Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
132     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
133     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171         fix3             = _mm_setzero_pd();
172         fiy3             = _mm_setzero_pd();
173         fiz3             = _mm_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_pd();
177         vvdwsum          = _mm_setzero_pd();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_pd(ix0,jx0);
195             dy00             = _mm_sub_pd(iy0,jy0);
196             dz00             = _mm_sub_pd(iz0,jz0);
197             dx10             = _mm_sub_pd(ix1,jx0);
198             dy10             = _mm_sub_pd(iy1,jy0);
199             dz10             = _mm_sub_pd(iz1,jz0);
200             dx20             = _mm_sub_pd(ix2,jx0);
201             dy20             = _mm_sub_pd(iy2,jy0);
202             dz20             = _mm_sub_pd(iz2,jz0);
203             dx30             = _mm_sub_pd(ix3,jx0);
204             dy30             = _mm_sub_pd(iy3,jy0);
205             dz30             = _mm_sub_pd(iz3,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
212
213             rinv10           = sse41_invsqrt_d(rsq10);
214             rinv20           = sse41_invsqrt_d(rsq20);
215             rinv30           = sse41_invsqrt_d(rsq30);
216
217             rinvsq00         = sse41_inv_d(rsq00);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             /* Compute parameters for interactions between i and j atoms */
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* LENNARD-JONES DISPERSION/REPULSION */
237
238             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
239             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
240             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
241             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
242             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
246
247             fscal            = fvdw;
248
249             /* Calculate temporary vectorial force */
250             tx               = _mm_mul_pd(fscal,dx00);
251             ty               = _mm_mul_pd(fscal,dy00);
252             tz               = _mm_mul_pd(fscal,dz00);
253
254             /* Update vectorial force */
255             fix0             = _mm_add_pd(fix0,tx);
256             fiy0             = _mm_add_pd(fiy0,ty);
257             fiz0             = _mm_add_pd(fiz0,tz);
258
259             fjx0             = _mm_add_pd(fjx0,tx);
260             fjy0             = _mm_add_pd(fjy0,ty);
261             fjz0             = _mm_add_pd(fjz0,tz);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r10              = _mm_mul_pd(rsq10,rinv10);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq10             = _mm_mul_pd(iq1,jq0);
271
272             /* Calculate table index by multiplying r with table scale and truncate to integer */
273             rt               = _mm_mul_pd(r10,vftabscale);
274             vfitab           = _mm_cvttpd_epi32(rt);
275             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
276             vfitab           = _mm_slli_epi32(vfitab,2);
277
278             /* CUBIC SPLINE TABLE ELECTROSTATICS */
279             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
280             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
281             GMX_MM_TRANSPOSE2_PD(Y,F);
282             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
283             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
284             GMX_MM_TRANSPOSE2_PD(G,H);
285             Heps             = _mm_mul_pd(vfeps,H);
286             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
287             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
288             velec            = _mm_mul_pd(qq10,VV);
289             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
290             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_pd(fscal,dx10);
299             ty               = _mm_mul_pd(fscal,dy10);
300             tz               = _mm_mul_pd(fscal,dz10);
301
302             /* Update vectorial force */
303             fix1             = _mm_add_pd(fix1,tx);
304             fiy1             = _mm_add_pd(fiy1,ty);
305             fiz1             = _mm_add_pd(fiz1,tz);
306
307             fjx0             = _mm_add_pd(fjx0,tx);
308             fjy0             = _mm_add_pd(fjy0,ty);
309             fjz0             = _mm_add_pd(fjz0,tz);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r20              = _mm_mul_pd(rsq20,rinv20);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm_mul_pd(iq2,jq0);
319
320             /* Calculate table index by multiplying r with table scale and truncate to integer */
321             rt               = _mm_mul_pd(r20,vftabscale);
322             vfitab           = _mm_cvttpd_epi32(rt);
323             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
324             vfitab           = _mm_slli_epi32(vfitab,2);
325
326             /* CUBIC SPLINE TABLE ELECTROSTATICS */
327             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
328             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
329             GMX_MM_TRANSPOSE2_PD(Y,F);
330             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
331             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
