Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse4_1_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172         fix3             = _mm_setzero_pd();
173         fiy3             = _mm_setzero_pd();
174         fiz3             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204             dx30             = _mm_sub_pd(ix3,jx0);
205             dy30             = _mm_sub_pd(iy3,jy0);
206             dz30             = _mm_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217             rinv30           = gmx_mm_invsqrt_pd(rsq30);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm_mul_pd(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _mm_mul_pd(r00,vftabscale);
240             vfitab           = _mm_cvttpd_epi32(rt);
241             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
242             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
243
244             /* CUBIC SPLINE TABLE DISPERSION */
245             vfitab           = _mm_add_epi32(vfitab,ifour);
246             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
247             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
248             GMX_MM_TRANSPOSE2_PD(Y,F);
249             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
250             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
251             GMX_MM_TRANSPOSE2_PD(G,H);
252             Heps             = _mm_mul_pd(vfeps,H);
253             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
254             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
255             vvdw6            = _mm_mul_pd(c6_00,VV);
256             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
257             fvdw6            = _mm_mul_pd(c6_00,FF);
258
259             /* CUBIC SPLINE TABLE REPULSION */
260             vfitab           = _mm_add_epi32(vfitab,ifour);
261             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
263             GMX_MM_TRANSPOSE2_PD(Y,F);
264             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
265             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
266             GMX_MM_TRANSPOSE2_PD(G,H);
267             Heps             = _mm_mul_pd(vfeps,H);
268             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
269             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
270             vvdw12           = _mm_mul_pd(c12_00,VV);
271             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
272             fvdw12           = _mm_mul_pd(c12_00,FF);
273             vvdw             = _mm_add_pd(vvdw12,vvdw6);
274             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
278
279             fscal            = fvdw;
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm_mul_pd(fscal,dx00);
283             ty               = _mm_mul_pd(fscal,dy00);
284             tz               = _mm_mul_pd(fscal,dz00);
285
286             /* Update vectorial force */
287             fix0             = _mm_add_pd(fix0,tx);
288             fiy0             = _mm_add_pd(fiy0,ty);
289             fiz0             = _mm_add_pd(fiz0,tz);
290
291             fjx0             = _mm_add_pd(fjx0,tx);
292             fjy0             = _mm_add_pd(fjy0,ty);
293             fjz0             = _mm_add_pd(fjz0,tz);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r10              = _mm_mul_pd(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_pd(iq1,jq0);
303
304             /* Calculate table index by multiplying r with table scale and truncate to integer */
305             rt               = _mm_mul_pd(r10,vftabscale);
306             vfitab           = _mm_cvttpd_epi32(rt);
307             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
308             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
309
310             /* CUBIC SPLINE TABLE ELECTROSTATICS */
311             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
312             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
313             GMX_MM_TRANSPOSE2_PD(Y,F);
314             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
315             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
316             GMX_MM_TRANSPOSE2_PD(G,H);
317             Heps             = _mm_mul_pd(vfeps,H);
318             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
319             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
320             velec            = _mm_mul_pd(qq10,VV);
321             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
322             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_pd(fscal,dx10);
331             ty               = _mm_mul_pd(fscal,dy10);
332             tz               = _mm_mul_pd(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm_add_pd(fix1,tx);
336             fiy1             = _mm_add_pd(fiy1,ty);
337             fiz1             = _mm_add_pd(fiz1,tz);
338
339             fjx0             = _mm_add_pd(fjx0,tx);
340             fjy0             = _mm_add_pd(fjy0,ty);
341             fjz0             = _mm_add_pd(fjz0,tz);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r20              = _mm_mul_pd(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_pd(iq2,jq0);
351
352             /* Calculate table index by multiplying r with table scale and truncate to integer */
353             rt               = _mm_mul_pd(r20,vftabscale);
354             vfitab           = _mm_cvttpd_epi32(rt);
355             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
356             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
357
358             /* CUBIC SPLINE TABLE ELECTROSTATICS */
359             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
360             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
361             GMX_MM_TRANSPOSE2_PD(Y,F);
362             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
363             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
364             GMX_MM_TRANSPOSE2_PD(G,H);
365             Heps             = _mm_mul_pd(vfeps,H);
366             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
367             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
368             velec            = _mm_mul_pd(qq20,VV);
369             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
