();
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r10              = _mm_mul_pd(rsq10,rinv10);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq10             = _mm_mul_pd(iq1,jq0);
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = _mm_mul_pd(r10,vftabscale);
401             vfitab           = _mm_cvttpd_epi32(rt);
402             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
403             vfitab           = _mm_slli_epi32(vfitab,2);
404
405             /* CUBIC SPLINE TABLE ELECTROSTATICS */
406             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
407             F                = _mm_setzero_pd();
408             GMX_MM_TRANSPOSE2_PD(Y,F);
409             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
410             H                = _mm_setzero_pd();
411             GMX_MM_TRANSPOSE2_PD(G,H);
412             Heps             = _mm_mul_pd(vfeps,H);
413             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
414             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
415             velec            = _mm_mul_pd(qq10,VV);
416             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
417             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
421             velecsum         = _mm_add_pd(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_pd(fscal,dx10);
429             ty               = _mm_mul_pd(fscal,dy10);
430             tz               = _mm_mul_pd(fscal,dz10);
431
432             /* Update vectorial force */
433             fix1             = _mm_add_pd(fix1,tx);
434             fiy1             = _mm_add_pd(fiy1,ty);
435             fiz1             = _mm_add_pd(fiz1,tz);
436
437             fjx0             = _mm_add_pd(fjx0,tx);
438             fjy0             = _mm_add_pd(fjy0,ty);
439             fjz0             = _mm_add_pd(fjz0,tz);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             r20              = _mm_mul_pd(rsq20,rinv20);
446
447             /* Compute parameters for interactions between i and j atoms */
448             qq20             = _mm_mul_pd(iq2,jq0);
449
450             /* Calculate table index by multiplying r with table scale and truncate to integer */
451             rt               = _mm_mul_pd(r20,vftabscale);
452             vfitab           = _mm_cvttpd_epi32(rt);
453             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
454             vfitab           = _mm_slli_epi32(vfitab,2);
455
456             /* CUBIC SPLINE TABLE ELECTROSTATICS */
457             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
458             F                = _mm_setzero_pd();
459             GMX_MM_TRANSPOSE2_PD(Y,F);
460             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
461             H                = _mm_setzero_pd();
462             GMX_MM_TRANSPOSE2_PD(G,H);
463             Heps             = _mm_mul_pd(vfeps,H);
464             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
465             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
466             velec            = _mm_mul_pd(qq20,VV);
467             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
468             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
472             velecsum         = _mm_add_pd(velecsum,velec);
473
474             fscal            = felec;
475
476             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
477
478             /* Calculate temporary vectorial force */
479             tx               = _mm_mul_pd(fscal,dx20);
480             ty               = _mm_mul_pd(fscal,dy20);
481             tz               = _mm_mul_pd(fscal,dz20);
482
483             /* Update vectorial force */
484             fix2             = _mm_add_pd(fix2,tx);
485             fiy2             = _mm_add_pd(fiy2,ty);
486             fiz2             = _mm_add_pd(fiz2,tz);
487
488             fjx0             = _mm_add_pd(fjx0,tx);
489             fjy0             = _mm_add_pd(fjy0,ty);
490             fjz0             = _mm_add_pd(fjz0,tz);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r30              = _mm_mul_pd(rsq30,rinv30);
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq30             = _mm_mul_pd(iq3,jq0);
500
501             /* Calculate table index by multiplying r with table scale and truncate to integer */
502             rt               = _mm_mul_pd(r30,vftabscale);
503             vfitab           = _mm_cvttpd_epi32(rt);
504             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
505             vfitab           = _mm_slli_epi32(vfitab,2);
506
507             /* CUBIC SPLINE TABLE ELECTROSTATICS */
508             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
509             F                = _mm_setzero_pd();
510             GMX_MM_TRANSPOSE2_PD(Y,F);
511             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
512             H                = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(G,H);
514             Heps             = _mm_mul_pd(vfeps,H);
515             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
516             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
517             velec            = _mm_mul_pd(qq30,VV);
518             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
519             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx30);
531             ty               = _mm_mul_pd(fscal,dy30);
