Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse4_1_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     vftab            = kernel_data->table_elec->data;
119     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vvdwsum          = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_pd(ix0,jx0);
174             dy00             = _mm_sub_pd(iy0,jy0);
175             dz00             = _mm_sub_pd(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
179
180             rinv00           = gmx_mm_invsqrt_pd(rsq00);
181
182             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             r00              = _mm_mul_pd(rsq00,rinv00);
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm_mul_pd(iq0,jq0);
197             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199
200             /* Calculate table index by multiplying r with table scale and truncate to integer */
201             rt               = _mm_mul_pd(r00,vftabscale);
202             vfitab           = _mm_cvttpd_epi32(rt);
203             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
204             vfitab           = _mm_slli_epi32(vfitab,2);
205
206             /* CUBIC SPLINE TABLE ELECTROSTATICS */
207             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
208             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
209             GMX_MM_TRANSPOSE2_PD(Y,F);
210             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
211             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
212             GMX_MM_TRANSPOSE2_PD(G,H);
213             Heps             = _mm_mul_pd(vfeps,H);
214             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
215             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
216             velec            = _mm_mul_pd(qq00,VV);
217             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
218             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
219
220             /* LENNARD-JONES DISPERSION/REPULSION */
221
222             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
223             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
224             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
225             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
226             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velecsum         = _mm_add_pd(velecsum,velec);
230             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
231
232             fscal            = _mm_add_pd(felec,fvdw);
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_pd(fscal,dx00);
236             ty               = _mm_mul_pd(fscal,dy00);
237             tz               = _mm_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm_add_pd(fix0,tx);
241             fiy0             = _mm_add_pd(fiy0,ty);
242             fiz0             = _mm_add_pd(fiz0,tz);
243
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245
246             /* Inner loop uses 56 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
270
271             /* Load parameters for j particles */
272             jq0              = _mm_load_sd(charge+jnrA+0);
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r00              = _mm_mul_pd(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq00             = _mm_mul_pd(iq0,jq0);
283             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
284
285             /* Calculate table index by multiplying r with table scale and truncate to integer */
286             rt               = _mm_mul_pd(r00,vftabscale);
287             vfitab           = _mm_cvttpd_epi32(rt);
288             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
289             vfitab           = _mm_slli_epi32(vfitab,2);
290
291             /* CUBIC SPLINE TABLE ELECTROSTATICS */
292             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
293             F                = _mm_setzero_pd();
294             GMX_MM_TRANSPOSE2_PD(Y,F);
295             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
296             H                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(G,H);
298             Heps             = _mm_mul_pd(vfeps,H);
299             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
300             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
301             velec            = _mm_mul_pd(qq00,VV);
302             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
303             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
304
305             /* LENNARD-JONES DISPERSION/REPULSION */
306
307             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
308             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
309             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
310             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
311             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
315             velecsum         = _mm_add_pd(velecsum,velec);
316             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
317             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
318
319             fscal            = _mm_add_pd(felec,fvdw);
320
321             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm_mul_pd(fscal,dx00);
325             ty               = _mm_mul_pd(fscal,dy00);
326             tz               = _mm_mul_pd(fscal,dz00);
327
328             /* Update vectorial force */
329             fix0             = _mm_add_pd(fix0,tx);
330             fiy0             = _mm_add_pd(fiy0,ty);
331             fiz0             = _mm_add_pd(fiz0,tz);
332
333             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
334
335             /* Inner loop uses 56 flops */
336         }
337
338         /* End of innermost loop */
339
340         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
341                                               f+i_coord_offset,fshift+i_shift_offset);
342
343         ggid                        = gid[iidx];
344         /* Update potential energies */
345         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
346         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
347
348         /* Increment number of inner iterations */
349         inneriter                  += j_index_end - j_index_start;
350
351         /* Outer loop uses 9 flops */
352     }
353
354     /* Increment number of outer iterations */
355     outeriter        += nri;
356
357     /* Update outer/inner flops */
358
359     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
360 }
361 /*
362  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse4_1_double
363  * Electrostatics interaction: CubicSplineTable
364  * VdW interaction:            LennardJones
365  * Geometry:                   Particle-Particle
366  * Calculate force/pot:        Force
367  */
368 void
369 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse4_1_double
370                     (t_nblist                    * gmx_restrict       nlist,
371                      rvec                        * gmx_restrict          xx,
372                      rvec                        * gmx_restrict          ff,
373                      t_forcerec                  * gmx_restrict          fr,
374                      t_mdatoms                   * gmx_restrict     mdatoms,
375                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
376                      t_nrnb                      * gmx_restrict        nrnb)
377 {
378     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
379      * just 0 for non-waters.