370             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_pd(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_pd(fscal,dx20);
379             ty               = _mm_mul_pd(fscal,dy20);
380             tz               = _mm_mul_pd(fscal,dz20);
381
382             /* Update vectorial force */
383             fix2             = _mm_add_pd(fix2,tx);
384             fiy2             = _mm_add_pd(fiy2,ty);
385             fiz2             = _mm_add_pd(fiz2,tz);
386
387             fjx0             = _mm_add_pd(fjx0,tx);
388             fjy0             = _mm_add_pd(fjy0,ty);
389             fjz0             = _mm_add_pd(fjz0,tz);
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             r30              = _mm_mul_pd(rsq30,rinv30);
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq30             = _mm_mul_pd(iq3,jq0);
399
400             /* Calculate table index by multiplying r with table scale and truncate to integer */
401             rt               = _mm_mul_pd(r30,vftabscale);
402             vfitab           = _mm_cvttpd_epi32(rt);
403             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
404             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
405
406             /* CUBIC SPLINE TABLE ELECTROSTATICS */
407             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
408             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
409             GMX_MM_TRANSPOSE2_PD(Y,F);
410             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
411             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
412             GMX_MM_TRANSPOSE2_PD(G,H);
413             Heps             = _mm_mul_pd(vfeps,H);
414             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
415             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
416             velec            = _mm_mul_pd(qq30,VV);
417             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
418             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velecsum         = _mm_add_pd(velecsum,velec);
422
423             fscal            = felec;
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm_mul_pd(fscal,dx30);
427             ty               = _mm_mul_pd(fscal,dy30);
428             tz               = _mm_mul_pd(fscal,dz30);
429
430             /* Update vectorial force */
431             fix3             = _mm_add_pd(fix3,tx);
432             fiy3             = _mm_add_pd(fiy3,ty);
433             fiz3             = _mm_add_pd(fiz3,tz);
434
435             fjx0             = _mm_add_pd(fjx0,tx);
436             fjy0             = _mm_add_pd(fjy0,ty);
437             fjz0             = _mm_add_pd(fjz0,tz);
438
439             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
440
441             /* Inner loop uses 188 flops */
442         }
443
444         if(jidx<j_index_end)
445         {
446
447             jnrA             = jjnr[jidx];
448             j_coord_offsetA  = DIM*jnrA;
449
450             /* load j atom coordinates */
451             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
452                                               &jx0,&jy0,&jz0);
453
454             /* Calculate displacement vector */
455             dx00             = _mm_sub_pd(ix0,jx0);
456             dy00             = _mm_sub_pd(iy0,jy0);
457             dz00             = _mm_sub_pd(iz0,jz0);
458             dx10             = _mm_sub_pd(ix1,jx0);
459             dy10             = _mm_sub_pd(iy1,jy0);
460             dz10             = _mm_sub_pd(iz1,jz0);
461             dx20             = _mm_sub_pd(ix2,jx0);
462             dy20             = _mm_sub_pd(iy2,jy0);
463             dz20             = _mm_sub_pd(iz2,jz0);
464             dx30             = _mm_sub_pd(ix3,jx0);
465             dy30             = _mm_sub_pd(iy3,jy0);
466             dz30             = _mm_sub_pd(iz3,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
470             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
471             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
472             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
473
474             rinv00           = gmx_mm_invsqrt_pd(rsq00);
475             rinv10           = gmx_mm_invsqrt_pd(rsq10);
476             rinv20           = gmx_mm_invsqrt_pd(rsq20);
477             rinv30           = gmx_mm_invsqrt_pd(rsq30);
478
479             /* Load parameters for j particles */
480             jq0              = _mm_load_sd(charge+jnrA+0);
481             vdwjidx0A        = 2*vdwtype[jnrA+0];
482
483             fjx0             = _mm_setzero_pd();
484             fjy0             = _mm_setzero_pd();
485             fjz0             = _mm_setzero_pd();
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r00              = _mm_mul_pd(rsq00,rinv00);
492
493             /* Compute parameters for interactions between i and j atoms */
494             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
495
496             /* Calculate table index by multiplying r with table scale and truncate to integer */
497             rt               = _mm_mul_pd(r00,vftabscale);
498             vfitab           = _mm_cvttpd_epi32(rt);
499             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
500             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
501
502             /* CUBIC SPLINE TABLE DISPERSION */
503             vfitab           = _mm_add_epi32(vfitab,ifour);
504             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
505             F                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Heps             = _mm_mul_pd(vfeps,H);
511             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
512             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
513             vvdw6            = _mm_mul_pd(c6_00,VV);
514             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
515             fvdw6            = _mm_mul_pd(c6_00,FF);
516
517             /* CUBIC SPLINE TABLE REPULSION */
518             vfitab           = _mm_add_epi32(vfitab,ifour);
519             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
520             F                = _mm_setzero_pd();
521             GMX_MM_TRANSPOSE2_PD(Y,F);
