Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          vfitab;
88     __m128i          ifour       = _mm_set1_epi32(4);
89     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
90     real             *vftab;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->epsfac);
107     charge           = mdatoms->chargeA;
108
109     vftab            = kernel_data->table_elec->data;
110     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125
126         /* Load limits for loop over neighbors */
127         j_index_start    = jindex[iidx];
128         j_index_end      = jindex[iidx+1];
129
130         /* Get outer coordinate index */
131         inr              = iinr[iidx];
132         i_coord_offset   = DIM*inr;
133
134         /* Load i particle coords and add shift vector */
135         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
136
137         fix0             = _mm_setzero_pd();
138         fiy0             = _mm_setzero_pd();
139         fiz0             = _mm_setzero_pd();
140
141         /* Load parameters for i particles */
142         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
143
144         /* Reset potential sums */
145         velecsum         = _mm_setzero_pd();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156
157             /* load j atom coordinates */
158             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159                                               &jx0,&jy0,&jz0);
160
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_pd(ix0,jx0);
163             dy00             = _mm_sub_pd(iy0,jy0);
164             dz00             = _mm_sub_pd(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
168
169             rinv00           = gmx_mm_invsqrt_pd(rsq00);
170
171             /* Load parameters for j particles */
172             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
173
174             /**************************
175              * CALCULATE INTERACTIONS *
176              **************************/
177
178             r00              = _mm_mul_pd(rsq00,rinv00);
179
180             /* Compute parameters for interactions between i and j atoms */
181             qq00             = _mm_mul_pd(iq0,jq0);
182
183             /* Calculate table index by multiplying r with table scale and truncate to integer */
184             rt               = _mm_mul_pd(r00,vftabscale);
185             vfitab           = _mm_cvttpd_epi32(rt);
186             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
187             vfitab           = _mm_slli_epi32(vfitab,2);
188
189             /* CUBIC SPLINE TABLE ELECTROSTATICS */
190             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
191             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
192             GMX_MM_TRANSPOSE2_PD(Y,F);
193             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
194             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
195             GMX_MM_TRANSPOSE2_PD(G,H);
196             Heps             = _mm_mul_pd(vfeps,H);
197             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
198             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
199             velec            = _mm_mul_pd(qq00,VV);
200             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
201             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
202
203             /* Update potential sum for this i atom from the interaction with this j atom. */
204             velecsum         = _mm_add_pd(velecsum,velec);
205
206             fscal            = felec;
207
208             /* Calculate temporary vectorial force */
209             tx               = _mm_mul_pd(fscal,dx00);
210             ty               = _mm_mul_pd(fscal,dy00);
211             tz               = _mm_mul_pd(fscal,dz00);
212
213             /* Update vectorial force */
214             fix0             = _mm_add_pd(fix0,tx);
215             fiy0             = _mm_add_pd(fiy0,ty);
216             fiz0             = _mm_add_pd(fiz0,tz);
217
218             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
219
220             /* Inner loop uses 43 flops */
221         }
222
223         if(jidx<j_index_end)
224         {
225
226             jnrA             = jjnr[jidx];
227             j_coord_offsetA  = DIM*jnrA;
228
229             /* load j atom coordinates */
230             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
231                                               &jx0,&jy0,&jz0);
232
233             /* Calculate displacement vector */
234             dx00             = _mm_sub_pd(ix0,jx0);
235             dy00             = _mm_sub_pd(iy0,jy0);
236             dz00             = _mm_sub_pd(iz0,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
240
241             rinv00           = gmx_mm_invsqrt_pd(rsq00);
242
243             /* Load parameters for j particles */
244             jq0              = _mm_load_sd(charge+jnrA+0);
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_pd(iq0,jq0);
254
255             /* Calculate table index by multiplying r with table scale and truncate to integer */
256             rt               = _mm_mul_pd(r00,vftabscale);
257             vfitab           = _mm_cvttpd_epi32(rt);
258             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
259             vfitab           = _mm_slli_epi32(vfitab,2);
260
261             /* CUBIC SPLINE TABLE ELECTROSTATICS */
262             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
263             F                = _mm_setzero_pd();
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_setzero_pd();
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Heps             = _mm_mul_pd(vfeps,H);
269             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