380      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
381      * jnr indices corresponding to data put in the four positions in the SIMD register.
382      */
383     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
384     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
385     int              jnrA,jnrB;
386     int              j_coord_offsetA,j_coord_offsetB;
387     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
388     real             rcutoff_scalar;
389     real             *shiftvec,*fshift,*x,*f;
390     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
391     int              vdwioffset0;
392     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
393     int              vdwjidx0A,vdwjidx0B;
394     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
395     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
396     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
397     real             *charge;
398     int              nvdwtype;
399     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
400     int              *vdwtype;
401     real             *vdwparam;
402     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
403     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
404     __m128i          vfitab;
405     __m128i          ifour       = _mm_set1_epi32(4);
406     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
407     real             *vftab;
408     __m128d          dummy_mask,cutoff_mask;
409     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
410     __m128d          one     = _mm_set1_pd(1.0);
411     __m128d          two     = _mm_set1_pd(2.0);
412     x                = xx[0];
413     f                = ff[0];
414
415     nri              = nlist->nri;
416     iinr             = nlist->iinr;
417     jindex           = nlist->jindex;
418     jjnr             = nlist->jjnr;
419     shiftidx         = nlist->shift;
420     gid              = nlist->gid;
421     shiftvec         = fr->shift_vec[0];
422     fshift           = fr->fshift[0];
423     facel            = _mm_set1_pd(fr->epsfac);
424     charge           = mdatoms->chargeA;
425     nvdwtype         = fr->ntype;
426     vdwparam         = fr->nbfp;
427     vdwtype          = mdatoms->typeA;
428
429     vftab            = kernel_data->table_elec->data;
430     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
431
432     /* Avoid stupid compiler warnings */
433     jnrA = jnrB = 0;
434     j_coord_offsetA = 0;
435     j_coord_offsetB = 0;
436
437     outeriter        = 0;
438     inneriter        = 0;
439
440     /* Start outer loop over neighborlists */
441     for(iidx=0; iidx<nri; iidx++)
442     {
443         /* Load shift vector for this list */
444         i_shift_offset   = DIM*shiftidx[iidx];
445
446         /* Load limits for loop over neighbors */
447         j_index_start    = jindex[iidx];
448         j_index_end      = jindex[iidx+1];
449
450         /* Get outer coordinate index */
451         inr              = iinr[iidx];
452         i_coord_offset   = DIM*inr;
453
454         /* Load i particle coords and add shift vector */
455         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
456
457         fix0             = _mm_setzero_pd();
458         fiy0             = _mm_setzero_pd();
459         fiz0             = _mm_setzero_pd();
460
461         /* Load parameters for i particles */
462         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
463         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
464
465         /* Start inner kernel loop */
466         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
467         {
468
469             /* Get j neighbor index, and coordinate index */
470             jnrA             = jjnr[jidx];
471             jnrB             = jjnr[jidx+1];
472             j_coord_offsetA  = DIM*jnrA;
473             j_coord_offsetB  = DIM*jnrB;
474
475             /* load j atom coordinates */
476             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
477                                               &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx00             = _mm_sub_pd(ix0,jx0);
481             dy00             = _mm_sub_pd(iy0,jy0);
482             dz00             = _mm_sub_pd(iz0,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
486
487             rinv00           = gmx_mm_invsqrt_pd(rsq00);
488
489             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
490
491             /* Load parameters for j particles */
492             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
493             vdwjidx0A        = 2*vdwtype[jnrA+0];
494             vdwjidx0B        = 2*vdwtype[jnrB+0];
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r00              = _mm_mul_pd(rsq00,rinv00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _mm_mul_pd(iq0,jq0);
504             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
505                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
506