522             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
523             H                = _mm_setzero_pd();
524             GMX_MM_TRANSPOSE2_PD(G,H);
525             Heps             = _mm_mul_pd(vfeps,H);
526             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
527             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
528             vvdw12           = _mm_mul_pd(c12_00,VV);
529             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
530             fvdw12           = _mm_mul_pd(c12_00,FF);
531             vvdw             = _mm_add_pd(vvdw12,vvdw6);
532             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
536             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
537
538             fscal            = fvdw;
539
540             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_pd(fscal,dx00);
544             ty               = _mm_mul_pd(fscal,dy00);
545             tz               = _mm_mul_pd(fscal,dz00);
546
547             /* Update vectorial force */
548             fix0             = _mm_add_pd(fix0,tx);
549             fiy0             = _mm_add_pd(fiy0,ty);
550             fiz0             = _mm_add_pd(fiz0,tz);
551
552             fjx0             = _mm_add_pd(fjx0,tx);
553             fjy0             = _mm_add_pd(fjy0,ty);
554             fjz0             = _mm_add_pd(fjz0,tz);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r10              = _mm_mul_pd(rsq10,rinv10);
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq10             = _mm_mul_pd(iq1,jq0);
564
565             /* Calculate table index by multiplying r with table scale and truncate to integer */
566             rt               = _mm_mul_pd(r10,vftabscale);
567             vfitab           = _mm_cvttpd_epi32(rt);
568             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
569             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
570
571             /* CUBIC SPLINE TABLE ELECTROSTATICS */
572             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
573             F                = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(Y,F);
575             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
576             H                = _mm_setzero_pd();
577             GMX_MM_TRANSPOSE2_PD(G,H);
578             Heps             = _mm_mul_pd(vfeps,H);
579             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
580             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
581             velec            = _mm_mul_pd(qq10,VV);
582             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
583             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
587             velecsum         = _mm_add_pd(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm_mul_pd(fscal,dx10);
595             ty               = _mm_mul_pd(fscal,dy10);
596             tz               = _mm_mul_pd(fscal,dz10);
597
598             /* Update vectorial force */
599             fix1             = _mm_add_pd(fix1,tx);
600             fiy1             = _mm_add_pd(fiy1,ty);
601             fiz1             = _mm_add_pd(fiz1,tz);
602
603             fjx0             = _mm_add_pd(fjx0,tx);
604             fjy0             = _mm_add_pd(fjy0,ty);
605             fjz0             = _mm_add_pd(fjz0,tz);
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r20              = _mm_mul_pd(rsq20,rinv20);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq20             = _mm_mul_pd(iq2,jq0);
615
616             /* Calculate table index by multiplying r with table scale and truncate to integer */
617             rt               = _mm_mul_pd(r20,vftabscale);
618             vfitab           = _mm_cvttpd_epi32(rt);
619             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
620             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
621
622             /* CUBIC SPLINE TABLE ELECTROSTATICS */
623             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
624             F                = _mm_setzero_pd();
625             GMX_MM_TRANSPOSE2_PD(Y,F);
626             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
627             H                = _mm_setzero_pd();
628             GMX_MM_TRANSPOSE2_PD(G,H);
629             Heps             = _mm_mul_pd(vfeps,H);
630             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
631             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
632             velec            = _mm_mul_pd(qq20,VV);
633             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
634             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
635
636             /* Update potential sum for this i atom from the interaction with this j atom. */
637             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
638             velecsum         = _mm_add_pd(velecsum,velec);
639
640             fscal            = felec;
641
642             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
643
644             /* Calculate temporary vectorial force */
645             tx               = _mm_mul_pd(fscal,dx20);
646             ty               = _mm_mul_pd(fscal,dy20);
647             tz               = _mm_mul_pd(fscal,dz20);
648
649             /* Update vectorial force */
650             fix2             = _mm_add_pd(fix2,tx);
651             fiy2             = _mm_add_pd(fiy2,ty);
652             fiz2             = _mm_add_pd(fiz2,tz);
653
654             fjx0             = _mm_add_pd(fjx0,tx);
655             fjy0             = _mm_add_pd(fjy0,ty);
656             fjz0             = _mm_add_pd(fjz0,tz);
657
658             /**************************
659              * CALCULATE INTERACTIONS *
660              **************************/
661
662             r30              = _mm_mul_pd(rsq30,rinv30);
663
664             /* Compute parameters for interactions between i and j atoms */
665             qq30             = _mm_mul_pd(iq3,jq0);
666
667             /* Calculate table index by multiplying r with table scale and truncate to integer */
668             rt               = _mm_mul_pd(r30,vftabscale);
669             vfitab           = _mm_cvttpd_epi32(rt);
670             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
671             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