532             tz               = _mm_mul_pd(fscal,dz30);
533
534             /* Update vectorial force */
535             fix3             = _mm_add_pd(fix3,tx);
536             fiy3             = _mm_add_pd(fiy3,ty);
537             fiz3             = _mm_add_pd(fiz3,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
544
545             /* Inner loop uses 132 flops */
546         }
547
548         /* End of innermost loop */
549
550         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
551                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
552
553         ggid                        = gid[iidx];
554         /* Update potential energies */
555         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
556
557         /* Increment number of inner iterations */
558         inneriter                  += j_index_end - j_index_start;
559
560         /* Outer loop uses 19 flops */
561     }
562
563     /* Increment number of outer iterations */
564     outeriter        += nri;
565
566     /* Update outer/inner flops */
567
568     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*132);
569 }
570 /*
571  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_sse4_1_double
572  * Electrostatics interaction: CubicSplineTable
573  * VdW interaction:            None
574  * Geometry:                   Water4-Particle
575  * Calculate force/pot:        Force
576  */
577 void
578 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_sse4_1_double
579                     (t_nblist                    * gmx_restrict       nlist,
580                      rvec                        * gmx_restrict          xx,
581                      rvec                        * gmx_restrict          ff,
582                      t_forcerec                  * gmx_restrict          fr,
583                      t_mdatoms                   * gmx_restrict     mdatoms,
584                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
585                      t_nrnb                      * gmx_restrict        nrnb)
586 {
587     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
588      * just 0 for non-waters.
589      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
590      * jnr indices corresponding to data put in the four positions in the SIMD register.
591      */
592     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
593     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
594     int              jnrA,jnrB;
595     int              j_coord_offsetA,j_coord_offsetB;
596     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
597     real             rcutoff_scalar;
598     real             *shiftvec,*fshift,*x,*f;
599     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
600     int              vdwioffset1;
601     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
602     int              vdwioffset2;
603     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
604     int              vdwioffset3;
605     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
606     int              vdwjidx0A,vdwjidx0B;
607     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
608     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
609     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
610     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
611     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
612     real             *charge;
613     __m128i          vfitab;
614     __m128i          ifour       = _mm_set1_epi32(4);
615     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
616     real             *vftab;
617     __m128d          dummy_mask,cutoff_mask;
618     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
619     __m128d          one     = _mm_set1_pd(1.0);
620     __m128d          two     = _mm_set1_pd(2.0);
621     x                = xx[0];
622     f                = ff[0];
623
624     nri              = nlist->nri;
625     iinr             = nlist->iinr;
626     jindex           = nlist->jindex;
627     jjnr             = nlist->jjnr;
628     shiftidx         = nlist->shift;
629     gid              = nlist->gid;
630     shiftvec         = fr->shift_vec[0];
631     fshift           = fr->fshift[0];
632     facel            = _mm_set1_pd(fr->epsfac);
633     charge           = mdatoms->chargeA;
634
635     vftab            = kernel_data->table_elec->data;
636     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
637
638     /* Setup water-specific parameters */
639     inr              = nlist->iinr[0];
640     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
641     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
642     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648
649     outeriter        = 0;
650     inneriter        = 0;
651
652     /* Start outer loop over neighborlists */
653     for(iidx=0; iidx<nri; iidx++)
654     {
655         /* Load shift vector for this list */
656         i_shift_offset   = DIM*shiftidx[iidx];
657
658         /* Load limits for loop over neighbors */
659         j_index_start    = jindex[iidx];
660         j_index_end      = jindex[iidx+1];
661
662         /* Get outer coordinate index */
663         inr              = iinr[iidx];
664         i_coord_offset   = DIM*inr;
665
666         /* Load i particle coords and add shift vector */
667         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
668                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
669