332             GMX_MM_TRANSPOSE2_PD(G,H);
333             Heps             = _mm_mul_pd(vfeps,H);
334             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
335             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
336             velec            = _mm_mul_pd(qq20,VV);
337             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
338             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm_add_pd(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx20);
347             ty               = _mm_mul_pd(fscal,dy20);
348             tz               = _mm_mul_pd(fscal,dz20);
349
350             /* Update vectorial force */
351             fix2             = _mm_add_pd(fix2,tx);
352             fiy2             = _mm_add_pd(fiy2,ty);
353             fiz2             = _mm_add_pd(fiz2,tz);
354
355             fjx0             = _mm_add_pd(fjx0,tx);
356             fjy0             = _mm_add_pd(fjy0,ty);
357             fjz0             = _mm_add_pd(fjz0,tz);
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r30              = _mm_mul_pd(rsq30,rinv30);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq30             = _mm_mul_pd(iq3,jq0);
367
368             /* Calculate table index by multiplying r with table scale and truncate to integer */
369             rt               = _mm_mul_pd(r30,vftabscale);
370             vfitab           = _mm_cvttpd_epi32(rt);
371             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
372             vfitab           = _mm_slli_epi32(vfitab,2);
373
374             /* CUBIC SPLINE TABLE ELECTROSTATICS */
375             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
376             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
377             GMX_MM_TRANSPOSE2_PD(Y,F);
378             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
379             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
380             GMX_MM_TRANSPOSE2_PD(G,H);
381             Heps             = _mm_mul_pd(vfeps,H);
382             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
383             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
384             velec            = _mm_mul_pd(qq30,VV);
385             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
386             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm_mul_pd(fscal,dx30);
395             ty               = _mm_mul_pd(fscal,dy30);
396             tz               = _mm_mul_pd(fscal,dz30);
397
398             /* Update vectorial force */
399             fix3             = _mm_add_pd(fix3,tx);
400             fiy3             = _mm_add_pd(fiy3,ty);
401             fiz3             = _mm_add_pd(fiz3,tz);
402
403             fjx0             = _mm_add_pd(fjx0,tx);
404             fjy0             = _mm_add_pd(fjy0,ty);
405             fjz0             = _mm_add_pd(fjz0,tz);
406
407             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
408
409             /* Inner loop uses 164 flops */
410         }
411
412         if(jidx<j_index_end)
413         {
414
415             jnrA             = jjnr[jidx];
416             j_coord_offsetA  = DIM*jnrA;
417
418             /* load j atom coordinates */
419             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
420                                               &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm_sub_pd(ix0,jx0);
424             dy00             = _mm_sub_pd(iy0,jy0);
425             dz00             = _mm_sub_pd(iz0,jz0);
426             dx10             = _mm_sub_pd(ix1,jx0);
427             dy10             = _mm_sub_pd(iy1,jy0);
428             dz10             = _mm_sub_pd(iz1,jz0);
429             dx20             = _mm_sub_pd(ix2,jx0);
430             dy20             = _mm_sub_pd(iy2,jy0);
431             dz20             = _mm_sub_pd(iz2,jz0);
432             dx30             = _mm_sub_pd(ix3,jx0);
433             dy30             = _mm_sub_pd(iy3,jy0);
434             dz30             = _mm_sub_pd(iz3,jz0);
435
436             /* Calculate squared distance and things based on it */
437             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
438             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
439             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
440             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
441
442             rinv10           = sse41_invsqrt_d(rsq10);
443             rinv20           = sse41_invsqrt_d(rsq20);
444             rinv30           = sse41_invsqrt_d(rsq30);
445
446             rinvsq00         = sse41_inv_d(rsq00);
447
448             /* Load parameters for j particles */
449             jq0              = _mm_load_sd(charge+jnrA+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451
452             fjx0             = _mm_setzero_pd();
453             fjy0             = _mm_setzero_pd();
454             fjz0             = _mm_setzero_pd();
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             /* Compute parameters for interactions between i and j atoms */
461             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
462
463             /* LENNARD-JONES DISPERSION/REPULSION */
464
465             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
466             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
467             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