672
673             /* CUBIC SPLINE TABLE ELECTROSTATICS */
674             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
675             F                = _mm_setzero_pd();
676             GMX_MM_TRANSPOSE2_PD(Y,F);
677             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
678             H                = _mm_setzero_pd();
679             GMX_MM_TRANSPOSE2_PD(G,H);
680             Heps             = _mm_mul_pd(vfeps,H);
681             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
682             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
683             velec            = _mm_mul_pd(qq30,VV);
684             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
685             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
686
687             /* Update potential sum for this i atom from the interaction with this j atom. */
688             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
689             velecsum         = _mm_add_pd(velecsum,velec);
690
691             fscal            = felec;
692
693             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
694
695             /* Calculate temporary vectorial force */
696             tx               = _mm_mul_pd(fscal,dx30);
697             ty               = _mm_mul_pd(fscal,dy30);
698             tz               = _mm_mul_pd(fscal,dz30);
699
700             /* Update vectorial force */
701             fix3             = _mm_add_pd(fix3,tx);
702             fiy3             = _mm_add_pd(fiy3,ty);
703             fiz3             = _mm_add_pd(fiz3,tz);
704
705             fjx0             = _mm_add_pd(fjx0,tx);
706             fjy0             = _mm_add_pd(fjy0,ty);
707             fjz0             = _mm_add_pd(fjz0,tz);
708
709             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
710
711             /* Inner loop uses 188 flops */
712         }
713
714         /* End of innermost loop */
715
716         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
717                                               f+i_coord_offset,fshift+i_shift_offset);
718
719         ggid                        = gid[iidx];
720         /* Update potential energies */
721         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
722         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
723
724         /* Increment number of inner iterations */
725         inneriter                  += j_index_end - j_index_start;
726
727         /* Outer loop uses 26 flops */
728     }
729
730     /* Increment number of outer iterations */
731     outeriter        += nri;
732
733     /* Update outer/inner flops */
734
735     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*188);
736 }
737 /*
738  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse4_1_double
739  * Electrostatics interaction: CubicSplineTable
740  * VdW interaction:            CubicSplineTable
741  * Geometry:                   Water4-Particle
742  * Calculate force/pot:        Force
743  */
744 void
745 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse4_1_double
746                     (t_nblist                    * gmx_restrict       nlist,
747                      rvec                        * gmx_restrict          xx,
748                      rvec                        * gmx_restrict          ff,
749                      t_forcerec                  * gmx_restrict          fr,
750                      t_mdatoms                   * gmx_restrict     mdatoms,
751                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
752                      t_nrnb                      * gmx_restrict        nrnb)
753 {
754     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
755      * just 0 for non-waters.
756      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
757      * jnr indices corresponding to data put in the four positions in the SIMD register.
758      */
759     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
760     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
761     int              jnrA,jnrB;
762     int              j_coord_offsetA,j_coord_offsetB;
763     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
764     real             rcutoff_scalar;
765     real             *shiftvec,*fshift,*x,*f;
766     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
767     int              vdwioffset0;
768     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
769     int              vdwioffset1;
770     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
771     int              vdwioffset2;
772     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
773     int              vdwioffset3;
774     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
775     int              vdwjidx0A,vdwjidx0B;
776     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
777     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
778     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
779     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
780     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
781     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
782     real             *charge;
783     int              nvdwtype;
784     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
785     int              *vdwtype;
786     real             *vdwparam;
787     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
788     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
789     __m128i          vfitab;
790     __m128i          ifour       = _mm_set1_epi32(4);
791     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
792     real             *vftab;
793     __m128d          dummy_mask,cutoff_mask;
794     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
795     __m128d          one     = _mm_set1_pd(1.0);
796     __m128d          two     = _mm_set1_pd(2.0);
797     x                = xx[0];
798     f                = ff[0];
799
800     nri              = nlist->nri;
801     iinr             = nlist->iinr;
802     jindex           = nlist->jindex;
803     jjnr             = nlist->jjnr;
804     shiftidx         = nlist->shift;
805     gid              = nlist->gid;
806     shiftvec         = fr->shift_vec[0];
807     fshift           = fr->fshift[0];
808     facel            = _mm_set1_pd(fr->epsfac);