670         fix1             = _mm_setzero_pd();
671         fiy1             = _mm_setzero_pd();
672         fiz1             = _mm_setzero_pd();
673         fix2             = _mm_setzero_pd();
674         fiy2             = _mm_setzero_pd();
675         fiz2             = _mm_setzero_pd();
676         fix3             = _mm_setzero_pd();
677         fiy3             = _mm_setzero_pd();
678         fiz3             = _mm_setzero_pd();
679
680         /* Start inner kernel loop */
681         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
682         {
683
684             /* Get j neighbor index, and coordinate index */
685             jnrA             = jjnr[jidx];
686             jnrB             = jjnr[jidx+1];
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689
690             /* load j atom coordinates */
691             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
692                                               &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx10             = _mm_sub_pd(ix1,jx0);
696             dy10             = _mm_sub_pd(iy1,jy0);
697             dz10             = _mm_sub_pd(iz1,jz0);
698             dx20             = _mm_sub_pd(ix2,jx0);
699             dy20             = _mm_sub_pd(iy2,jy0);
700             dz20             = _mm_sub_pd(iz2,jz0);
701             dx30             = _mm_sub_pd(ix3,jx0);
702             dy30             = _mm_sub_pd(iy3,jy0);
703             dz30             = _mm_sub_pd(iz3,jz0);
704
705             /* Calculate squared distance and things based on it */
706             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
707             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
708             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
709
710             rinv10           = gmx_mm_invsqrt_pd(rsq10);
711             rinv20           = gmx_mm_invsqrt_pd(rsq20);
712             rinv30           = gmx_mm_invsqrt_pd(rsq30);
713
714             /* Load parameters for j particles */
715             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
716
717             fjx0             = _mm_setzero_pd();
718             fjy0             = _mm_setzero_pd();
719             fjz0             = _mm_setzero_pd();
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             r10              = _mm_mul_pd(rsq10,rinv10);
726
727             /* Compute parameters for interactions between i and j atoms */
728             qq10             = _mm_mul_pd(iq1,jq0);
729
730             /* Calculate table index by multiplying r with table scale and truncate to integer */
731             rt               = _mm_mul_pd(r10,vftabscale);
732             vfitab           = _mm_cvttpd_epi32(rt);
733             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
734             vfitab           = _mm_slli_epi32(vfitab,2);
735
736             /* CUBIC SPLINE TABLE ELECTROSTATICS */
737             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
738             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
739             GMX_MM_TRANSPOSE2_PD(Y,F);
740             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
741             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
742             GMX_MM_TRANSPOSE2_PD(G,H);
743             Heps             = _mm_mul_pd(vfeps,H);
744             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
745             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
746             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
747
748             fscal            = felec;
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm_mul_pd(fscal,dx10);
752             ty               = _mm_mul_pd(fscal,dy10);
753             tz               = _mm_mul_pd(fscal,dz10);
754
755             /* Update vectorial force */
756             fix1             = _mm_add_pd(fix1,tx);
757             fiy1             = _mm_add_pd(fiy1,ty);
758             fiz1             = _mm_add_pd(fiz1,tz);
759
760             fjx0             = _mm_add_pd(fjx0,tx);
761             fjy0             = _mm_add_pd(fjy0,ty);
762             fjz0             = _mm_add_pd(fjz0,tz);
763
764             /**************************
765              * CALCULATE INTERACTIONS *
766              **************************/
767
768             r20              = _mm_mul_pd(rsq20,rinv20);
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq20             = _mm_mul_pd(iq2,jq0);
772
773             /* Calculate table index by multiplying r with table scale and truncate to integer */
774             rt               = _mm_mul_pd(r20,vftabscale);
775             vfitab           = _mm_cvttpd_epi32(rt);
776             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
777             vfitab           = _mm_slli_epi32(vfitab,2);
778
779             /* CUBIC SPLINE TABLE ELECTROSTATICS */
780             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
781             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
782             GMX_MM_TRANSPOSE2_PD(Y,F);
783             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
784             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
785             GMX_MM_TRANSPOSE2_PD(G,H);
786             Heps             = _mm_mul_pd(vfeps,H);
787             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
788             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
789             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
