Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_elec->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm_setzero_pd();
149         fiy0             = _mm_setzero_pd();
150         fiz0             = _mm_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm_invsqrt_pd(rsq00);
183
184             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm_mul_pd(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_pd(iq0,jq0);
199             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
200                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
201
202             /* Calculate table index by multiplying r with table scale and truncate to integer */
203             rt               = _mm_mul_pd(r00,vftabscale);
204             vfitab           = _mm_cvttpd_epi32(rt);
205             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
206             vfitab           = _mm_slli_epi32(vfitab,2);
207
208             /* CUBIC SPLINE TABLE ELECTROSTATICS */
209             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
210             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
211             GMX_MM_TRANSPOSE2_PD(Y,F);
212             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
213             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
214             GMX_MM_TRANSPOSE2_PD(G,H);
215             Heps             = _mm_mul_pd(vfeps,H);
216             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
217             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
218             velec            = _mm_mul_pd(qq00,VV);
219             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
220             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
221
222             /* LENNARD-JONES DISPERSION/REPULSION */
223
224             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
225             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
226             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
227             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
228             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             velecsum         = _mm_add_pd(velecsum,velec);
232             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
233
234             fscal            = _mm_add_pd(felec,fvdw);
235
236             /* Calculate temporary vectorial force */
237             tx               = _mm_mul_pd(fscal,dx00);
238             ty               = _mm_mul_pd(fscal,dy00);
239             tz               = _mm_mul_pd(fscal,dz00);
240
241             /* Update vectorial force */
242             fix0             = _mm_add_pd(fix0,tx);
243             fiy0             = _mm_add_pd(fiy0,ty);
244             fiz0             = _mm_add_pd(fiz0,tz);
245
246             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
247
248             /* Inner loop uses 56 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             jnrA             = jjnr[jidx];
255             j_coord_offsetA  = DIM*jnrA;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259                                               &jx0,&jy0,&jz0);
260
261             /* Calculate displacement vector */
262             dx00             = _mm_sub_pd(ix0,jx0);
263             dy00             = _mm_sub_pd(iy0,jy0);
264             dz00             = _mm_sub_pd(iz0,jz0);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268
269             rinv00           = gmx_mm_invsqrt_pd(rsq00);
270
271             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
272
273             /* Load parameters for j particles */
274             jq0              = _mm_load_sd(charge+jnrA+0);
275             vdwjidx0A        = 2*vdwtype[jnrA+0];
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r00              = _mm_mul_pd(rsq00,rinv00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq00             = _mm_mul_pd(iq0,jq0);
285             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286
287             /* Calculate table index by multiplying r with table scale and truncate to integer */
288             rt               = _mm_mul_pd(r00,vftabscale);
289             vfitab           = _mm_cvttpd_epi32(rt);
290             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
291             vfitab           = _mm_slli_epi32(vfitab,2);
292
293             /* CUBIC SPLINE TABLE ELECTROSTATICS */
294             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
295             F                = _mm_setzero_pd();
296             GMX_MM_TRANSPOSE2_PD(Y,F);
297             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
298             H                = _mm_setzero_pd();
299             GMX_MM_TRANSPOSE2_PD(G,H);
300             Heps             = _mm_mul_pd(vfeps,H);
301             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
302             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
303             velec            = _mm_mul_pd(qq00,VV);
304             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
305             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
306
307             /* LENNARD-JONES DISPERSION/REPULSION */
308
309             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
310             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
311             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
312             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
313             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
317             velecsum         = _mm_add_pd(velecsum,velec);
318             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
319             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
320
321             fscal            = _mm_add_pd(felec,fvdw);
322
323             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx00);
327             ty               = _mm_mul_pd(fscal,dy00);
328             tz               = _mm_mul_pd(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm_add_pd(fix0,tx);
332             fiy0             = _mm_add_pd(fiy0,ty);
333             fiz0             = _mm_add_pd(fiz0,tz);
334
335             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
336
337             /* Inner loop uses 56 flops */
338         }
339
340         /* End of innermost loop */
341
342         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
343                                               f+i_coord_offset,fshift+i_shift_offset);
344
345         ggid                        = gid[iidx];
346         /* Update potential energies */
347         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
348         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
349
350         /* Increment number of inner iterations */
351         inneriter                  += j_index_end - j_index_start;
352
353         /* Outer loop uses 9 flops */
354     }
355
356     /* Increment number of outer iterations */
357     outeriter        += nri;
358
359     /* Update outer/inner flops */
360
361     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
362 }
363 /*
364  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse4_1_double
365  * Electrostatics interaction: CubicSplineTable
366  * VdW interaction:            LennardJones
367  * Geometry:                   Particle-Particle
368  * Calculate force/pot:        Force
369  */
370 void
371 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse4_1_double
372                     (t_nblist                    * gmx_restrict       nlist,
373                      rvec                        * gmx_restrict          xx,
374                      rvec                        * gmx_restrict          ff,
375                      t_forcerec                  * gmx_restrict          fr,
376                      t_mdatoms                   * gmx_restrict     mdatoms,
377                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
378                      t_nrnb                      * gmx_restrict        nrnb)
379 {
380     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381      * just 0 for non-waters.