809     charge           = mdatoms->chargeA;
810     nvdwtype         = fr->ntype;
811     vdwparam         = fr->nbfp;
812     vdwtype          = mdatoms->typeA;
813
814     vftab            = kernel_data->table_elec_vdw->data;
815     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
816
817     /* Setup water-specific parameters */
818     inr              = nlist->iinr[0];
819     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
820     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
821     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
822     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
823
824     /* Avoid stupid compiler warnings */
825     jnrA = jnrB = 0;
826     j_coord_offsetA = 0;
827     j_coord_offsetB = 0;
828
829     outeriter        = 0;
830     inneriter        = 0;
831
832     /* Start outer loop over neighborlists */
833     for(iidx=0; iidx<nri; iidx++)
834     {
835         /* Load shift vector for this list */
836         i_shift_offset   = DIM*shiftidx[iidx];
837
838         /* Load limits for loop over neighbors */
839         j_index_start    = jindex[iidx];
840         j_index_end      = jindex[iidx+1];
841
842         /* Get outer coordinate index */
843         inr              = iinr[iidx];
844         i_coord_offset   = DIM*inr;
845
846         /* Load i particle coords and add shift vector */
847         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
848                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
849
850         fix0             = _mm_setzero_pd();
851         fiy0             = _mm_setzero_pd();
852         fiz0             = _mm_setzero_pd();
853         fix1             = _mm_setzero_pd();
854         fiy1             = _mm_setzero_pd();
855         fiz1             = _mm_setzero_pd();
856         fix2             = _mm_setzero_pd();
857         fiy2             = _mm_setzero_pd();
858         fiz2             = _mm_setzero_pd();
859         fix3             = _mm_setzero_pd();
860         fiy3             = _mm_setzero_pd();
861         fiz3             = _mm_setzero_pd();
862
863         /* Start inner kernel loop */
864         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
865         {
866
867             /* Get j neighbor index, and coordinate index */
868             jnrA             = jjnr[jidx];
869             jnrB             = jjnr[jidx+1];
870             j_coord_offsetA  = DIM*jnrA;
871             j_coord_offsetB  = DIM*jnrB;
872
873             /* load j atom coordinates */
874             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
875                                               &jx0,&jy0,&jz0);
876
877             /* Calculate displacement vector */
878             dx00             = _mm_sub_pd(ix0,jx0);
879             dy00             = _mm_sub_pd(iy0,jy0);
880             dz00             = _mm_sub_pd(iz0,jz0);
881             dx10             = _mm_sub_pd(ix1,jx0);
882             dy10             = _mm_sub_pd(iy1,jy0);
883             dz10             = _mm_sub_pd(iz1,jz0);
884             dx20             = _mm_sub_pd(ix2,jx0);
885             dy20             = _mm_sub_pd(iy2,jy0);
886             dz20             = _mm_sub_pd(iz2,jz0);
887             dx30             = _mm_sub_pd(ix3,jx0);
888             dy30             = _mm_sub_pd(iy3,jy0);
889             dz30             = _mm_sub_pd(iz3,jz0);
890
891             /* Calculate squared distance and things based on it */
892             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
893             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
894             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
895             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
896
897             rinv00           = gmx_mm_invsqrt_pd(rsq00);
898             rinv10           = gmx_mm_invsqrt_pd(rsq10);
899             rinv20           = gmx_mm_invsqrt_pd(rsq20);
900             rinv30           = gmx_mm_invsqrt_pd(rsq30);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
904             vdwjidx0A        = 2*vdwtype[jnrA+0];
905             vdwjidx0B        = 2*vdwtype[jnrB+0];
906
907             fjx0             = _mm_setzero_pd();
908             fjy0             = _mm_setzero_pd();
909             fjz0             = _mm_setzero_pd();
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             r00              = _mm_mul_pd(rsq00,rinv00);
916
917             /* Compute parameters for interactions between i and j atoms */
918             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
919                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
920
921             /* Calculate table index by multiplying r with table scale and truncate to integer */
922             rt               = _mm_mul_pd(r00,vftabscale);
923             vfitab           = _mm_cvttpd_epi32(rt);
924             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
925             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
926
927             /* CUBIC SPLINE TABLE DISPERSION */
928             vfitab           = _mm_add_epi32(vfitab,ifour);
929             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
930             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
931             GMX_MM_TRANSPOSE2_PD(Y,F);
932             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
933             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
934             GMX_MM_TRANSPOSE2_PD(G,H);
935             Heps             = _mm_mul_pd(vfeps,H);
936             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
937             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
938             fvdw6            = _mm_mul_pd(c6_00,FF);
939
940             /* CUBIC SPLINE TABLE REPULSION */
941             vfitab           = _mm_add_epi32(vfitab,ifour);
942             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
943             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
944             GMX_MM_TRANSPOSE2_PD(Y,F);
945             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
946             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
947             GMX_MM_TRANSPOSE2_PD(G,H);
948             Heps             = _mm_mul_pd(vfeps,H);
949             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