790
791             fscal            = felec;
792
793             /* Calculate temporary vectorial force */
794             tx               = _mm_mul_pd(fscal,dx20);
795             ty               = _mm_mul_pd(fscal,dy20);
796             tz               = _mm_mul_pd(fscal,dz20);
797
798             /* Update vectorial force */
799             fix2             = _mm_add_pd(fix2,tx);
800             fiy2             = _mm_add_pd(fiy2,ty);
801             fiz2             = _mm_add_pd(fiz2,tz);
802
803             fjx0             = _mm_add_pd(fjx0,tx);
804             fjy0             = _mm_add_pd(fjy0,ty);
805             fjz0             = _mm_add_pd(fjz0,tz);
806
807             /**************************
808              * CALCULATE INTERACTIONS *
809              **************************/
810
811             r30              = _mm_mul_pd(rsq30,rinv30);
812
813             /* Compute parameters for interactions between i and j atoms */
814             qq30             = _mm_mul_pd(iq3,jq0);
815
816             /* Calculate table index by multiplying r with table scale and truncate to integer */
817             rt               = _mm_mul_pd(r30,vftabscale);
818             vfitab           = _mm_cvttpd_epi32(rt);
819             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
820             vfitab           = _mm_slli_epi32(vfitab,2);
821
822             /* CUBIC SPLINE TABLE ELECTROSTATICS */
823             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
824             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
825             GMX_MM_TRANSPOSE2_PD(Y,F);
826             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
827             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
828             GMX_MM_TRANSPOSE2_PD(G,H);
829             Heps             = _mm_mul_pd(vfeps,H);
830             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
831             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
832             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
833
834             fscal            = felec;
835
836             /* Calculate temporary vectorial force */
837             tx               = _mm_mul_pd(fscal,dx30);
838             ty               = _mm_mul_pd(fscal,dy30);
839             tz               = _mm_mul_pd(fscal,dz30);
840
841             /* Update vectorial force */
842             fix3             = _mm_add_pd(fix3,tx);
843             fiy3             = _mm_add_pd(fiy3,ty);
844             fiz3             = _mm_add_pd(fiz3,tz);
845
846             fjx0             = _mm_add_pd(fjx0,tx);
847             fjy0             = _mm_add_pd(fjy0,ty);
848             fjz0             = _mm_add_pd(fjz0,tz);
849
850             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
851
852             /* Inner loop uses 120 flops */
853         }
854
855         if(jidx<j_index_end)
856         {
857
858             jnrA             = jjnr[jidx];
859             j_coord_offsetA  = DIM*jnrA;
860
861             /* load j atom coordinates */
862             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
863                                               &jx0,&jy0,&jz0);
864
865             /* Calculate displacement vector */
866             dx10             = _mm_sub_pd(ix1,jx0);
867             dy10             = _mm_sub_pd(iy1,jy0);
868             dz10             = _mm_sub_pd(iz1,jz0);
869             dx20             = _mm_sub_pd(ix2,jx0);
870             dy20             = _mm_sub_pd(iy2,jy0);
871             dz20             = _mm_sub_pd(iz2,jz0);
872             dx30             = _mm_sub_pd(ix3,jx0);
873             dy30             = _mm_sub_pd(iy3,jy0);
874             dz30             = _mm_sub_pd(iz3,jz0);
875
876             /* Calculate squared distance and things based on it */
877             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
878             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
879             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
880
881             rinv10           = gmx_mm_invsqrt_pd(rsq10);
882             rinv20           = gmx_mm_invsqrt_pd(rsq20);
883             rinv30           = gmx_mm_invsqrt_pd(rsq30);
884
885             /* Load parameters for j particles */
886             jq0              = _mm_load_sd(charge+jnrA+0);
887
888             fjx0             = _mm_setzero_pd();
889             fjy0             = _mm_setzero_pd();
890             fjz0             = _mm_setzero_pd();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r10              = _mm_mul_pd(rsq10,rinv10);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq10             = _mm_mul_pd(iq1,jq0);
900
901             /* Calculate table index by multiplying r with table scale and truncate to integer */
902             rt               = _mm_mul_pd(r10,vftabscale);
903             vfitab           = _mm_cvttpd_epi32(rt);
904             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
905             vfitab           = _mm_slli_epi32(vfitab,2);
906
907             /* CUBIC SPLINE TABLE ELECTROSTATICS */
908             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
909             F                = _mm_setzero_pd();
910             GMX_MM_TRANSPOSE2_PD(Y,F);
911             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
912             H                = _mm_setzero_pd();
913             GMX_MM_TRANSPOSE2_PD(G,H);