382      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
383      * jnr indices corresponding to data put in the four positions in the SIMD register.
384      */
385     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
386     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387     int              jnrA,jnrB;
388     int              j_coord_offsetA,j_coord_offsetB;
389     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
390     real             rcutoff_scalar;
391     real             *shiftvec,*fshift,*x,*f;
392     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
393     int              vdwioffset0;
394     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395     int              vdwjidx0A,vdwjidx0B;
396     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
397     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
398     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
399     real             *charge;
400     int              nvdwtype;
401     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
402     int              *vdwtype;
403     real             *vdwparam;
404     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
405     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
406     __m128i          vfitab;
407     __m128i          ifour       = _mm_set1_epi32(4);
408     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
409     real             *vftab;
410     __m128d          dummy_mask,cutoff_mask;
411     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
412     __m128d          one     = _mm_set1_pd(1.0);
413     __m128d          two     = _mm_set1_pd(2.0);
414     x                = xx[0];
415     f                = ff[0];
416
417     nri              = nlist->nri;
418     iinr             = nlist->iinr;
419     jindex           = nlist->jindex;
420     jjnr             = nlist->jjnr;
421     shiftidx         = nlist->shift;
422     gid              = nlist->gid;
423     shiftvec         = fr->shift_vec[0];
424     fshift           = fr->fshift[0];
425     facel            = _mm_set1_pd(fr->epsfac);
426     charge           = mdatoms->chargeA;
427     nvdwtype         = fr->ntype;
428     vdwparam         = fr->nbfp;
429     vdwtype          = mdatoms->typeA;
430
431     vftab            = kernel_data->table_elec->data;
432     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
433
434     /* Avoid stupid compiler warnings */
435     jnrA = jnrB = 0;
436     j_coord_offsetA = 0;
437     j_coord_offsetB = 0;
438
439     outeriter        = 0;
440     inneriter        = 0;
441
442     /* Start outer loop over neighborlists */
443     for(iidx=0; iidx<nri; iidx++)
444     {
445         /* Load shift vector for this list */
446         i_shift_offset   = DIM*shiftidx[iidx];
447
448         /* Load limits for loop over neighbors */
449         j_index_start    = jindex[iidx];
450         j_index_end      = jindex[iidx+1];
451
452         /* Get outer coordinate index */
453         inr              = iinr[iidx];
454         i_coord_offset   = DIM*inr;
455
456         /* Load i particle coords and add shift vector */
457         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
458
459         fix0             = _mm_setzero_pd();
460         fiy0             = _mm_setzero_pd();
461         fiz0             = _mm_setzero_pd();
462
463         /* Load parameters for i particles */
464         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
465         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
466
467         /* Start inner kernel loop */
468         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
469         {
470
471             /* Get j neighbor index, and coordinate index */
472             jnrA             = jjnr[jidx];
473             jnrB             = jjnr[jidx+1];
474             j_coord_offsetA  = DIM*jnrA;
475             j_coord_offsetB  = DIM*jnrB;
476
477             /* load j atom coordinates */
478             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
479                                               &jx0,&jy0,&jz0);
480
481             /* Calculate displacement vector */
482             dx00             = _mm_sub_pd(ix0,jx0);
483             dy00             = _mm_sub_pd(iy0,jy0);
484             dz00             = _mm_sub_pd(iz0,jz0);
485
486             /* Calculate squared distance and things based on it */
487             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
488
489             rinv00           = gmx_mm_invsqrt_pd(rsq00);
490
491             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
492
493             /* Load parameters for j particles */
494             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
495             vdwjidx0A        = 2*vdwtype[jnrA+0];
496             vdwjidx0B        = 2*vdwtype[jnrB+0];
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             r00              = _mm_mul_pd(rsq00,rinv00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             qq00             = _mm_mul_pd(iq0,jq0);
506             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
507                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
508