950             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
951             fvdw12           = _mm_mul_pd(c12_00,FF);
952             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
953
954             fscal            = fvdw;
955
956             /* Calculate temporary vectorial force */
957             tx               = _mm_mul_pd(fscal,dx00);
958             ty               = _mm_mul_pd(fscal,dy00);
959             tz               = _mm_mul_pd(fscal,dz00);
960
961             /* Update vectorial force */
962             fix0             = _mm_add_pd(fix0,tx);
963             fiy0             = _mm_add_pd(fiy0,ty);
964             fiz0             = _mm_add_pd(fiz0,tz);
965
966             fjx0             = _mm_add_pd(fjx0,tx);
967             fjy0             = _mm_add_pd(fjy0,ty);
968             fjz0             = _mm_add_pd(fjz0,tz);
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             r10              = _mm_mul_pd(rsq10,rinv10);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq10             = _mm_mul_pd(iq1,jq0);
978
979             /* Calculate table index by multiplying r with table scale and truncate to integer */
980             rt               = _mm_mul_pd(r10,vftabscale);
981             vfitab           = _mm_cvttpd_epi32(rt);
982             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
983             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
984
985             /* CUBIC SPLINE TABLE ELECTROSTATICS */
986             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
987             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
988             GMX_MM_TRANSPOSE2_PD(Y,F);
989             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
990             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
991             GMX_MM_TRANSPOSE2_PD(G,H);
992             Heps             = _mm_mul_pd(vfeps,H);
993             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
994             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
995             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
996
997             fscal            = felec;
998
999             /* Calculate temporary vectorial force */
1000             tx               = _mm_mul_pd(fscal,dx10);
1001             ty               = _mm_mul_pd(fscal,dy10);
1002             tz               = _mm_mul_pd(fscal,dz10);
1003
1004             /* Update vectorial force */
1005             fix1             = _mm_add_pd(fix1,tx);
1006             fiy1             = _mm_add_pd(fiy1,ty);
1007             fiz1             = _mm_add_pd(fiz1,tz);
1008
1009             fjx0             = _mm_add_pd(fjx0,tx);
1010             fjy0             = _mm_add_pd(fjy0,ty);
1011             fjz0             = _mm_add_pd(fjz0,tz);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r20              = _mm_mul_pd(rsq20,rinv20);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq20             = _mm_mul_pd(iq2,jq0);
1021
1022             /* Calculate table index by multiplying r with table scale and truncate to integer */
1023             rt               = _mm_mul_pd(r20,vftabscale);
1024             vfitab           = _mm_cvttpd_epi32(rt);
1025             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1026             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1027
1028             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1029             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1030             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1031             GMX_MM_TRANSPOSE2_PD(Y,F);
1032             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1033             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1034             GMX_MM_TRANSPOSE2_PD(G,H);
1035             Heps             = _mm_mul_pd(vfeps,H);
1036             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1037             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1038             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1039
1040             fscal            = felec;
1041
1042             /* Calculate temporary vectorial force */
1043             tx               = _mm_mul_pd(fscal,dx20);
1044             ty               = _mm_mul_pd(fscal,dy20);
1045             tz               = _mm_mul_pd(fscal,dz20);
1046
1047             /* Update vectorial force */
1048             fix2             = _mm_add_pd(fix2,tx);
1049             fiy2             = _mm_add_pd(fiy2,ty);
1050             fiz2             = _mm_add_pd(fiz2,tz);
1051
1052             fjx0             = _mm_add_pd(fjx0,tx);
1053             fjy0             = _mm_add_pd(fjy0,ty);
1054             fjz0             = _mm_add_pd(fjz0,tz);
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r30              = _mm_mul_pd(rsq30,rinv30);
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq30             = _mm_mul_pd(iq3,jq0);
1064
1065             /* Calculate table index by multiplying r with table scale and truncate to integer */
1066             rt               = _mm_mul_pd(r30,vftabscale);
1067             vfitab           = _mm_cvttpd_epi32(rt);
1068             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1069             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1070
1071             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1072             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1073             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1074             GMX_MM_TRANSPOSE2_PD(Y,F);
1075             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1076             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1077             GMX_MM_TRANSPOSE2_PD(G,H);
1078             Heps             = _mm_mul_pd(vfeps,H);
1079             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1080             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1081             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1082
1083             fscal            = felec;
1084
1085             /* Calculate temporary vectorial force */
1086             tx               = _mm_mul_pd(fscal,dx30);
1087             ty               = _mm_mul_pd(fscal,dy30);
1088             tz               = _mm_mul_pd(fscal,dz30);