468             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
469             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
473             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
474
475             fscal            = fvdw;
476
477             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
478
479             /* Calculate temporary vectorial force */
480             tx               = _mm_mul_pd(fscal,dx00);
481             ty               = _mm_mul_pd(fscal,dy00);
482             tz               = _mm_mul_pd(fscal,dz00);
483
484             /* Update vectorial force */
485             fix0             = _mm_add_pd(fix0,tx);
486             fiy0             = _mm_add_pd(fiy0,ty);
487             fiz0             = _mm_add_pd(fiz0,tz);
488
489             fjx0             = _mm_add_pd(fjx0,tx);
490             fjy0             = _mm_add_pd(fjy0,ty);
491             fjz0             = _mm_add_pd(fjz0,tz);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r10              = _mm_mul_pd(rsq10,rinv10);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq10             = _mm_mul_pd(iq1,jq0);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm_mul_pd(r10,vftabscale);
504             vfitab           = _mm_cvttpd_epi32(rt);
505             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
506             vfitab           = _mm_slli_epi32(vfitab,2);
507
508             /* CUBIC SPLINE TABLE ELECTROSTATICS */
509             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
510             F                = _mm_setzero_pd();
511             GMX_MM_TRANSPOSE2_PD(Y,F);
512             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
513             H                = _mm_setzero_pd();
514             GMX_MM_TRANSPOSE2_PD(G,H);
515             Heps             = _mm_mul_pd(vfeps,H);
516             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
517             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
518             velec            = _mm_mul_pd(qq10,VV);
519             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
520             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
524             velecsum         = _mm_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_pd(fscal,dx10);
532             ty               = _mm_mul_pd(fscal,dy10);
533             tz               = _mm_mul_pd(fscal,dz10);
534
535             /* Update vectorial force */
536             fix1             = _mm_add_pd(fix1,tx);
537             fiy1             = _mm_add_pd(fiy1,ty);
538             fiz1             = _mm_add_pd(fiz1,tz);
539
540             fjx0             = _mm_add_pd(fjx0,tx);
541             fjy0             = _mm_add_pd(fjy0,ty);
542             fjz0             = _mm_add_pd(fjz0,tz);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             r20              = _mm_mul_pd(rsq20,rinv20);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq20             = _mm_mul_pd(iq2,jq0);
552
553             /* Calculate table index by multiplying r with table scale and truncate to integer */
554             rt               = _mm_mul_pd(r20,vftabscale);
555             vfitab           = _mm_cvttpd_epi32(rt);
556             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
557             vfitab           = _mm_slli_epi32(vfitab,2);
558
559             /* CUBIC SPLINE TABLE ELECTROSTATICS */
560             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
561             F                = _mm_setzero_pd();
562             GMX_MM_TRANSPOSE2_PD(Y,F);
563             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
564             H                = _mm_setzero_pd();
565             GMX_MM_TRANSPOSE2_PD(G,H);
566             Heps             = _mm_mul_pd(vfeps,H);
567             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
568             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
569             velec            = _mm_mul_pd(qq20,VV);
570             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
571             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
575             velecsum         = _mm_add_pd(velecsum,velec);
576
577             fscal            = felec;
578
579             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_pd(fscal,dx20);
583             ty               = _mm_mul_pd(fscal,dy20);
584             tz               = _mm_mul_pd(fscal,dz20);
585
586             /* Update vectorial force */
587             fix2             = _mm_add_pd(fix2,tx);
588             fiy2             = _mm_add_pd(fiy2,ty);
589             fiz2             = _mm_add_pd(fiz2,tz);
590
591             fjx0             = _mm_add_pd(fjx0,tx);
592             fjy0             = _mm_add_pd(fjy0,ty);
593             fjz0             = _mm_add_pd(fjz0,tz);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             r30              = _mm_mul_pd(rsq30,rinv30);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq30             = _mm_mul_pd(iq3,jq0);
603
604             /* Calculate table index by multiplying r with table scale and truncate to integer */
605             rt               = _mm_mul_pd(r30,vftabscale);
606             vfitab           = _mm_cvttpd_epi32(rt);
607             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
608             vfitab           = _mm_slli_epi32(vfitab,2);