509             /* Calculate table index by multiplying r with table scale and truncate to integer */
510             rt               = _mm_mul_pd(r00,vftabscale);
511             vfitab           = _mm_cvttpd_epi32(rt);
512             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
513             vfitab           = _mm_slli_epi32(vfitab,2);
514
515             /* CUBIC SPLINE TABLE ELECTROSTATICS */
516             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
517             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
518             GMX_MM_TRANSPOSE2_PD(Y,F);
519             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
520             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
521             GMX_MM_TRANSPOSE2_PD(G,H);
522             Heps             = _mm_mul_pd(vfeps,H);
523             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
524             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
525             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
526
527             /* LENNARD-JONES DISPERSION/REPULSION */
528
529             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
530             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
531
532             fscal            = _mm_add_pd(felec,fvdw);
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm_mul_pd(fscal,dx00);
536             ty               = _mm_mul_pd(fscal,dy00);
537             tz               = _mm_mul_pd(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm_add_pd(fix0,tx);
541             fiy0             = _mm_add_pd(fiy0,ty);
542             fiz0             = _mm_add_pd(fiz0,tz);
543
544             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
545
546             /* Inner loop uses 47 flops */
547         }
548
549         if(jidx<j_index_end)
550         {
551
552             jnrA             = jjnr[jidx];
553             j_coord_offsetA  = DIM*jnrA;
554
555             /* load j atom coordinates */
556             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm_sub_pd(ix0,jx0);
561             dy00             = _mm_sub_pd(iy0,jy0);
562             dz00             = _mm_sub_pd(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
566
567             rinv00           = gmx_mm_invsqrt_pd(rsq00);
568
569             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
570
571             /* Load parameters for j particles */
572             jq0              = _mm_load_sd(charge+jnrA+0);
573             vdwjidx0A        = 2*vdwtype[jnrA+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r00              = _mm_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm_mul_pd(iq0,jq0);
583             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
584
585             /* Calculate table index by multiplying r with table scale and truncate to integer */
586             rt               = _mm_mul_pd(r00,vftabscale);
587             vfitab           = _mm_cvttpd_epi32(rt);
588             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
589             vfitab           = _mm_slli_epi32(vfitab,2);
590
591             /* CUBIC SPLINE TABLE ELECTROSTATICS */
592             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
593             F                = _mm_setzero_pd();
594             GMX_MM_TRANSPOSE2_PD(Y,F);
595             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
596             H                = _mm_setzero_pd();
597             GMX_MM_TRANSPOSE2_PD(G,H);
598             Heps             = _mm_mul_pd(vfeps,H);
599             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
600             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
601             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
602
603             /* LENNARD-JONES DISPERSION/REPULSION */
604
605             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
606             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
607
608             fscal            = _mm_add_pd(felec,fvdw);
609
610             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm_mul_pd(fscal,dx00);
614             ty               = _mm_mul_pd(fscal,dy00);
615             tz               = _mm_mul_pd(fscal,dz00);
616
617             /* Update vectorial force */
618             fix0             = _mm_add_pd(fix0,tx);
619             fiy0             = _mm_add_pd(fiy0,ty);
620             fiz0             = _mm_add_pd(fiz0,tz);
621
622             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
623
624             /* Inner loop uses 47 flops */
625         }
626
627         /* End of innermost loop */
628
629         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
630                                               f+i_coord_offset,fshift+i_shift_offset);
631
632         /* Increment number of inner iterations */
633         inneriter                  += j_index_end - j_index_start;
634
635         /* Outer loop uses 7 flops */
636     }
637
638     /* Increment number of outer iterations */
639     outeriter        += nri;
640
641     /* Update outer/inner flops */
642
643     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
644 }