507             /* Calculate table index by multiplying r with table scale and truncate to integer */
508             rt               = _mm_mul_pd(r00,vftabscale);
509             vfitab           = _mm_cvttpd_epi32(rt);
510             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
511             vfitab           = _mm_slli_epi32(vfitab,2);
512
513             /* CUBIC SPLINE TABLE ELECTROSTATICS */
514             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
515             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
516             GMX_MM_TRANSPOSE2_PD(Y,F);
517             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
518             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
519             GMX_MM_TRANSPOSE2_PD(G,H);
520             Heps             = _mm_mul_pd(vfeps,H);
521             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
522             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
523             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
524
525             /* LENNARD-JONES DISPERSION/REPULSION */
526
527             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
528             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
529
530             fscal            = _mm_add_pd(felec,fvdw);
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_pd(fscal,dx00);
534             ty               = _mm_mul_pd(fscal,dy00);
535             tz               = _mm_mul_pd(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm_add_pd(fix0,tx);
539             fiy0             = _mm_add_pd(fiy0,ty);
540             fiz0             = _mm_add_pd(fiz0,tz);
541
542             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
543
544             /* Inner loop uses 47 flops */
545         }
546
547         if(jidx<j_index_end)
548         {
549
550             jnrA             = jjnr[jidx];
551             j_coord_offsetA  = DIM*jnrA;
552
553             /* load j atom coordinates */
554             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm_sub_pd(ix0,jx0);
559             dy00             = _mm_sub_pd(iy0,jy0);
560             dz00             = _mm_sub_pd(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
564
565             rinv00           = gmx_mm_invsqrt_pd(rsq00);
566
567             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = _mm_load_sd(charge+jnrA+0);
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r00              = _mm_mul_pd(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq00             = _mm_mul_pd(iq0,jq0);
581             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
582
583             /* Calculate table index by multiplying r with table scale and truncate to integer */
584             rt               = _mm_mul_pd(r00,vftabscale);
585             vfitab           = _mm_cvttpd_epi32(rt);
586             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
587             vfitab           = _mm_slli_epi32(vfitab,2);
588
589             /* CUBIC SPLINE TABLE ELECTROSTATICS */
590             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
591             F                = _mm_setzero_pd();
592             GMX_MM_TRANSPOSE2_PD(Y,F);
593             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
594             H                = _mm_setzero_pd();
595             GMX_MM_TRANSPOSE2_PD(G,H);
596             Heps             = _mm_mul_pd(vfeps,H);
597             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
598             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
599             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
600
601             /* LENNARD-JONES DISPERSION/REPULSION */
602
603             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
604             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
605
606             fscal            = _mm_add_pd(felec,fvdw);
607
608             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm_mul_pd(fscal,dx00);
612             ty               = _mm_mul_pd(fscal,dy00);
613             tz               = _mm_mul_pd(fscal,dz00);
614
615             /* Update vectorial force */
616             fix0             = _mm_add_pd(fix0,tx);
617             fiy0             = _mm_add_pd(fiy0,ty);
618             fiz0             = _mm_add_pd(fiz0,tz);
619
620             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
621
622             /* Inner loop uses 47 flops */
623         }
624
625         /* End of innermost loop */
626
627         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
628                                               f+i_coord_offset,fshift+i_shift_offset);
629
630         /* Increment number of inner iterations */
631         inneriter                  += j_index_end - j_index_start;
632
633         /* Outer loop uses 7 flops */
634     }
635
636     /* Increment number of outer iterations */
637     outeriter        += nri;
638
639     /* Update outer/inner flops */
640
641     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
642 }