270             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
271             velec            = _mm_mul_pd(qq00,VV);
272             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
273             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
277             velecsum         = _mm_add_pd(velecsum,velec);
278
279             fscal            = felec;
280
281             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_pd(fscal,dx00);
285             ty               = _mm_mul_pd(fscal,dy00);
286             tz               = _mm_mul_pd(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_pd(fix0,tx);
290             fiy0             = _mm_add_pd(fiy0,ty);
291             fiz0             = _mm_add_pd(fiz0,tz);
292
293             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
294
295             /* Inner loop uses 43 flops */
296         }
297
298         /* End of innermost loop */
299
300         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
301                                               f+i_coord_offset,fshift+i_shift_offset);
302
303         ggid                        = gid[iidx];
304         /* Update potential energies */
305         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
306
307         /* Increment number of inner iterations */
308         inneriter                  += j_index_end - j_index_start;
309
310         /* Outer loop uses 8 flops */
311     }
312
313     /* Increment number of outer iterations */
314     outeriter        += nri;
315
316     /* Update outer/inner flops */
317
318     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*43);
319 }
320 /*
321  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_sse4_1_double
322  * Electrostatics interaction: CubicSplineTable
323  * VdW interaction:            None
324  * Geometry:                   Particle-Particle
325  * Calculate force/pot:        Force
326  */
327 void
328 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_sse4_1_double
329                     (t_nblist                    * gmx_restrict       nlist,
330                      rvec                        * gmx_restrict          xx,
331                      rvec                        * gmx_restrict          ff,
332                      t_forcerec                  * gmx_restrict          fr,
333                      t_mdatoms                   * gmx_restrict     mdatoms,
334                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
335                      t_nrnb                      * gmx_restrict        nrnb)
336 {
337     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
338      * just 0 for non-waters.
339      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
340      * jnr indices corresponding to data put in the four positions in the SIMD register.
341      */
342     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
343     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
344     int              jnrA,jnrB;
345     int              j_coord_offsetA,j_coord_offsetB;
346     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
347     real             rcutoff_scalar;
348     real             *shiftvec,*fshift,*x,*f;
349     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
350     int              vdwioffset0;
351     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
352     int              vdwjidx0A,vdwjidx0B;
353     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
354     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
355     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
356     real             *charge;
357     __m128i          vfitab;
358     __m128i          ifour       = _mm_set1_epi32(4);
359     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
360     real             *vftab;
361     __m128d          dummy_mask,cutoff_mask;
362     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
363     __m128d          one     = _mm_set1_pd(1.0);
364     __m128d          two     = _mm_set1_pd(2.0);
365     x                = xx[0];
366     f                = ff[0];
367
368     nri              = nlist->nri;
369     iinr             = nlist->iinr;
370     jindex           = nlist->jindex;
371     jjnr             = nlist->jjnr;
372     shiftidx         = nlist->shift;
373     gid              = nlist->gid;
374     shiftvec         = fr->shift_vec[0];
375     fshift           = fr->fshift[0];
376     facel            = _mm_set1_pd(fr->epsfac);
377     charge           = mdatoms->chargeA;
378
379     vftab            = kernel_data->table_elec->data;
380     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
381
382     /* Avoid stupid compiler warnings */
383     jnrA = jnrB = 0;
384     j_coord_offsetA = 0;
385     j_coord_offsetB = 0;
386
387     outeriter        = 0;
388     inneriter        = 0;
389
390     /* Start outer loop over neighborlists */
391     for(iidx=0; iidx<nri; iidx++)
392     {
393         /* Load shift vector for this list */
394         i_shift_offset   = DIM*shiftidx[iidx];
395
396         /* Load limits for loop over neighbors */
397         j_index_start    = jindex[iidx];
398         j_index_end      = jindex[iidx+1];
399
400         /* Get outer coordinate index */
401         inr              = iinr[iidx];
402         i_coord_offset   = DIM*inr;
403
404         /* Load i particle coords and add shift vector */
405         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
406
407         fix0             = _mm_setzero_pd();
408         fiy0             = _mm_setzero_pd();
409         fiz0             = _mm_setzero_pd();
410
411         /* Load parameters for i particles */
412         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
413
414         /* Start inner kernel loop */
415         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
416         {
417
418             /* Get j neighbor index, and coordinate index */