609
610             /* CUBIC SPLINE TABLE ELECTROSTATICS */
611             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
612             F                = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(Y,F);
614             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
615             H                = _mm_setzero_pd();
616             GMX_MM_TRANSPOSE2_PD(G,H);
617             Heps             = _mm_mul_pd(vfeps,H);
618             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
619             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
620             velec            = _mm_mul_pd(qq30,VV);
621             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
622             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
626             velecsum         = _mm_add_pd(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_pd(fscal,dx30);
634             ty               = _mm_mul_pd(fscal,dy30);
635             tz               = _mm_mul_pd(fscal,dz30);
636
637             /* Update vectorial force */
638             fix3             = _mm_add_pd(fix3,tx);
639             fiy3             = _mm_add_pd(fiy3,ty);
640             fiz3             = _mm_add_pd(fiz3,tz);
641
642             fjx0             = _mm_add_pd(fjx0,tx);
643             fjy0             = _mm_add_pd(fjy0,ty);
644             fjz0             = _mm_add_pd(fjz0,tz);
645
646             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
647
648             /* Inner loop uses 164 flops */
649         }
650
651         /* End of innermost loop */
652
653         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
654                                               f+i_coord_offset,fshift+i_shift_offset);
655
656         ggid                        = gid[iidx];
657         /* Update potential energies */
658         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
659         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
660
661         /* Increment number of inner iterations */
662         inneriter                  += j_index_end - j_index_start;
663
664         /* Outer loop uses 26 flops */
665     }
666
667     /* Increment number of outer iterations */
668     outeriter        += nri;
669
670     /* Update outer/inner flops */
671
672     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164);
673 }
674 /*
675  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_double
676  * Electrostatics interaction: CubicSplineTable
677  * VdW interaction:            LennardJones
678  * Geometry:                   Water4-Particle
679  * Calculate force/pot:        Force
680  */
681 void
682 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_double
683                     (t_nblist                    * gmx_restrict       nlist,
684                      rvec                        * gmx_restrict          xx,
685                      rvec                        * gmx_restrict          ff,
686                      struct t_forcerec           * gmx_restrict          fr,
687                      t_mdatoms                   * gmx_restrict     mdatoms,
688                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
689                      t_nrnb                      * gmx_restrict        nrnb)
690 {
691     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
692      * just 0 for non-waters.
693      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
694      * jnr indices corresponding to data put in the four positions in the SIMD register.
695      */
696     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
697     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
698     int              jnrA,jnrB;
699     int              j_coord_offsetA,j_coord_offsetB;
700     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
701     real             rcutoff_scalar;
702     real             *shiftvec,*fshift,*x,*f;
703     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
704     int              vdwioffset0;
705     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
706     int              vdwioffset1;
707     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
708     int              vdwioffset2;
709     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
710     int              vdwioffset3;
711     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
712     int              vdwjidx0A,vdwjidx0B;
713     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
714     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
715     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
716     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
717     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
718     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
719     real             *charge;
720     int              nvdwtype;
721     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
722     int              *vdwtype;
723     real             *vdwparam;
724     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
725     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
726     __m128i          vfitab;
727     __m128i          ifour       = _mm_set1_epi32(4);
728     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
729     real             *vftab;
730     __m128d          dummy_mask,cutoff_mask;
731     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