914             Heps             = _mm_mul_pd(vfeps,H);
915             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
916             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
917             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
918
919             fscal            = felec;
920
921             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm_mul_pd(fscal,dx10);
925             ty               = _mm_mul_pd(fscal,dy10);
926             tz               = _mm_mul_pd(fscal,dz10);
927
928             /* Update vectorial force */
929             fix1             = _mm_add_pd(fix1,tx);
930             fiy1             = _mm_add_pd(fiy1,ty);
931             fiz1             = _mm_add_pd(fiz1,tz);
932
933             fjx0             = _mm_add_pd(fjx0,tx);
934             fjy0             = _mm_add_pd(fjy0,ty);
935             fjz0             = _mm_add_pd(fjz0,tz);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             r20              = _mm_mul_pd(rsq20,rinv20);
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq20             = _mm_mul_pd(iq2,jq0);
945
946             /* Calculate table index by multiplying r with table scale and truncate to integer */
947             rt               = _mm_mul_pd(r20,vftabscale);
948             vfitab           = _mm_cvttpd_epi32(rt);
949             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
950             vfitab           = _mm_slli_epi32(vfitab,2);
951
952             /* CUBIC SPLINE TABLE ELECTROSTATICS */
953             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
954             F                = _mm_setzero_pd();
955             GMX_MM_TRANSPOSE2_PD(Y,F);
956             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
957             H                = _mm_setzero_pd();
958             GMX_MM_TRANSPOSE2_PD(G,H);
959             Heps             = _mm_mul_pd(vfeps,H);
960             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
961             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
962             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
963
964             fscal            = felec;
965
966             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_pd(fscal,dx20);
970             ty               = _mm_mul_pd(fscal,dy20);
971             tz               = _mm_mul_pd(fscal,dz20);
972
973             /* Update vectorial force */
974             fix2             = _mm_add_pd(fix2,tx);
975             fiy2             = _mm_add_pd(fiy2,ty);
976             fiz2             = _mm_add_pd(fiz2,tz);
977
978             fjx0             = _mm_add_pd(fjx0,tx);
979             fjy0             = _mm_add_pd(fjy0,ty);
980             fjz0             = _mm_add_pd(fjz0,tz);
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             r30              = _mm_mul_pd(rsq30,rinv30);
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq30             = _mm_mul_pd(iq3,jq0);
990
991             /* Calculate table index by multiplying r with table scale and truncate to integer */
992             rt               = _mm_mul_pd(r30,vftabscale);
993             vfitab           = _mm_cvttpd_epi32(rt);
994             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
995             vfitab           = _mm_slli_epi32(vfitab,2);
996
997             /* CUBIC SPLINE TABLE ELECTROSTATICS */
998             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
999             F                = _mm_setzero_pd();
1000             GMX_MM_TRANSPOSE2_PD(Y,F);
1001             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1002             H                = _mm_setzero_pd();
1003             GMX_MM_TRANSPOSE2_PD(G,H);
1004             Heps             = _mm_mul_pd(vfeps,H);
1005             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1006             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1007             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1008
1009             fscal            = felec;
1010
1011             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1012
1013             /* Calculate temporary vectorial force */
1014             tx               = _mm_mul_pd(fscal,dx30);
1015             ty               = _mm_mul_pd(fscal,dy30);
1016             tz               = _mm_mul_pd(fscal,dz30);
1017
1018             /* Update vectorial force */
1019             fix3             = _mm_add_pd(fix3,tx);
1020             fiy3             = _mm_add_pd(fiy3,ty);
1021             fiz3             = _mm_add_pd(fiz3,tz);
1022
1023             fjx0             = _mm_add_pd(fjx0,tx);
1024             fjy0             = _mm_add_pd(fjy0,ty);
1025             fjz0             = _mm_add_pd(fjz0,tz);
1026
1027             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1028
1029             /* Inner loop uses 120 flops */
1030         }
1031
1032         /* End of innermost loop */
1033
1034         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1035                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1036
1037         /* Increment number of inner iterations */
1038         inneriter                  += j_index_end - j_index_start;
1039
1040         /* Outer loop uses 18 flops */
1041     }
1042
1043     /* Increment number of outer iterations */
1044     outeriter        += nri;
1045
1046     /* Update outer/inner flops */
1047
1048     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
1049 }