419             jnrA             = jjnr[jidx];
420             jnrB             = jjnr[jidx+1];
421             j_coord_offsetA  = DIM*jnrA;
422             j_coord_offsetB  = DIM*jnrB;
423
424             /* load j atom coordinates */
425             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _mm_sub_pd(ix0,jx0);
430             dy00             = _mm_sub_pd(iy0,jy0);
431             dz00             = _mm_sub_pd(iz0,jz0);
432
433             /* Calculate squared distance and things based on it */
434             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
435
436             rinv00           = gmx_mm_invsqrt_pd(rsq00);
437
438             /* Load parameters for j particles */
439             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             r00              = _mm_mul_pd(rsq00,rinv00);
446
447             /* Compute parameters for interactions between i and j atoms */
448             qq00             = _mm_mul_pd(iq0,jq0);
449
450             /* Calculate table index by multiplying r with table scale and truncate to integer */
451             rt               = _mm_mul_pd(r00,vftabscale);
452             vfitab           = _mm_cvttpd_epi32(rt);
453             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
454             vfitab           = _mm_slli_epi32(vfitab,2);
455
456             /* CUBIC SPLINE TABLE ELECTROSTATICS */
457             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
458             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
459             GMX_MM_TRANSPOSE2_PD(Y,F);
460             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
461             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
462             GMX_MM_TRANSPOSE2_PD(G,H);
463             Heps             = _mm_mul_pd(vfeps,H);
464             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
465             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
466             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
467
468             fscal            = felec;
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_pd(fscal,dx00);
472             ty               = _mm_mul_pd(fscal,dy00);
473             tz               = _mm_mul_pd(fscal,dz00);
474
475             /* Update vectorial force */
476             fix0             = _mm_add_pd(fix0,tx);
477             fiy0             = _mm_add_pd(fiy0,ty);
478             fiz0             = _mm_add_pd(fiz0,tz);
479
480             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
481
482             /* Inner loop uses 39 flops */
483         }
484
485         if(jidx<j_index_end)
486         {
487
488             jnrA             = jjnr[jidx];
489             j_coord_offsetA  = DIM*jnrA;
490
491             /* load j atom coordinates */
492             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
493                                               &jx0,&jy0,&jz0);
494
495             /* Calculate displacement vector */
496             dx00             = _mm_sub_pd(ix0,jx0);
497             dy00             = _mm_sub_pd(iy0,jy0);
498             dz00             = _mm_sub_pd(iz0,jz0);
499
500             /* Calculate squared distance and things based on it */
501             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
502
503             rinv00           = gmx_mm_invsqrt_pd(rsq00);
504
505             /* Load parameters for j particles */
506             jq0              = _mm_load_sd(charge+jnrA+0);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r00              = _mm_mul_pd(rsq00,rinv00);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm_mul_pd(iq0,jq0);
516
517             /* Calculate table index by multiplying r with table scale and truncate to integer */
518             rt               = _mm_mul_pd(r00,vftabscale);
519             vfitab           = _mm_cvttpd_epi32(rt);
520             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
521             vfitab           = _mm_slli_epi32(vfitab,2);
522
523             /* CUBIC SPLINE TABLE ELECTROSTATICS */
524             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
525             F                = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(Y,F);
527             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
528             H                = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(G,H);
530             Heps             = _mm_mul_pd(vfeps,H);
531             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
532             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
533             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
534
535             fscal            = felec;
536
537             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm_mul_pd(fscal,dx00);
541             ty               = _mm_mul_pd(fscal,dy00);
542             tz               = _mm_mul_pd(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm_add_pd(fix0,tx);
546             fiy0             = _mm_add_pd(fiy0,ty);
547             fiz0             = _mm_add_pd(fiz0,tz);
548
549             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
550
551             /* Inner loop uses 39 flops */
552         }
553
554         /* End of innermost loop */
555
556         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
557                                               f+i_coord_offset,fshift+i_shift_offset);
558
559         /* Increment number of inner iterations */
560         inneriter                  += j_index_end - j_index_start;
561
562         /* Outer loop uses 7 flops */
563     }
564
565     /* Increment number of outer iterations */
566     outeriter        += nri;
567
568     /* Update outer/inner flops */
569
570     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
571 }