732     __m128d          one     = _mm_set1_pd(1.0);
733     __m128d          two     = _mm_set1_pd(2.0);
734     x                = xx[0];
735     f                = ff[0];
736
737     nri              = nlist->nri;
738     iinr             = nlist->iinr;
739     jindex           = nlist->jindex;
740     jjnr             = nlist->jjnr;
741     shiftidx         = nlist->shift;
742     gid              = nlist->gid;
743     shiftvec         = fr->shift_vec[0];
744     fshift           = fr->fshift[0];
745     facel            = _mm_set1_pd(fr->ic->epsfac);
746     charge           = mdatoms->chargeA;
747     nvdwtype         = fr->ntype;
748     vdwparam         = fr->nbfp;
749     vdwtype          = mdatoms->typeA;
750
751     vftab            = kernel_data->table_elec->data;
752     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
753
754     /* Setup water-specific parameters */
755     inr              = nlist->iinr[0];
756     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
757     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
758     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
759     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
760
761     /* Avoid stupid compiler warnings */
762     jnrA = jnrB = 0;
763     j_coord_offsetA = 0;
764     j_coord_offsetB = 0;
765
766     outeriter        = 0;
767     inneriter        = 0;
768
769     /* Start outer loop over neighborlists */
770     for(iidx=0; iidx<nri; iidx++)
771     {
772         /* Load shift vector for this list */
773         i_shift_offset   = DIM*shiftidx[iidx];
774
775         /* Load limits for loop over neighbors */
776         j_index_start    = jindex[iidx];
777         j_index_end      = jindex[iidx+1];
778
779         /* Get outer coordinate index */
780         inr              = iinr[iidx];
781         i_coord_offset   = DIM*inr;
782
783         /* Load i particle coords and add shift vector */
784         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
785                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
786
787         fix0             = _mm_setzero_pd();
788         fiy0             = _mm_setzero_pd();
789         fiz0             = _mm_setzero_pd();
790         fix1             = _mm_setzero_pd();
791         fiy1             = _mm_setzero_pd();
792         fiz1             = _mm_setzero_pd();
793         fix2             = _mm_setzero_pd();
794         fiy2             = _mm_setzero_pd();
795         fiz2             = _mm_setzero_pd();
796         fix3             = _mm_setzero_pd();
797         fiy3             = _mm_setzero_pd();
798         fiz3             = _mm_setzero_pd();
799
800         /* Start inner kernel loop */
801         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
802         {
803
804             /* Get j neighbor index, and coordinate index */
805             jnrA             = jjnr[jidx];
806             jnrB             = jjnr[jidx+1];
807             j_coord_offsetA  = DIM*jnrA;
808             j_coord_offsetB  = DIM*jnrB;
809
810             /* load j atom coordinates */
811             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
812                                               &jx0,&jy0,&jz0);
813
814             /* Calculate displacement vector */
815             dx00             = _mm_sub_pd(ix0,jx0);
816             dy00             = _mm_sub_pd(iy0,jy0);
817             dz00             = _mm_sub_pd(iz0,jz0);
818             dx10             = _mm_sub_pd(ix1,jx0);
819             dy10             = _mm_sub_pd(iy1,jy0);
820             dz10             = _mm_sub_pd(iz1,jz0);
821             dx20             = _mm_sub_pd(ix2,jx0);
822             dy20             = _mm_sub_pd(iy2,jy0);
823             dz20             = _mm_sub_pd(iz2,jz0);
824             dx30             = _mm_sub_pd(ix3,jx0);
825             dy30             = _mm_sub_pd(iy3,jy0);
826             dz30             = _mm_sub_pd(iz3,jz0);
827
828             /* Calculate squared distance and things based on it */
829             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
830             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
831             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
832             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
833
834             rinv10           = sse41_invsqrt_d(rsq10);
835             rinv20           = sse41_invsqrt_d(rsq20);
836             rinv30           = sse41_invsqrt_d(rsq30);
837
838             rinvsq00         = sse41_inv_d(rsq00);
839
840             /* Load parameters for j particles */
841             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
842             vdwjidx0A        = 2*vdwtype[jnrA+0];
843             vdwjidx0B        = 2*vdwtype[jnrB+0];
844
845             fjx0             = _mm_setzero_pd();
846             fjy0             = _mm_setzero_pd();
847             fjz0             = _mm_setzero_pd();
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             /* Compute parameters for interactions between i and j atoms */
854             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
855                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
856
857             /* LENNARD-JONES DISPERSION/REPULSION */
858
859             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
860             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