1089
1090             /* Update vectorial force */
1091             fix3             = _mm_add_pd(fix3,tx);
1092             fiy3             = _mm_add_pd(fiy3,ty);
1093             fiz3             = _mm_add_pd(fiz3,tz);
1094
1095             fjx0             = _mm_add_pd(fjx0,tx);
1096             fjy0             = _mm_add_pd(fjy0,ty);
1097             fjz0             = _mm_add_pd(fjz0,tz);
1098
1099             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1100
1101             /* Inner loop uses 168 flops */
1102         }
1103
1104         if(jidx<j_index_end)
1105         {
1106
1107             jnrA             = jjnr[jidx];
1108             j_coord_offsetA  = DIM*jnrA;
1109
1110             /* load j atom coordinates */
1111             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1112                                               &jx0,&jy0,&jz0);
1113
1114             /* Calculate displacement vector */
1115             dx00             = _mm_sub_pd(ix0,jx0);
1116             dy00             = _mm_sub_pd(iy0,jy0);
1117             dz00             = _mm_sub_pd(iz0,jz0);
1118             dx10             = _mm_sub_pd(ix1,jx0);
1119             dy10             = _mm_sub_pd(iy1,jy0);
1120             dz10             = _mm_sub_pd(iz1,jz0);
1121             dx20             = _mm_sub_pd(ix2,jx0);
1122             dy20             = _mm_sub_pd(iy2,jy0);
1123             dz20             = _mm_sub_pd(iz2,jz0);
1124             dx30             = _mm_sub_pd(ix3,jx0);
1125             dy30             = _mm_sub_pd(iy3,jy0);
1126             dz30             = _mm_sub_pd(iz3,jz0);
1127
1128             /* Calculate squared distance and things based on it */
1129             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1130             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1131             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1132             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1133
1134             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1135             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1136             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1137             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1138
1139             /* Load parameters for j particles */
1140             jq0              = _mm_load_sd(charge+jnrA+0);
1141             vdwjidx0A        = 2*vdwtype[jnrA+0];
1142
1143             fjx0             = _mm_setzero_pd();
1144             fjy0             = _mm_setzero_pd();
1145             fjz0             = _mm_setzero_pd();
1146
1147             /**************************
1148              * CALCULATE INTERACTIONS *
1149              **************************/
1150
1151             r00              = _mm_mul_pd(rsq00,rinv00);
1152
1153             /* Compute parameters for interactions between i and j atoms */
1154             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1155
1156             /* Calculate table index by multiplying r with table scale and truncate to integer */
1157             rt               = _mm_mul_pd(r00,vftabscale);
1158             vfitab           = _mm_cvttpd_epi32(rt);
1159             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1160             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1161
1162             /* CUBIC SPLINE TABLE DISPERSION */
1163             vfitab           = _mm_add_epi32(vfitab,ifour);
1164             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1165             F                = _mm_setzero_pd();
1166             GMX_MM_TRANSPOSE2_PD(Y,F);
1167             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1168             H                = _mm_setzero_pd();
1169             GMX_MM_TRANSPOSE2_PD(G,H);
1170             Heps             = _mm_mul_pd(vfeps,H);
1171             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1172             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1173             fvdw6            = _mm_mul_pd(c6_00,FF);
1174
1175             /* CUBIC SPLINE TABLE REPULSION */
1176             vfitab           = _mm_add_epi32(vfitab,ifour);
1177             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1178             F                = _mm_setzero_pd();
1179             GMX_MM_TRANSPOSE2_PD(Y,F);
1180             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1181             H                = _mm_setzero_pd();
1182             GMX_MM_TRANSPOSE2_PD(G,H);
1183             Heps             = _mm_mul_pd(vfeps,H);
1184             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1185             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1186             fvdw12           = _mm_mul_pd(c12_00,FF);
1187             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1188
1189             fscal            = fvdw;
1190
1191             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1192
1193             /* Calculate temporary vectorial force */
1194             tx               = _mm_mul_pd(fscal,dx00);
1195             ty               = _mm_mul_pd(fscal,dy00);
1196             tz               = _mm_mul_pd(fscal,dz00);
1197
1198             /* Update vectorial force */
1199             fix0             = _mm_add_pd(fix0,tx);
1200             fiy0             = _mm_add_pd(fiy0,ty);
1201             fiz0             = _mm_add_pd(fiz0,tz);
1202
1203             fjx0             = _mm_add_pd(fjx0,tx);
1204             fjy0             = _mm_add_pd(fjy0,ty);
1205             fjz0             = _mm_add_pd(fjz0,tz);
1206
1207             /**************************
1208              * CALCULATE INTERACTIONS *
1209              **************************/
1210
1211             r10              = _mm_mul_pd(rsq10,rinv10);
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             qq10             = _mm_mul_pd(iq1,jq0);
1215
1216             /* Calculate table index by multiplying r with table scale and truncate to integer */
1217             rt               = _mm_mul_pd(r10,vftabscale);
1218             vfitab           = _mm_cvttpd_epi32(rt);
1219             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1220             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1221