861
862             fscal            = fvdw;
863
864             /* Calculate temporary vectorial force */
865             tx               = _mm_mul_pd(fscal,dx00);
866             ty               = _mm_mul_pd(fscal,dy00);
867             tz               = _mm_mul_pd(fscal,dz00);
868
869             /* Update vectorial force */
870             fix0             = _mm_add_pd(fix0,tx);
871             fiy0             = _mm_add_pd(fiy0,ty);
872             fiz0             = _mm_add_pd(fiz0,tz);
873
874             fjx0             = _mm_add_pd(fjx0,tx);
875             fjy0             = _mm_add_pd(fjy0,ty);
876             fjz0             = _mm_add_pd(fjz0,tz);
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             r10              = _mm_mul_pd(rsq10,rinv10);
883
884             /* Compute parameters for interactions between i and j atoms */
885             qq10             = _mm_mul_pd(iq1,jq0);
886
887             /* Calculate table index by multiplying r with table scale and truncate to integer */
888             rt               = _mm_mul_pd(r10,vftabscale);
889             vfitab           = _mm_cvttpd_epi32(rt);
890             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
891             vfitab           = _mm_slli_epi32(vfitab,2);
892
893             /* CUBIC SPLINE TABLE ELECTROSTATICS */
894             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
895             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
896             GMX_MM_TRANSPOSE2_PD(Y,F);
897             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
898             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
899             GMX_MM_TRANSPOSE2_PD(G,H);
900             Heps             = _mm_mul_pd(vfeps,H);
901             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
902             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
903             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
904
905             fscal            = felec;
906
907             /* Calculate temporary vectorial force */
908             tx               = _mm_mul_pd(fscal,dx10);
909             ty               = _mm_mul_pd(fscal,dy10);
910             tz               = _mm_mul_pd(fscal,dz10);
911
912             /* Update vectorial force */
913             fix1             = _mm_add_pd(fix1,tx);
914             fiy1             = _mm_add_pd(fiy1,ty);
915             fiz1             = _mm_add_pd(fiz1,tz);
916
917             fjx0             = _mm_add_pd(fjx0,tx);
918             fjy0             = _mm_add_pd(fjy0,ty);
919             fjz0             = _mm_add_pd(fjz0,tz);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r20              = _mm_mul_pd(rsq20,rinv20);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq20             = _mm_mul_pd(iq2,jq0);
929
930             /* Calculate table index by multiplying r with table scale and truncate to integer */
931             rt               = _mm_mul_pd(r20,vftabscale);
932             vfitab           = _mm_cvttpd_epi32(rt);
933             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
934             vfitab           = _mm_slli_epi32(vfitab,2);
935
936             /* CUBIC SPLINE TABLE ELECTROSTATICS */
937             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
938             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
939             GMX_MM_TRANSPOSE2_PD(Y,F);
940             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
941             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
942             GMX_MM_TRANSPOSE2_PD(G,H);
943             Heps             = _mm_mul_pd(vfeps,H);
944             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
945             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
946             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
947
948             fscal            = felec;
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm_mul_pd(fscal,dx20);
952             ty               = _mm_mul_pd(fscal,dy20);
953             tz               = _mm_mul_pd(fscal,dz20);
954
955             /* Update vectorial force */
956             fix2             = _mm_add_pd(fix2,tx);
957             fiy2             = _mm_add_pd(fiy2,ty);
958             fiz2             = _mm_add_pd(fiz2,tz);
959
960             fjx0             = _mm_add_pd(fjx0,tx);
961             fjy0             = _mm_add_pd(fjy0,ty);
962             fjz0             = _mm_add_pd(fjz0,tz);
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             r30              = _mm_mul_pd(rsq30,rinv30);
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq30             = _mm_mul_pd(iq3,jq0);
972
973             /* Calculate table index by multiplying r with table scale and truncate to integer */
974             rt               = _mm_mul_pd(r30,vftabscale);
975             vfitab           = _mm_cvttpd_epi32(rt);
976             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
977             vfitab           = _mm_slli_epi32(vfitab,2);
978
979             /* CUBIC SPLINE TABLE ELECTROSTATICS */
980             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
981             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
982             GMX_MM_TRANSPOSE2_PD(Y,F);
983             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
984             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
985             GMX_MM_TRANSPOSE2_PD(G,H);
986             Heps             = _mm_mul_pd(vfeps,H);
987             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
988             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
989             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
990
991             fscal            = felec;
992
993             /* Calculate temporary vectorial force */
994             tx               = _mm_mul_pd(fscal,dx30);
995             ty               = _mm_mul_pd(fscal,dy30);
996             tz               = _mm_mul_pd(fscal,dz30);
997
998             /* Update vectorial force */
999             fix3             = _mm_add_pd(fix3,tx);
1000             fiy3             = _mm_add_pd(fiy3,ty);
1001             fiz3             = _mm_add_pd(fiz3,tz);
1002
1003             fjx0             = _mm_add_pd(fjx0,tx);
1004             fjy0             = _mm_add_pd(fjy0,ty);
1005             fjz0             = _mm_add_pd(fjz0,tz);
1006
1007             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1008
1009             /* Inner loop uses 147 flops */
1010         }
1011
1012         if(jidx<j_index_end)
1013         {
1014
1015             jnrA             = jjnr[jidx];
1016             j_coord_offsetA  = DIM*jnrA;
1017
1018             /* load j atom coordinates */
1019             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1020                                               &jx0,&jy0,&jz0);
1021
1022             /* Calculate displacement vector */
1023             dx00             = _mm_sub_pd(ix0,jx0);
1024             dy00             = _mm_sub_pd(iy0,jy0);
1025             dz00             = _mm_sub_pd(iz0,jz0);
1026             dx10             = _mm_sub_pd(ix1,jx0);
1027             dy10             = _mm_sub_pd(iy1,jy0);
1028             dz10             = _mm_sub_pd(iz1,jz0);
1029             dx20             = _mm_sub_pd(ix2,jx0);
1030             dy20             = _mm_sub_pd(iy2,jy0);
1031             dz20             = _mm_sub_pd(iz2,jz0);
1032             dx30             = _mm_sub_pd(ix3,jx0);
1033             dy30             = _mm_sub_pd(iy3,jy0);
1034             dz30             = _mm_sub_pd(iz3,jz0);
1035
1036             /* Calculate squared distance and things based on it */
1037             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1038             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1039             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1040             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1041
1042             rinv10           = sse41_invsqrt_d(rsq10);
1043             rinv20           = sse41_invsqrt_d(rsq20);
1044             rinv30           = sse41_invsqrt_d(rsq30);
1045
1046             rinvsq00         = sse41_inv_d(rsq00);
1047
1048             /* Load parameters for j particles */
1049             jq0              = _mm_load_sd(charge+jnrA+0);
1050             vdwjidx0A        = 2*vdwtype[jnrA+0];
1051
1052             fjx0             = _mm_setzero_pd();
1053             fjy0             = _mm_setzero_pd();
1054             fjz0             = _mm_setzero_pd();
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1062
1063             /* LENNARD-JONES DISPERSION/REPULSION */
1064
1065             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1066             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1067
1068             fscal            = fvdw;
1069
1070             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm_mul_pd(fscal,dx00);
1074             ty               = _mm_mul_pd(fscal,dy00);
1075             tz               = _mm_mul_pd(fscal,dz00);
1076
1077             /* Update vectorial force */
1078             fix0             = _mm_add_pd(fix0,tx);
1079             fiy0             = _mm_add_pd(fiy0,ty);
1080             fiz0             = _mm_add_pd(fiz0,tz);
1081
1082             fjx0             = _mm_add_pd(fjx0,tx);
1083             fjy0             = _mm_add_pd(fjy0,ty);
1084             fjz0             = _mm_add_pd(fjz0,tz);
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             r10              = _mm_mul_pd(rsq10,rinv10);
1091
1092             /* Compute parameters for interactions between i and j atoms */
1093             qq10             = _mm_mul_pd(iq1,jq0);
1094
1095             /* Calculate table index by multiplying r with table scale and truncate to integer */
1096             rt               = _mm_mul_pd(r10,vftabscale);
1097             vfitab           = _mm_cvttpd_epi32(rt);
1098             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1099             vfitab           = _mm_slli_epi32(vfitab,2);
1100
1101             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1102             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1103             F                = _mm_setzero_pd();
1104             GMX_MM_TRANSPOSE2_PD(Y,F);
1105             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1106             H                = _mm_setzero_pd();
1107             GMX_MM_TRANSPOSE2_PD(G,H);
1108             Heps             = _mm_mul_pd(vfeps,H);
1109             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1110             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1111             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1112