1222             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1223             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1224             F                = _mm_setzero_pd();
1225             GMX_MM_TRANSPOSE2_PD(Y,F);
1226             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1227             H                = _mm_setzero_pd();
1228             GMX_MM_TRANSPOSE2_PD(G,H);
1229             Heps             = _mm_mul_pd(vfeps,H);
1230             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1231             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1232             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1233
1234             fscal            = felec;
1235
1236             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1237
1238             /* Calculate temporary vectorial force */
1239             tx               = _mm_mul_pd(fscal,dx10);
1240             ty               = _mm_mul_pd(fscal,dy10);
1241             tz               = _mm_mul_pd(fscal,dz10);
1242
1243             /* Update vectorial force */
1244             fix1             = _mm_add_pd(fix1,tx);
1245             fiy1             = _mm_add_pd(fiy1,ty);
1246             fiz1             = _mm_add_pd(fiz1,tz);
1247
1248             fjx0             = _mm_add_pd(fjx0,tx);
1249             fjy0             = _mm_add_pd(fjy0,ty);
1250             fjz0             = _mm_add_pd(fjz0,tz);
1251
1252             /**************************
1253              * CALCULATE INTERACTIONS *
1254              **************************/
1255
1256             r20              = _mm_mul_pd(rsq20,rinv20);
1257
1258             /* Compute parameters for interactions between i and j atoms */
1259             qq20             = _mm_mul_pd(iq2,jq0);
1260
1261             /* Calculate table index by multiplying r with table scale and truncate to integer */
1262             rt               = _mm_mul_pd(r20,vftabscale);
1263             vfitab           = _mm_cvttpd_epi32(rt);
1264             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1265             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1266
1267             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1268             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1269             F                = _mm_setzero_pd();
1270             GMX_MM_TRANSPOSE2_PD(Y,F);
1271             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1272             H                = _mm_setzero_pd();
1273             GMX_MM_TRANSPOSE2_PD(G,H);
1274             Heps             = _mm_mul_pd(vfeps,H);
1275             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1276             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1277             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1282
1283             /* Calculate temporary vectorial force */
1284             tx               = _mm_mul_pd(fscal,dx20);
1285             ty               = _mm_mul_pd(fscal,dy20);
1286             tz               = _mm_mul_pd(fscal,dz20);
1287
1288             /* Update vectorial force */
1289             fix2             = _mm_add_pd(fix2,tx);
1290             fiy2             = _mm_add_pd(fiy2,ty);
1291             fiz2             = _mm_add_pd(fiz2,tz);
1292
1293             fjx0             = _mm_add_pd(fjx0,tx);
1294             fjy0             = _mm_add_pd(fjy0,ty);
1295             fjz0             = _mm_add_pd(fjz0,tz);
1296
1297             /**************************
1298              * CALCULATE INTERACTIONS *
1299              **************************/
1300
1301             r30              = _mm_mul_pd(rsq30,rinv30);
1302
1303             /* Compute parameters for interactions between i and j atoms */
1304             qq30             = _mm_mul_pd(iq3,jq0);
1305
1306             /* Calculate table index by multiplying r with table scale and truncate to integer */
1307             rt               = _mm_mul_pd(r30,vftabscale);
1308             vfitab           = _mm_cvttpd_epi32(rt);
1309             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1310             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1311
1312             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1313             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1314             F                = _mm_setzero_pd();
1315             GMX_MM_TRANSPOSE2_PD(Y,F);
1316             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1317             H                = _mm_setzero_pd();
1318             GMX_MM_TRANSPOSE2_PD(G,H);
1319             Heps             = _mm_mul_pd(vfeps,H);
1320             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1321             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1322             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1323
1324             fscal            = felec;
1325
1326             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1327
1328             /* Calculate temporary vectorial force */
1329             tx               = _mm_mul_pd(fscal,dx30);
1330             ty               = _mm_mul_pd(fscal,dy30);
1331             tz               = _mm_mul_pd(fscal,dz30);
1332
1333             /* Update vectorial force */
1334             fix3             = _mm_add_pd(fix3,tx);
1335             fiy3             = _mm_add_pd(fiy3,ty);
1336             fiz3             = _mm_add_pd(fiz3,tz);
1337
1338             fjx0             = _mm_add_pd(fjx0,tx);
1339             fjy0             = _mm_add_pd(fjy0,ty);
1340             fjz0             = _mm_add_pd(fjz0,tz);
1341
1342             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1343
1344             /* Inner loop uses 168 flops */
1345         }
1346
1347         /* End of innermost loop */
1348
1349         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1350                                               f+i_coord_offset,fshift+i_shift_offset);
1351
1352         /* Increment number of inner iterations */
1353         inneriter                  += j_index_end - j_index_start;
1354
1355         /* Outer loop uses 24 flops */
1356     }
1357
1358     /* Increment number of outer iterations */
1359     outeriter        += nri;
1360
1361     /* Update outer/inner flops */
1362
1363     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*168);
1364 }