1113             fscal            = felec;
1114
1115             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm_mul_pd(fscal,dx10);
1119             ty               = _mm_mul_pd(fscal,dy10);
1120             tz               = _mm_mul_pd(fscal,dz10);
1121
1122             /* Update vectorial force */
1123             fix1             = _mm_add_pd(fix1,tx);
1124             fiy1             = _mm_add_pd(fiy1,ty);
1125             fiz1             = _mm_add_pd(fiz1,tz);
1126
1127             fjx0             = _mm_add_pd(fjx0,tx);
1128             fjy0             = _mm_add_pd(fjy0,ty);
1129             fjz0             = _mm_add_pd(fjz0,tz);
1130
1131             /**************************
1132              * CALCULATE INTERACTIONS *
1133              **************************/
1134
1135             r20              = _mm_mul_pd(rsq20,rinv20);
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq20             = _mm_mul_pd(iq2,jq0);
1139
1140             /* Calculate table index by multiplying r with table scale and truncate to integer */
1141             rt               = _mm_mul_pd(r20,vftabscale);
1142             vfitab           = _mm_cvttpd_epi32(rt);
1143             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1144             vfitab           = _mm_slli_epi32(vfitab,2);
1145
1146             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1147             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1148             F                = _mm_setzero_pd();
1149             GMX_MM_TRANSPOSE2_PD(Y,F);
1150             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1151             H                = _mm_setzero_pd();
1152             GMX_MM_TRANSPOSE2_PD(G,H);
1153             Heps             = _mm_mul_pd(vfeps,H);
1154             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1155             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1156             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1157
1158             fscal            = felec;
1159
1160             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm_mul_pd(fscal,dx20);
1164             ty               = _mm_mul_pd(fscal,dy20);
1165             tz               = _mm_mul_pd(fscal,dz20);
1166
1167             /* Update vectorial force */
1168             fix2             = _mm_add_pd(fix2,tx);
1169             fiy2             = _mm_add_pd(fiy2,ty);
1170             fiz2             = _mm_add_pd(fiz2,tz);
1171
1172             fjx0             = _mm_add_pd(fjx0,tx);
1173             fjy0             = _mm_add_pd(fjy0,ty);
1174             fjz0             = _mm_add_pd(fjz0,tz);
1175
1176             /**************************
1177              * CALCULATE INTERACTIONS *
1178              **************************/
1179
1180             r30              = _mm_mul_pd(rsq30,rinv30);
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq30             = _mm_mul_pd(iq3,jq0);
1184
1185             /* Calculate table index by multiplying r with table scale and truncate to integer */
1186             rt               = _mm_mul_pd(r30,vftabscale);
1187             vfitab           = _mm_cvttpd_epi32(rt);
1188             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1189             vfitab           = _mm_slli_epi32(vfitab,2);
1190
1191             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1192             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1193             F                = _mm_setzero_pd();
1194             GMX_MM_TRANSPOSE2_PD(Y,F);
1195             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1196             H                = _mm_setzero_pd();
1197             GMX_MM_TRANSPOSE2_PD(G,H);
1198             Heps             = _mm_mul_pd(vfeps,H);
1199             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1200             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1201             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1202
1203             fscal            = felec;
1204
1205             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = _mm_mul_pd(fscal,dx30);
1209             ty               = _mm_mul_pd(fscal,dy30);
1210             tz               = _mm_mul_pd(fscal,dz30);
1211
1212             /* Update vectorial force */
1213             fix3             = _mm_add_pd(fix3,tx);
1214             fiy3             = _mm_add_pd(fiy3,ty);
1215             fiz3             = _mm_add_pd(fiz3,tz);
1216
1217             fjx0             = _mm_add_pd(fjx0,tx);
1218             fjy0             = _mm_add_pd(fjy0,ty);
1219             fjz0             = _mm_add_pd(fjz0,tz);
1220
1221             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1222
1223             /* Inner loop uses 147 flops */
1224         }
1225
1226         /* End of innermost loop */
1227
1228         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1229                                               f+i_coord_offset,fshift+i_shift_offset);
1230
1231         /* Increment number of inner iterations */
1232         inneriter                  += j_index_end - j_index_start;
1233
1234         /* Outer loop uses 24 flops */
1235     }
1236
1237     /* Increment number of outer iterations */
1238     outeriter        += nri;
1239
1240     /* Update outer/inner flops */
1241
1242     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1243 }